1ELD] RN Statemate

Documentor Reference Guide






Rational Statemate
Documentor Reference Guide




Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF file available from Help > List of Books.

This edition applies to IBM® Rational® Statemate® 4.6 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.



Contents

Overview of DOCUMENTOr . ... ... e 1
BasSiC CONCEPES . . it 1
Document Generation Language (DGL) . . . ... .. 3

DGL Template. . . . ..o e 3

DGL SEOMENIS . . . ottt e e e 3

Document ASSEMDIY . . . .o 3

Designing a Document Using Templates . . ... e e 4
Generating the DOCUMENT. . . . ... .o e e e e e 5
Formatting Commands . . .. ...ttt 5

Sample Template . .. ... e 5

Template SECHONS . . .. .. 6
Executing the Template . ... .. ... 7
OUIPUL LS . . o o 7

Final AsSembly . ... e e 8

Reusing Templates . . . .. ... e 8
INClUde FileS . .o 8

FIlE ACCESS . . oot 9
Documentor Interface with Formatting Systems . ............ . e i 10
Embedding Formatting INStruCtionS. . . . ... ..o 10
Predefined RepOItS . . . . oo 10

POt . 10
Invoking a Formatter from Within the Documentor . . .. ... .. e 11
USiNg DOCUMENTOr . ... e e 13
Document Production ProCess . ... ... 13
Starting DOCUMENTOT. . . . . oo e e e 14
Producing the Document Template. . ... ... .. 14
Creating and Manipulating Templates. . . ... ... e e 14
Creating @ Template . . . ... 14
Editing a Template . .. ... 15
Deleting a Template . . . ... ... e 16
Copying @ TemPIate . . ..o 17
Exporting a Template . . ... ..o 17

Rational Statemate



Table of Contents

Compiling @ Template . . . . ... 18
Printing a Template . . . .. ... 19
Using INclude Files . . ... 19
Creating and Manipulating Include Files. . ... ... ... 19
Creatingan Include File . .. ... .. e e 20
Editing an Include File. . . ... 20
Deleting an Include File. . . ... 21
Copying an Include File. . . . ... 21
Exporting an Include File. . .. ... 21
Printing an Include File . . ... .o 21
Producing the Document SEgmeNnts . .. ... ... e 22
Creating and Manipulating DOCUMENTS . . . . . ..ttt e e e e 22
Creating @ DOCUMENT . . . .. .o e e e e e e e e e 23
Editing @ DOCUMENT. . . . ..o e e 26
Deleting @ DOCUMENL. . . . . ... e e e e e 26
Regenerating DOCUMENt SEgMENES . . . . ..ttt e et e e 27
Producing the Final Document .. ...... ... . . e 29
Printing @ DOCUMENT . . . . ..ot e e e e e e e 29
EXPOrting @ DOCUMENt. . . ..o e e 30
Formatting @ DOCUMENT. . . . . ...ttt e e e e e e e 31
Working with Different Formatters .. ........ .. 31
Using nroff and troff. . . ... .. 32

Using Interleaf. . .. ... 32
Document Templates . ... ... 33
Principles of DGL ... . e 33
DGL Template SIrUCLUIE . . . . . ..ttt e e e e e e e e e e e e e 33

DGL Syntax RUIES. . . . ..o 35
Special Features Of DGL. . .. ..ot 37
Extensions to Conventional Programming CONSLrUCtS . . ... ... .ottt 37

Database EXIractions . .. ... ...t 37

Overview of DGL Statements . . . . ... ot 38
Data-types and EXPreSSiONS . .. ...ttt e 39
DAY DS . . . e 39
Conventional Types found in Other Programming Languages . . . . . ...« .ot .. 39

Rational Statemate Element TYPesS. . . .. .ot 40

LIST OF Simple_type. . . oo 41

E XIS SIONS. .« . ottt e 42
NUMENC EXPreSSIONS . . . ..ot e e e 42

B0O0lean EXPreSSIONS. . . o .ttt e e 43

StriNG EXPreSSIONS . . . .ottt e 43

Rational Statemate Element EXPressions. . . ... ..ottt 44

iv Documentor Reference Guide



Table of Contents

LISt EXPIrESSIONS . . ..ottt et e 44
Enumerated Types—Predefined Constants . .. ... .. i e 45
DG StalemM NS, . o oot 46
SHUCIUIrE StaleMENES . . . e 46
TEMPLATE Statement . ... ..o e 46
SEGMENT Statement . . . ... 46
PROCEDURE Statement . . ... e e e e 47
BEGIN/END Statement . . . ...t e e e e 47
Comment StatemeENt . . ... e 47
Declaration StatemeNtS. . . . . .t e 48
PARAMETER Statement. . . ... e e 48
CONSTANT Statement. . ... e e e e e 49
VARIABLE Statement . . . ... 50
AsSIgNMmeENt StatemMeENt . . . . .. .. e 51
File Handling Statements . .. ... ..o 51
OPEN Statement. . .. ... 51
CLOSE Statement. . . .ot e 52
READ Statement. . . ... 52
OUPUL StatEMENTS . . . e 53
Verbatim Statement. . . ... 53
WRITE Statement . . . ... e 54
Using WRITE to Produce MESSages. . . . . ..o ittt e e e 56
INCLUDE Statement. . . ... e e e e e e 56
EXECUTE Statement . . ... .. e e e e 57
Include Reports Statement . . . ... .. e 57
Include Plots Statement . . ... ... e 63
Include Table Statement . . ... ... 66
Control Flow Statements. . . ..o e 68
IF/THEN/ELSE Statement. . . ... e e e e e e e e e 68
SELECT/WHEN Statement. . .. ..ot e e e e e e e e e 68
FOR/LOOP Statement . .. ...t e e e e e e e 70
WHILE/LOOP Statement. . . ... e e e e e 71

EXIT Statement. . ... 71
STOP Statement. . . .. e 72
Documentor FUNCLIONS .. ... .. e e e e 73
Overview of the Extraction FUNCLIONS . . .. ... . e e 73
FUNCHON StrUCIUNE. . . . . e e e e e e e e 74
Using Database EXtraction FUNCHONS . . . . . .. oottt e e e e e e 74
Calling CoNVeNtIONS . . ..ot e e 75
FUNCHON NaMES . ..o e e e e e e 75
Element Type Abbreviations . . . .. ... 75
ArTOW ElemMENtS . . . o 77

Rational Statemate \Y



Table of Contents

FUNCLion INpUt ArgUMENES . . . . ..o e e e e e e e e e 78
SHAtUS COUBS. . . o ot 78
Function Return ValUes. . . .. ... 79
Return Values of Type ELEMENT . . . ... e e e e e 79

Return Values of Filename . . ... ... 79

Return Values of Enumerated TYPEeS . . . . ..ottt 80

Model Templates . ... 81
IOt ES . o o 81
Properties Template StruCture . .. ... ... e 84
Properties Initiation SECtioN . . ... ... . e 84
Declaration Part. . . .. ... 84

BOOY . .t 85

Properties Segment SECHON . . . . ...ttt 85
Generating the Report Heading . . ... . e e e e e 86

Iteration: Using the FOR/LOOP Statement. . . .. ... .. e e 86

Generating the Entry Heading. . . . .. ... e 87

Extracting and Printing Information from the Data-ltem Form. .. ........... .. ... .. ... ..... 87

Description and SYNONYM . . . ..o ot 87

Using the SELECT/WHEN CONSIrUCE . . . . .. oot e e 87

Using Nested FOR Loops to Extract Attribute NamesandValues . ........................ 88

Using Keywords to Write Portions of the Long Description. . .. .......... .. . .. 89

Final Output for Data-item Properties . . . ... ... e e 90
Activity Interface ReEpPOIt. . ... e 91
act_interface Template . . ... ... e 92
Activity Interface Report Initiation Section. . . .. ... ... . 94
Activity Interface Report Segment Section . . ... ... . e 94
DEClarations . . .. ...t 94

Producing the Headings . . . ... ... 95

Building Element ListS. . . . . ..o 95
Alphabetizing and Sorting the List. . . .. ... ... e 95

Writing the Input EIements . . ... ..o 96

Final Output for Act_Interface ReEpOrt . . . .. ... i e 97
Template for Nroff . .. 97
Template with nroff Commands . . ... .. . e 98
Initiation Section (Nroff) . . . . . . e 99
Segment 1: Heading and Report Overview (nroff) . ... ... . 100
Including Global Declarations . . . . .. ... e 100

Producing the Heading and Overview (nroff) . ... . . . 100

Segment 2: Activity-Chart Plot and Property Report (nroff) . ....... ... ... . i i 101
Template for Interleaf . ... ... 102
Initiation Section (INterleaf) . . ... ... e 103

Vi Documentor Reference Guide



Table of Contents

Segment 1: Heading and Report Overview (Interleaf) .. ... ... ... .. . . . . . . ... 103
Producing the Heading and Overview (Interleaf) . ........ ... .. . ... . . . . . . . ... 104
Segment 2: Activity-Chart Plot and Property Report (Interleaf). . . ......... ... ... .. . .. . ... 105
Single-Element FUNCLIONS ... ... ... 107
Calling Single-Element FUNCLIONS . . ... ... e e e e e e 108
Single-Element Function INput ArQUMENLS . . . ... ottt 109
Examples of Single-Element Function Calls . . . .. .. ... 110
Single-Element Function Example 1. . ... ... . 110
Single-Element Function Example 2. . ... ... 110
Single-Element Function Example 3. . ... ... 111

List Of FUNCHIONS . ..o e 111
£S] (0T  C 117
StM_r_Sh_action_lang. . .. ... 119
StM_r_sb_action_lang_eXpreSSion . . . . ...t e 120
stm_r_sb_action_lang_local_data. . ............ . . e e 121
SIM_r_actual_parameter_eXP . . . .ottt 122
StM_r_actual_parameter_type . ... ... 123
stm_r_elem_in_ddb _liSt . .. ... .. 124
StM_r_sb_ada_USer_COde. . ... ... .. 125
StM_r_Sh_anSi_C_USEr_COUE . . .. ..ot e e 126
stm_r_st_combinationals . . ........ .. e 127
StM_r_xx_array _lINdeX . ... .. 128
SUM_I_XX_@rray_FNAEX . . . ..ottt e e e 129
Stm_r_xx_attr_enforced . ... ... . 130
SIM_I_XX_Alr_NAME . . . . o i 132
SUM T XX At VAl . 134
stm_r_xx_bit_array INdeX . ... ... 137
Stm_r_xx_bit_array fiNdex . .. ... ... e 138
stm_r_xx_cbk_binding ... ... ... 139
stm_r_xx_cbk_binding_enable . . . ... .. .. 140
Stm_r_xX_CbK_binding_exXpression . . . ... ... e 142
stm_r_xx_cbk_binding_expression_hyper . ... 143
St Tt Cell L e e 144
SIM_r_tt Cell Y P . . 145
SIM_r_changes_10g. . . . ...t 147
SUM L r XX Chart . o o e 148
StM_r_XX_Combinationals . . . . ... . 151
stm_r_sb_connected_chart. . .. ... .. 152
stm_r_xx_containing_fields. . . ... ... . e e 153
Stm_r ch _creation_date . ... ... . 154
SUM I Ch CrBatOr . . . .o 155
SUM_r XX data tYPe . . .ot e 156

Rational Statemate Vii



Table of Contents

£ 1 A F= L= 157
StM_r XX _definition_type . . .. 158
StM_r_ XX_desSC_file . ..o 161
StM I XX _AESCIIPtON . .ot e e 162
SUM L r_deSIgN Al . . . . 164
stm_r_xx_displayed_name . . ... ... 165
Stm_r_ddb _lisSt_names . . .. ... e 167
SUM L lemMENt By P . . o 168
SUM T XX XD Y PO o 170
UM T XX BXPIESSION & . it ittt ettt e e e e e e e e e 171
SN r XX eXt K . .. e 173
SIM_r_UC_ext_point_def . .. .. 175
stm_r_formal_parameter_Names . ... ... ... . 176
stm_r_sb_global_data. . . ........ . e 177
stm_r_sb_global_data_mode . . ... e 178
stm_r_global_interface _report ... ... .. e 179
stm_r_xx_cbk_binding_expression_hyper . . ... ... . 180
SUM_I_ XX _graphiC . . . .o e 181
SUM _r Y PEr _KBY . . o e 183
stm_r_md_implementation . .. ... ... 184
SIM_r_inCluded_gas . . ... 185
stm_r_msg_included_in_ord_iNSig . .. ...ttt e 186
SIM _r A INfO . . e e 187
StM_r_inherited_gas . . ...t 188
SIM_I_ XX_INStANCE_NAIME . . . . . ottt et e et e et e e e e e 189
SEM_T_XX_KEYWOI . . o ot e e e e e e 191
StM_r_Sh_Kr_C_USEr_COOE . .. ..o e 194
StM_r XX _labElS . . e 195
Stm_r_xx_labels _hyper. . ... . 197
Stm_r_local_interface_report. . . .. ... 198
SIM_r XX ONGUES . . . .o e 199
stm_r_lookup_table_header . . . ... .. 201
SUM_T_XX_MAX_VAl . o ot 202
SUM T XX MIN VAl . o e 203
SUM_ I XX MINI_SPEC . . . ot ottt e e e e e e e e e e e 204
SUM_r_8C _MINi_SPEC _NYPOr . . 205
SUM I XX MOOE. . . et e 206
stm_r_ch_modification_date . . . . ... ... 207
SUM T XX NMAMIE. L o o oo e e 208
SIM  F XL NSO .« o o oottt e e e 211
SEM T XX MO . o o o it e 212
SIM T XX MO . . o o oottt e 213
Stm_r_tt nuUM_Of _COl. . ... e 214
SEM Lt UM _Of N . 215

Viii Documentor Reference Guide



Table of Contents

SIM_r_tt NUM_Of OUL ... e 216
SUM_r_tt UM Of FOW . . o o e 217
SUM_I_UC_NUM _Of SCBN . . ..o e e e e e e 218
stm_r_xx_number_of _bitS. ... ... e 219
SUM_r XX O BNUM Y. . e 220
StM_r_XxxX_Of_enum_type _name_type . . . .. .. e 221
stm_r_ord_insig_defined_in_ch .. ... ... e 223
stm_r_parameter_binding . . . ... ... e 224
StM_r_parameter_MOE . . .. ..o 225
StM I Sh parameterS . . ot e 226
SUM Ll BN PaArENE . . . oo 227
SUM I PrEVIOUS _MISQ . « o o ottt et et e e e e e e e e e e e e e e e e 228
stm_r_sb_proc_sch_local_data . ........... ... e 229
SUM T MO PUIPOSE .« e ottt e e e e e e e e 230
SUM T XX _PBACHIONS . . o ot ottt et e e 231
stm_r_param_binding_hyper . ... .. .. 233
stm_r_param_binding_id. . . .. . ... 234
SIM_r_Sh retUMN Y P . . oo 235
SIM_r_Sh_retUrn_USEr By Pe . . .o e 236
StM_r_Sh_return_USer_type_Name . . .. ..o 237
SUM e FOW . . oo e 238
£ 10T T (oot = o 239
SIM I UC_SCEN _atlr NMAIME . . . . e e e e e e e 240
SIM I _UC_SCeN_attr Val ... . e 241
SUM L F SO SCOPE . . ot e 243
stm_r_xx_select_implementation . . . ... ... 244
StM_r_St_StatiC_reaCtionS . . . ... oo e 245
stm_r_st_static_reactions_Nyper. . . ... .o 246
StM_r XX _String_length . . . ... e 247
SEM _r XX SHUCIUNE Y P . . . e e e e 248
stm_r_ac_subroutine_bind . .. ... ... 250
stm_r_ac_subroutine_bind_enable. . . ... ... 251
stm_r_ac_subroutine_bind_expr. . . ... . 252
SEM  E XX SYNONY I . o o ottt e e e e e e e 253
SIM_r_aC termiNatioN . . ... 255
StM_r XX _truth_table. . ... 257
stm_r_xx_truth_table_expression . . ... ... e 258
stm_r_sb_truth_table_local_data . .. ......... .. 259
SUM XX Y P . o oo e 260
SUM T XX I P BXPIESSION &\ v v vt et ettt e e e e e e 264
SUM_I_XX_UNIQUENAMIE . . o ettt et e e e e e e e e e e e e e e e e e e e e e 265
SIM_ I Ch_USA0E Iy Pe. . . o o e 268
SEM T XX _USBI I P o o o ittt e e e e e 268
SIM_I_XX_USer_type_Name_tyPe . . ... ...ttt 270

Rational Statemate iX



Table of Contents

SUM L r Ch VeISION . e 271
stm_r_gds_visibility_mode . . ... .. 272
Stm_r_msg_where_tC_begins . ... ... . 273
StM_r_mMSg_Where_tC_BNAS . . ... .t e e 274
stm_r_sb_connected_statechart. .. .......... . . 275
stm_r_sb_connected_flowchart . ....... ... . . . . . e 276
stm_r_sb_proc_fch_local_data. . .. ... ... ... e 277
SEM_r_XX_deS_attr_Val . ..o 278
StM_r_ XX _dES_attr_NamMe . . .. o 280
StM It Cell NYPEr. e e e e 282
SUM L r t FOW Y DI . . e 283
stm_r xx_default val ... ... ... . e e 284
stm_r_component_param_binding . . . . .. ... 285
Stm_r_component_param_mMOde . . .. .. ...t 286
SUM__StUDS _NaIMES . . . 287
stm_r_information_stub_names . . ... ... . 288
stm_r_sb_connected_statechart. ... ........ ... . 289
stm_r_sb_connected_flowchart .. ...... ... . . . . . 290
DGL Statement Reference . ........... .. 291
ASSIGNMENT . . o 294
BEGIN . .o 295
CLOSE . . 297
COMMENT . . e e e 298
CON ST ANT . . e e e 299
EN D . o 301
EXECUTE . .. 302
= 303
FOR/IL OO . . e e 304
IF/THEN/ELSE . . ..o e e e e e e e e 306
INCLUDE. . . .o e 308
O P EN L 310
PARAMETER . . . 312
PROCEDURE . . .. e 314
RE A DD . o 318
REP O R . o 319
ANDULE REPOIt . . . . o e 321
PrOpEItY REPOI. . . . e 321

X Documentor Reference Guide



Table of Contents

INterface RePOIt . . . . o e 322

LISt REPOI . . o e 323

N2 Chart REPOIt . . o 323
ProtoCOl REPOI . . . oo e 324
RESOIULION REPOIT . . . o e 325
SHUCIUrE REPOIT . . o e 325

TreE REPOIT . . o oo 326
SEGMENT . . o e 327
SELECT/WHEN . . 328
ST O P . e 331
TABLE. . . 332
TEMP L ATE . . o 335
VARIABLE . o 336
VERB ATIM . oo 338
WHILE/LOOP . . . e e e 340
W RITE . o 342
QuUeEry FUNCHIONS . .. 345
Calling QuUery FUNCLIONS . . . .o e e e e 346
BY Al DULES . . . . e 346

BY SHUCIUIE TY P . . o e e e e e e e 347

Name and Synonym Patterns . . . . ... .o 348
Query Function Input ArgUmMeENtS . . ... i 349
Examples of Query FUNCLIONS ... ... . 350
Query Function EXxample L . ... ..o 350

Query FUNCtion EXample 2 . . ... o e e 350

Query Function Example 3 . . ... e 351

List of QUery FUNCLIONS . . ... 351
ACHVILIES (BC) . -« . v v v it e e 352

INPUL LISt TYPE: @C. . . o oot et e e e e e e e 352

INPUL LISt TYPe: A . .o 359

INpUL LISt TYPe: Ch. .o 361

INPUL LISt TYPE: OS. . . oot e e e 362

INput List Type: Md . . ..o 362

INPUL LISt TYPEI MX . o oo e e e e e e e 363

INPUL LISt TYPe: FOULET . . . . .o e e e e e 363

INPUL LISt TY P St . oot 364
A-Flow-Lines (af, ba, laf) . . .. ... e 365
OUtpUL LISt Type: af. . . oo e 365

Rational Statemate Xi



Table of Contents

Output List Type: laf . . .. e 370
ACHONS (BN) . . . e et e 372
INPUL LISt TY P @N. . ot 372
INPUL LISt TYPe: Ch. .o e e e 374
Charts (Ch) . .o 375
INPUL LISt TYPEI AC. . . o o ottt e e e e e e e 375
INPUL LISt TYPe: @N. . . oo 375
INPUL LISt TYPe: Ch. oo 376
INPUE LISt TY P CO. o ottt e e e e e 378
INPUL LISt TyPe: di . ..ot e e 379
INPUL LISt TYPe: OS. . o oo e 379
INPUL LISt Type: At . . .o 379
INPUL LISt Ty PE: BV . . oot e e 380
INpUL List Type: fd . . o 380
INpUL LISt TYPe: if. . o 380
INPUt List Type: Md . ..o e 381
INPUL LISt TYPEI MX . oottt e e e e e e e e e 382
INPUL LISt TYPe: FOULET . . . . .o e e e e e e e e 382
INpUt List Type: Sh . . .o 383
INPUL LISt TY P St . o ot 383
(@01 g = To1 (o] =31 (1 2 ) S 384
INPUL LISt TYPE. CN. ettt e e e e e 384
INPUL LISt TYPe: St . . oot 385
INpUt LISt Type M. . 385
INPUL LISt Ty Pe: tr. . 386
CONAItIONS (CO) .« v vt vttt e e e e e e e e e 386
INPUL LISt TYPe: A . .o 386
INPUL LISt TYPe: Ch. .o e e 387
INPUL LISt TYPE: CO. . ottt e e e e e 387
INPUL LISt Type: di . ..o 389
INpUt List Type: if. . . 389
INpUt List Type: Mf. Lo 389
Data-ltems (di) . ... oo 390
INpUt List Type: af . . ..o e 390
INPUL LISt Type: Ch. .o 390
INPUL LISt TYPE: CO. . oottt e e e e e 391
INpUt List Type: di . ..o 391
INpUE List Type: fd . . o 396
INpUL LISt TYPe: if. . o 397
INpUt LISt Type: Mf. . e 397
Data-Stores (AS) - .« o oottt e e e 398
INPUL LISt TYPE: @C. . . o oot e e e e e e e 398
INput List Type: af . . ... 398
INPUL LISt TYPE: Ch. oo 399

Xii

Documentor Reference Guide



Table of Contents

INPUL LISt TYPe: S . . . oo e 399
INput List Type: Md . . ..o 400
User-Defined TYpes (AL) . . . ..o ot e e 401
INPUL LISt TYPe: Ch. .o e e e 401
INPUL LISt TyPe: At . . .o e 402
INput List Type: fd . . ..o 407
BVENES (BV) . oot e 408
INPUL LISt TYPe: A . .o 408
INPUL LISt TYPe: Ch. oo 408
INPUL LISt Ty P, BV . ottt e e e e 409
INPUL LISt Type: I, . . 410
INpUt List Type: Mf. . 411
Fields (Fd) . . ..o 411
INpUL List TYPe: Ch. .o 411
INPUE LISt TYPE: di . .o 411
INPUL LISt TYPe: Ot . . .ot e e 412
INput List Type: fd . . . oo 412
INPUL LISt TYPEI MX . o oottt e et e e e e e 416
FUNCHIONS (TN) . . ..o 417
INpUL LISt TYPe: Ch. oo 417
Information-FIows (If). . . . . . .o 418
INpUt List Type: af . . ..o e e 418
INPUL LISt Type: Ch. .o 419
INPUL LISt TYPE: CO. . oottt e e e e e 419
INpUt List Type: di . ..o 420
INPUL LISt TY P BV . . ot e e e 420
INpUL LISt TYpe: if. . o 421
INpUt LISt Type: Mf. . e 422
M-Flow-Lines (bf, bm, Imf, mf). . .. ... 423
Output List Type: bf . .o e 423
Output List Type: bm . . .. e 426
Output List Type: IMmf. ..o 427
Output List Type: Mf . .o 428
MOdUIES (M) . ..t 433
INPUL LISt TYPE: AC. . . o o ottt e e e e e e e e e 433
INPUL LISt Type: Ch. .o 433
INPUL LISt TYPe: OS. . . oo 434
INPUE LISt TYPE: MA . . ..o 435
INpUt List Type: Mf. Lo 439
INPUL LISt TYPE: FOULET . . o et e e e e e e e e e 439
MIXEA (IMX) .« o ottt e e e e e e e e 440
INput List Type: af . . ..o 440
INPUL LISt TYPE: @C. . . o oottt e e e e e e e e 441
INPUE LISt TYPE: @CHOT. . . o ottt e e 442

Rational Statemate xiii



Table of Contents

INPUL LISt TYPe: @N. . . oo 443
Input List Type: bb. . ..o 444
INPUL LISt TYPe: Dt . .o 444
INpUt List Type: DM ..o e e 446
INPpUL LISt Type: Ch. . oo 447
INPUL LISt TYPE: CO. . oottt e e e 449
INpUt List Type: di . ..o 450
INPUL LISt TY P S . . ot e e e 451
INPUE LISt TYPE: At . .o 451
INPUL LISt TYPE. V. . ottt e e e e 452
INput List Type: fd . . . oo 453
INPUL LISt TyPe: TN . . 454
INpUt List Type: if. . ..o e 454
INPUE LISt TYPE: Md . . ..o 455
INpUt List TYpe: Mf. Lo 456
INPUL LISt TY P MSO . . o ottt e e e e e e 456
INPUL LISt TYPE: MX . o oot e e e e e e e 457
INPUL LISt TYPE: FOULET . . . . . e e e e e e e e e 465
INpUt List Type: Sh. . .o 466
INPUL LISt TY P St .o 466
INPUL LISt Ty P Al oo 468
INPUL LISt TYPE. UC. . . vttt e e e e e e e e 469
ROULEIS (FOULEE) . . . .o oottt e e e e e e e e e e e e e e e e e e 469
INPUL LISt TYPE: @C. . . o oottt et e e e e e e e 469
INput List Type: af . . ... 470
INpUL LISt TYPe: Ch. .o 470
INPUE LISt TYPE: Md . . ..o 471
INPUL LISt TYPE: FOULET . . . e e e e e e e e 471
SUBIOULINES (SD) . . . oo 472
INPUL LISt Type: Ch. .o 472
INpUt List Type: Sh. . .o e 473
SHAES (Sh) .« v vttt 478
INPUE LISt TYPE: @C. . o ottt e e e e e e 478
INPUL LISt TYPe: Ch. .o e e e 479
INPUL LISt TYPE: N .ot e e 480
INPUL LISt TYPE: MX . o oot e e e e e e e e e e 480
INPUL LISt TYPe: St . . oot e 481
INPUL LISt Ty PO Ar. oo 484
TIMING CONSIraiNt (IC) . . . o oottt e 485
INPUL LISt TYPe: Ch. .o e e e e 485
TraNSItiONS (1) . . . o ottt 485
INPUL LISt TYPE: N .o e e 485
INPUL LISt TYPE: MX . . oo e e e e e e e e e 486
INPUL LISt TY P St . oot 487

Xiv

Documentor Reference Guide



Table of Contents

INPUL LISt Ty Pe: tr. . .o 487

Utility FUNCLIONS . ... 489
Calling Utility FUNCLIONS . . . ... e e e 490
Contains Element . . ... 490

List EXtraction DY TYPe . . .. oo e 491

List Extraction by Chart. . . .. ... 492
Location of Pattern in @ String. . . .. ..o ot 492
Extract Portion of a String . . ... ..o 493
Utility Function Input ArgUMENES. . . .. oo 494
Examples of Utility FUNCLIONS . ... ... e 495
Utility Functions Example L. . .. ... e 495

Utility Functions Example 2. . .. ... 495

Utility Functions Example 3. . .. ... 496

List of Utility FUNCLIONS. . ... e e e e e e e e e 496
StM_action_Of_reacCtion . . . ... .. 499
stm_delete_file . . ... 500

StM _diSPOSE _MEBIMOIY . . o oottt e e e e e e 501

SIM INOEX . o oot e e 502

SUM N, L oo 503
SIM_INt 10 SN, . . . .ot 503

SUM IS StAEMAE . . . . .o 504
StM_liSt_contains_element . . . ... . 504
StM_lISt_CONtaAINS_SIHNG . . . ..ot e e 506

SIM_ LISt eXtraCtiON . ..o e 507
stm_list_extraction_by _chart. . ... ... .. e 508
stm_list_extraction_by chart_id .. ..... ... .. e 509
stm_list_extraction_by_type . . ... . 510
StM_liSt_firSt_element . . .. . . 512
StM_liSt_last_element . ... . e e e 513

SIM LISt length . . o e 514
StM_list_ NeXt element . ... . . 516
SUM L PlOt Xt . . . e 518
StM_lISt_previous_element . . .. ... 522

SEM LISt SOOI . . oo 524
stm_list_sort_by attr_value . ........ . .. 525
stm_list_sort_by branches . .. ... ... .. e 527
stm_list_sort_by chart ... ... .. e 528
stm_list_sort_by levels. . . ... e 529
StM_lISt_SOrt_DY NAME . . . o 531
StM_liSt_SOrt_ By SYNONYM . . ... e e e 533

StM LISt _SOMt Y Iy P . . oo e e 535

Rational Statemate

XV



Table of Contents

Stm_mUltiliNe_t0_ONe . . . ... 536
stm_multiline_to_StriNgS . . . . .. oo 536
UM PIOt. . o 537
StM_PIOt Y P BXP . . ot e e 538
stm_plot_with_autonumber. . . ... .. 541
Stm_plot_With_break . . . ... 544
stm_plot_with_headerline . . .. ... .. e 548
SUM_rEPIACE_StIING . . o ot 551
SIM_rEPlaCE_WOId. . . . o 552
StM_Set TPt fOrMatOr . . . e 553
SUM_SHNG_FetaiN. . . . . oo e e 554
stm_str_list_first_element . ... ... .. e 555
stm_str_list_last_element . . .. ... . e 556
StM_Str_list_length .. ... 557
StM_Str_liSt_next_element . .. ... .. 558
stm_str_list_previous_element . . ... ... . 559
SIM_ St ISt 10 St . . o e e 561
SIM_ St 10 LISt . . oo e e e 562
SUM_SHHNG _EXIFACT. . . . . oo e 563
SIM_StNG_frEE . . o 564
SUM SN _rEtaIN. . . . o o 565
StM_StNG 10 Nt . o e e 566
SISt N . . e e e 567
Stm_trigger_Of reaction . .. ... ... 568
Project Management . . ... ... 569
Stm_r_pm_member_WOrkareas . . ... ... 570
StM _r_PM _OPeratOr_PrOJECTS . o ottt 571
stm_r_pm_project_databank . . ... ... 572
StM_r_PM_Project_Manager . . .. ...ttt 573
StM_r_pPM_Project_mMembers . ... .. 574
SEM _F PM _PIO OIS . ot 575
Function Status Codes . ... 577
DGL Reserved WOrds . .. ... e 583
BNF Syntax .. ... 585
BNF Structure and Conventions .. ... ..t e e e 585
SYMBOl TYPES . . 585
BNF NOtatiONS. . . . .o e e 586

XVi Documentor Reference Guide



Table of Contents

BNF for DGL Statements . . ... .. e e e 586

Index 591

Rational Statemate XVii



Table of Contents

XViii Documentor Reference Guide



Overview of Documentor

You can use the Documentor to design and produce documentation for the system you are
designing. With this tool, you can:

+ Design your document format.

+ Determine what kinds of information to include in it.
Your documents can include textual and graphical information from a variety of sources, including
your project database and external files and programs outside your workarea.

You can use the Documentor in conjunction with the Reports tool. Whereas the Reports tool enables
you to produce predefined reports, the Documentor enables you to produce reports customized for your
specific needs.

This section presents an overview of the Documentor tool. The topics are as follows:

¢ Basic Concepts
¢ Designing a Document Using Templates
¢  Documentor Interface with Formatting Systems

Basic Concepts

You can use the Documentor to design formatted reports that combine information from the
following sources:
+ System-under-design (SUD) database retrievals
+ Reports produced by the Reports tool
+ Plots of charts produced by the Plots tool
+ External files (referred to as include files) that can contain text, tables, figures, and so on
+ Information produced by external programs

Rational Statemate 1



Overview of Documentor

The following figure illustrates internal and external sources, and the process of final document
production. Note that non-shaded areas represent facilities outside of the system.

SUD Project
Database

external text Database Reports
programs files Extraction Tool
Functions

document segments
temp. processing il & il doc. assembly

Template Output the text file (can include formatting
commands
Format
Processor
Output — Final
> Device Document

2 Documentor Reference Guide



Basic Concepts

Document Generation Language (DGL)

You design your documents by writing a program using the Document Generation Language
(DGL). This language provides you with great flexibility in designing your document. Among other
features, DGL enables you to extract information from your project database (workarea).

DGL Template

The document design program that you write using DGL is called a template. The template contains
instructions as to what information is to be included in the document. It can also include formatting
instructions to be passed to a document format processing system, called a formatter. Formatting
instructions specify components within your document, including:

¢ Text width

¢ Margins

¢ Headers and footers

¢ Pagination

DGL Segments
The template is divided into sections called segments. To generate the document, you execute the
template. Each segment of the template produces a separate text file called a document segment.

Creating a document in segments is more efficient than producing an entire document. By using
segments, you can produce the document in stages, updating or editing the segments as needed.

Note

The division of the template into segments does not necessarily have to correspond to the
final document divisions (chapters, sections, and so on). However, it is a good idea to have
the template segments correspond with document divisions wherever possible.

Document Assembly
The Documentor assembles the generated document segments, then does one of the following:

* Exports the segments to an external output device or file.
¢ Sends the segments to a formatting system to produce the final document.

Rational Statemate 3



Overview of Documentor

Designing a Document Using Templates

The following example shows a document that consists of the following:

* Title
¢ Overview, which contains introductory information from an external text file
¢ Plot of an activity-chart

¢ Property information on subactivities shown in the chart, consisting of a property report
from the Reports tool

The following figure shows the formatted report.

page 1
Description of MEASURE

Chapter 1: An Overview

This document describes the system

page n o page n+1
Chapter 2: System Activities 2.2 Activities Description

Detailed description of each activity in the

2.1 Activity-Chart

This is the chart that describes the ac-
ACTIVITY PROPERTY

CALIBRATE
(CONTROL ] This activity determines ..............
SET_UP
|CALI- | Y This activity gets values...............

| compare

COMPARE
SET_UP This activity compares the values

4 Documentor Reference Guide



Designing a Document Using Templates

Generating the Document

The first step is to create the template needed to generate the desired document using DGL.
Because the document contains information about a particular activity, you can use a DGL
parameter called act_name. You specify the value of the parameter (in this case, the activity name for
which you are producing the report) when you are ready to generate the document.

Formatting Commands

Some of the commands in the template consist of formatting instructions to be interpreted by the
formatter used to produce the final document. This example uses an abstract formatter, rather than
a specific one.

The following table lists the commands used by this example.

Command Description

skip<n> Outputs n blank lines

.center<title> Centers the specified title on the line

.Chapter<title> Starts a new chapter with the specified title

.section<title> Starts a new section with the specified title

.page Starts a new page

Jliteral and .end literal Outputs the block of text specified between the
keywords .literal and .end literal

Sample Template

In a template, statements beginning with “- -” are comments and are not interpreted by the tool.
Formatting instructions and other text written between the /@ and @/ markers are passed to the
output files verbatim.

The example uses the following template:

TEMPLATE example;

-- Initiation (global) section

PARAMETER
STRING act_name; -- activity for which
-- the report is written
VARIABLE
ACTIVITY act_id; -- id of “act_name”
INTEGER st; -- status return code
BEGIN
act_id := stm_r_ac (act_name, st);
END;
SEGMENT segl; -- contains chapter 1 of the document

Rational Statemate 5



Overview of Documentor

BEGIN
/0
-page
@/
WRITE (" .center Description of ”,act_name);
/

.chapter An Overview
/

INCLUDE (”sys_overview’); -- an include file containing
-- text with formatting commands
END;

SEGMENT seg2; -- contains chapter 2 of the document

VARIABLE
LIST OF ACTIVITY ac_list;

BEGIN
/0
-page
.chapter System Activities
.section Activity-chart
-skip

This is the chart that describes the activities
of the system:

@/

éih;ﬁiiiééi_id, ----); —- Activity-chart plot

-page
.section Activities’ description
-skip

Detailed description of each activity in the chart:
ac_list:=stm_r_ac_logical_sub_of_ac({act_id},st);

stm_rpt_dictionary(ac_list,....); -- property report
END;

Template Sections
The example template is divided into three parts:

¢ Initiation section—Extracts the activity ID number (act_id) from the database. This number
is used later in the template to call the appropriate activity-chart plot and to extract the
subactivities for the property report.

¢ SEGMENT segl—Contains instructions to produce the title of the document and chapter
1. In this case, chapter 1 is text contained in an include file, sys_overview.

¢ SEGMENT seg2—Contains instructions for producing a plot of an activity-chart and a
property report of subactivities.

6 Documentor Reference Guide



Designing a Document Using Templates

Executing the Template

After the template is created, you execute it. As part of this process, you enter the value for the
parameter act_name in a special form provided by the tool. (In this example, the value for the
parameter is the activity’s name, MEASURE.) As a result of specifying the activity name, the
appropriate information for the activity MEASURE will be included in the document.

The Documentor produces separate text files, corresponding to the segment sections specified in
the template. These files include:

+ Information generated from the project database (the activity-chart plot and property
report).

+ Text from an include file.
¢ Formatting instructions.

Formatting instructions and other text written between the /@ and @/ markers are passed to the
output files verbatim.

If you have made any errors in your template, error messages are displayed during the execution
phase. Correct the template and then re-execute it.

Output Files

After executing the template for the activity MEASURE, the resulting output files (document
segments) resemble the following:

DOCUMENT SEGMENT SEG1:

-page
.center Description of MEASURE

-chapter An Overview

text and formatting commands as written in the file “sys_overview’

DOCUMENT SEGMENT SEG2:

-page
.chapter System Activities
.section Activity-chart
-ski
This is the chart that describes the activities of the system:
-literal
plot information to be sent to the printer
.end literal
-page
.section Activities” description
-skip
Detailed description of each activity in the chart:
Output of Report Tool for the Property Report, including formatting commands for
the specific formatter.

Rational Statemate 7



Overview of Documentor

Final Assembly

Once the segments are generated, you can use various Documentor options to edit or regenerate
them.

When you are satisfied with the segments, you can copy them to an external file or format them.
Both of these operations automatically assemble the segments into one file.

The Format option assembles the segments and passes them to the format processor that you specify
when you create the template. The format processor interprets the formatting statements in the file and
produces a final document that is completely formatted.

Reusing Templates

You can generate different documents from the same template using parameters within the
template. By changing the values of these parameters, you can change the information that is
written, while maintaining the overall structure and format of the document.

For example, the template produces a plot of an activity-chart and a property report for the activity
MEASURE. Instead of writing the name MEASURE directly into the template, the template uses the
parameter act_name. This way, you can specify the name of the activity in a form at the time of
template execution.

You can use the template repeatedly, specifying a different activity name each time you execute
the template. This enables you to produce uniform reports for as many activities as desired.

Include Files

You can include files outside of your project database within your documents. In the template
example, the introductory sys_overview section is not part of the database, but is an external file.
You can create such files while you work with the Documentor, or you can copy them from
outside your workarea. In the example, this file is assumed to already be in the workarea.
Therefore, the file path is not specified—only the file name. The file is accessed via the INCLUDE
statement within the template and inserted in the segment files when the template is executed.

The same include files can be used in a number of different documents, and can be called from a
number of different templates.

The figure illustrates the relationship between templates, include files, and parameters, and the
segments that are produced after the templates are executed. Template A contains parameters and
is generated twice—once using set 1 of the parameter values and once using set 2.

Using the first set of parameter values, the segments of document A1 are generated. In addition,
template A contains a statement calling an external include file, F1, into the generated document
segments of Al.

8 Documentor Reference Guide



Designing a Document Using Templates

When the second set of parameters is used, the segments of document A2 are generated. Again, the
include file F1 is included in the output segments.

Template B is used to generate the segments of document B1. These segments contain two include
files: F1, which was also included in the segments of document A1, and a separate include file, F2.

set 1 of parameter values Segments of

Template A include File F1

Segments of

set 2 of parameter values

Template B p|  Segments of —

include File F2

File Access

The Documentor files, templates, and include files used for document generation are stored in your
workarea. You create and edit these files in your workarea using the Documentor.

You can store your templates and include files in the databank so they can be shared with other
project members, and for version management purposes. In addition, you can export these files
from, and import these files to, outside of the system using standard storage functions.

There are templates and include files used to generate standardized documents within a company
(or even within an industry) whose use is independent of any particular project. These common
files must first be imported to your workarea either directly or via the databank.

Standardized templates, such as templates for the DOD-STD-2167A document set, can be
supplied with Rational Statemate. You can import the templates to the project databank when the
project is created, or select File > Import in the workarea browser.

The resulting segments and documents that the tool creates are not stored in the databank, but
reside in your workarea. These are handled the same way as other stored files on your system.

Rational Statemate 9



Overview of Documentor

Documentor Interface with Formatting Systems

When you create a template, you can assign a formatter to it from a predefined list (for example,
Interleaf).

Embedding Formatting Instructions

You can embed formatting instructions in a template. Upon execution, these instructions are
passed verbatim to the output segments. When these segments are assembled and sent to a
formatting processor, the instructions are interpreted and a final, formatted document is produced.

You can embed formatting instructions for any kind of formatting system or word processor. Some
systems are interactive in nature; that is, you do not directly see the formatting instructions used by
the system when working with it.

If you are working with such a system, you must first determine the particular language (set of
instructions) that can be used by the system in batch mode. These instructions can then be embedded
in the template in the same way as for any other formatting system.

Predefined Reports

Plots

In many documents, you might want to include a report generated from the Reports tool. The
formatting of reports and plots depends on the formatter used and whether this formatter is
supported by the system.

Reports from the Reports tool are textual. They have predefined formats determined by embedded
formatting instructions. For example, assume that you write a template that calls a report (such as
the property report in the sample template), and that you are working with a supported formatter.
When you execute the template, the Reports tool automatically embeds the formatting instructions
appropriate for the attached formatter within the generated report. This means that the report that
appears in the resulting output segments contains embedded formatting commands. Passing the
files to the designated formatter results in a document displaying the report in its predefined
format. For more information on reports, see INCLUDE.

The Plots tool can generate graphical instructions in several languages. These instructions can be
addressed to a printing (plotting) device or to a specific formatter that supports graphics.

For example, the plot in the sample document was included in the document by using a function
call stm_pIt. One of the parameters of this function is the graphical output language. You can pass the
attached formatter’s language as a parameter to a plot function as long as the formatter can handle a
graphical language. In this case, the formatting system processes the plot as part of the entire document.

10

Documentor Reference Guide



Documentor Interface with Formatting Systems

If you are working with a formatter that cannot process graphical information, you can generate
the plot in the language of the output device (printer or plotter) and instruct the formatter to pass
the information without processing it. Alternatively, you can produce a separate plot file and later

merge the plot into your final document. For more information on plots, see INCLUDE.

Note
Plots created using the Word format in the Output Device dialog box are RTF files.

Invoking a Formatter from Within the Documentor
There are two ways to send segment files to a formatter for final processing:

+ Export the files to an external file (the export operation automatically assembles the
segments into one file). You then invoke the formatter on the file that you want to format
as you would for any other text file.

+ For several formatting systems, you can choose the Format option. This option
automatically assembles the segments and sends them to the formatter without requiring you to
exit from the Documentor.

Note

The Format option is available only for specific formatters, such as nroff. Interleaf, which
is an interactive formatting system, cannot be activated from within the Documentor tool.

Rational Statemate 11



Overview of Documentor

12

Documentor Reference Guide



Using Documentor

This section describes how to use Documentor in detail. It includes:

+ Descriptions of Documentor menus and dialog boxes
+ Step-by-step procedures for each Documentor option

The first part of the chapter provides an overview of operations, including how to start the
Documentor and the connection between the stages of document production and the different tool
options. Use this section to locate the menus that you need to perform a particular operation.

The second part of the chapter explains how to perform Documentor operations.

Document Production Process

There are four stages of document production:

Document Production Menu Option

Writing the template Edit > Templates
Creating new templates and editing, deleting, copying, exporting, compiling,
and printing existing templates.

Preparing include files Edit > Include File

Creating new include files and editing, deleting, copying, exporting, and
printing existing include files.

Producing document segments Edit > Documents
Generating new document segments.

The Documentor enables you to regenerate particular segments without
having to regenerate the entire document. If you are not satisfied with a
segment, you can edit it before producing the final document.

Producing the final document Edit > Documents

Regenerating and editing document segments. Deleting, exporting, printing,
and formatting existing documents.

If the segments do not contain formatting instructions for a particular formatter,
you can print the files directly. If the segments contain formatting instructions,
you send them to a formatter. This involves either sending the segment files
directly to a formatter, or copying them to an external file and formatting them
outside of the system.

Rational Statemate 13



Using Documentor

Starting Documentor

To start the Documentor from within the system:
1. Start a session and open a project.
2. Click the Documentor 1% icon in the Rational Statemate main window. The Document
Management window opens.

In addition, the Document Management dialog box opens simultaneously so you can
easily manage your documents (see Creating and Manipulating Documents).

Producing the Document Template

A document template consists of statements (instructions) written in DGL. A template is a text file
containing instructions for document generation. In principle, you can create a template in the
same way that you create a source file for any other programming language. For simplicity,
template files are handled from within the system by standardized storage functions.

Creating and Manipulating Templates

To work with templates, select the Template @| icon in the toolbar or Edit > Template from

the main menu. The Template Management dialog box opens. In the dialog box, the Templates
table lists the available templates in your workarea.

Creating a Template

To create a template:
1. Click New. The New Template dialog box opens.

2. Enter a name for the new template in the Name field. The template name must begin with
a letter, and can contain only alphanumeric characters or underscores.

The name must be unique in this project. If you select different formatters, you can use
the same name for multiple templates because the system appends the formatter type to
the name you enter, thus making the names unique.

For example, if you enter the name PAGER and select FrameMaker as the formatter, the
system names the template PAGER_FRM. The following table lists the extension for
each formatter.

14 Documentor Reference Guide



Producing the Document Template

If a template with this name already exists, the Documentor displays a warning. You can
cancel or confirm your choice to overwrite the old template. To modify an existing name,
click on the cascade button and select a name from the list of templates. This places the
name in the Name field so you can then modify it.

FrameMaker _FRM
Glyph _GLP
Interleaf _IFF

troff _TFF
Word _RTF
Undefined _OTH

3. Select a formatter from the list of supported format processors.

The format processor operates on the formatting instructions entered into the template.
(See overview of Documentor for more information.) When you copy an existing template,
the formatter type for the new template is the same as for the original, unless you specify
otherwise.

4. Click OK. The text editor opens.
5.  Write your template using DGL statements.

6. To save your template, select File > Save, then File > Exit. to close the text editor. You
return to the Template Management dialog box.

You can also create a new template by copying an existing template and editing it as needed.

Editing a Template

To edit an existing template:
1. Select the template from the list in the Template Management dialog box.
2. Click Edit. The template opens in the system’s text editor.

3. Make your changes, then select File > Save and File > Exit in the text editor.

Rational Statemate 15



Using Documentor

Deleting a Template

To delete a template:
1. Select the template from the list in the Template Management dialog box.

To delete multiple templates, hold down the CTRL key when making your selections.
2. Click Delete.
3. The Documentor prompts you to confirm the deletion. Answer Yes.

The tool first checks for documents that were generated using the template. If it finds any, the
template is not deleted and a list of documents that were generated from the template is displayed
in the main window. The Documentor tool assumes that you need to keep the template sources
from which existing documents were made. You must delete those documents before their
associated templates can be deleted.

16

Documentor Reference Guide



Producing the Document Template

Copying a Template
To copy a template:

1. Select the template from the list in the Template Management dialog box.

2. Click Copy. The Copy Template dialog box opens with the name of the template in the
title bar.

3. Type a new name for the template copy.

4. Select OK. A copy of the template is displayed in the Template Management dialog box.

Exporting a Template

To export a template:
1. Select the template from the list in the Template Management dialog box.
2. Click Export. The Export Files dialog box opens.

3. Click OK to export the template and dismiss the dialog box.

Rational Statemate 17



Using Documentor

Compiling a Template

You can check a template for adherence to DGL syntax rules using the Compile option. This is the
same as program compilation in other languages. Use this option to see whether a template is
executable, without actually performing the execution. Any errors are logged so you can execute
templates unattended.

Note

If you do not compile your template, the tool checks the template for errors upon execution
(see Creating a Document).

To compile a template:
1. Select the template from the list in the Template Management dialog box.

2. Click Compile. A message is displayed in the main Documentor window that notifies you
whether the compilation was successful.

If there are compilation errors, a message notifies you that errors were found. The error messages
are written into the template in the form of comments. A compiler error message appears as close
as possible to the line where the problem was found. The following example shows a template
with error messages:

name := stm_r_st name (state_chart, status;
--%DOC (E1352) Missing )’

name := name + 5;

--%DOC (E1142) Argument mismatch

name := nm;

--%DOC (E1211) ldentifier NM not declared

FOR sub_state IN sub_list LOOP
=i+l
--%DOC (E2001) Missing ”;”

You must correct template errors before re-executing the template, but you do not need to remove
them from the template file. The Documentor automatically removes them the next time the
template is compiled or executed.

18 Documentor Reference Guide



Using Include Files

Printing a Template

To print a template:
1. Select the template from the list in the Template Management dialog box.
2. Click Print.

To print multiple templates, hold down the CTRL key when making your selections.

Using Include Files

Your document might include files external to the specification database. Such include files
consist of textual explanations, diagrams, pictures, and so on. Insert these files in your document
using the INCLUDE statement in the template. When you execute the template, the include files are
copied into the resulting document segments.

Creating and Manipulating Include Files

To add include files, click the Include Files ‘ ﬁ,:_‘_‘l| icon in the main Documentor window, or select
Edit > Include File. The Include Management dialog box opens, as shown in the following figure.

il

Include Files |

STO_TEMFLATE_RTF New. ..
Edit |
Delete |
Copyes. |
Export... |
Print |

Dlizmizz | Help |

The dialog box lists the include files in your workarea.

Rational Statemate 19



Using Documentor

Creating an Include File

To create an include file:
1. Click New. The New Include File dialog opens.

New Include File |

Include Files
STO_TEMPLATE_RTF

Include File Mame

Ok | Eancell Help |

2. Enter a name for the new include file in the text box. The include file name must begin
with a letter, and can contain only alphanumeric characters or underscores.

The name must be unique in this project. If an include file with this name already exists,

the system displays a warning. You can cancel or confirm your choice to overwrite the old
include file. To modify an existing name, select a name from the list and modify it in the
text box.

3. Click OK to invoke the system’s text editor where you can create a new include file.
Alternatively, you can create a new include file by copying an existing include file and editing it as
needed.

Editing an Include File

To edit an include file:
1. Select the include file from the list in the Include Management dialog box.
2. Click Edit. The include file is displayed in the system’s text editor.

3. Make your changes, then select File > Save and File > Exit in the text editor.

20 Documentor Reference Guide



Using Include Files

Deleting an Include File

To delete an include file:

1.

Select the include file from the list in the Include Management dialog box.

To delete multiple include files, hold down the CTRL key when making your selections.
Click Delete.

The Documentor prompts you to confirm the deletion. Answer Yes.

Copying an Include File

To copy an include file:

1.
2.

Select the include file from the list in the Include Management dialog box.

Click Copy. The Copy Include dialog opens with the name of the include file in the title
bar.

Type a new name for the include file copy.

Click OK. A copy of the include file is displayed in the Include Management dialog box.

Exporting an Include File

To export an include file:

> w0 o

Select the include file from the list in the Include Management dialog box.
Click Export. The Export Files dialog box opens.
Type the directory and file name where you want to export the include file.

Click OK to apply your changes and dismiss the dialog box.

Printing an Include File

To print an include file:

1.
2.

Select the include file from the list in the Include Management dialog box.

Click Print.

To print multiple include files, hold down the CTRL key when making your selections.

Rational Statemate

21



Using Documentor

Producing the Document Segments

After writing the template and preparing any include files to be included in the document, you are
ready to execute the template and generate the unformatted document segments. Each segment file
contains information from various sources that you specified through the DGL statements in your
template.

The Documentor permits file operations on segments independent of the sources from which they
were generated. These operations work in the same way for both for templates and include files.

This section describes how to use the following options in the Document Management dialog box:

*+ New—Generates segments for a new document
+ Edit—Modifies any of the generated segments
¢ Delete—Deletes a document

* Regenerate—Regenerates specific segments of the document without re-executing the
entire document.

For information on the Export, Print, and Format options, see Producing the Final Document.

Creating and Manipulating Documents

To work with documents, click the Documents 3%; icon in the toolbar or select
Edit > Documents from the main menu. The Document Management dialog box lists the
documents in your workarea.

22

Documentor Reference Guide



Producing the Document Segments

Document Management ] = |EI|5|

Documents |
REAR_TEFOG

Mew, .,

bt I
Delete I
Export, .. I
Regenerate...l
Print,.. I
Format. . . I

Dizmizsz | Help I

Creating a Document
To create a document:

1. Click New. The New Document dialog box opens.

x
Hame? I j
Template: ISTD_TEHF‘LHTE_RTF j

0k I Cancel I Help I

2. Enter a name for the new document in the text box. The name must begin with a letter, and
can contain only alphanumeric characters or underscores.

The name must be unique in this project. If a document with this name already exists, the
system displays a warning. You can cancel or confirm your choice to overwrite the old

document. To modify an existing name, select a name from the drop-down list and
modify it in the text box.

3. Enter the name of the template you want to execute, or select it from the list of templates.

Rational Statemate 23



Using Documentor

4. Click OK.

The Documentor checks the template for errors. If there are compilation errors, the tool
displays a warning. You must correct all the errors before you can generate any segments.
See Creating a Template for more information. When all of the errors have been resolved, click
New again.

If there were no errors, the Generate Document dialog box opens, as shown in the figure.
This dialog box enables you to select all or some of the template segments and enter
values for the parameters to be used when generating the document.

The Generate Document dialog box contains two tables:

a. Parameter Name—Displays the current parameter values. If you assigned initial
values to the parameters in the template, these values are displayed in the Parameter
Value column. If you change these values, the new values are stored and displayed
prior to any regeneration of the document segments. (For more information, see
Regenerating Document Segments.)

b. Segment Name—Lists the document segments, all of which will be generated by
default (see the Yes value in the Gen column). If you do not want to generate a
specific segment, click on the Yes next to that segment and the field changes to No.

By default, the view is collapsed so the segment information is not displayed. Click
Expand to expand the view.

Regardless of the template segments that you select for execution, the initiation
section of the template is always executed. See Overview of Documentor for an
explanation of template segments.

5. Enter values for the relevant parameters shown in the form. (For more information on
template parameters, see Reusing Templates.)

6. Click OK to apply your changes and dismiss the dialog box.

The tool generates the segments and the new document name is included in the list in the
Document Management dialog box.

24 Documentor Reference Guide



Producing the Document Segments

Generate Document REAR_DEFOG_SS

Generate Document Dialog Box (shown expanded)

x|

Parameter Mame

||Parameter Valug

TOP_CH_MNAME
HEADER _TEXT
WORTI_DEWICE
HPGL_PLOTS
ID_LOMG_DESC
COVER_PAGE
DOC_TITLE
SPEC_REWISION
REVISIONM_DATE
DOC_AUTHOR
APPLICABLE_DOCS
SYS_OVERWIEW
TREE_MODE
TT_COL_WIDTH
TT_OLD_STYLE
INS_EXT_FILE
GEM_TR_TABELES
WITH_LABELS
CHG_LOG_BY_DATE
CHG_LOG_ALL_CH
WITH_HYPER

¥ Collapse

ACTIMITY _CHART_TEST

WORD
FALSE
TRUE

Tue FApr 29 10304152
ehopking

TRUE
1000
FALSE
TRUE
TRUE
TRUE
TRUE
TRLUE
TRUE

Segment. Name || en || ]
COVERPAGE Yes
HOF_FTR_TOC Yes
TOCUMENTS Yes
SYSTEM_OVERWIEW Yes
FUMCTIONS Yes
COMT_CH Yes
GEMERIC_ACT_CH Yes
FUMCTIONMAL _LESC Yes
PROC_AND_GEN Yes |

0K |

Cancel |

Help |

Rational Statemate

25



Using Documentor

Editing a Document

After generating the document, you can edit any of the generated segments. The Edit option
enables you to make minor changes in a generated document segment, without having to edit and
re-execute the entire document template.

To edit a document segment:

1.
2.

3.
4.
5.

Select the document from the list in the Document Management dialog box.

Click Edit. The Edit Document dialog box opens, as shown in the following figure.

Edit Document REAR_DEFOG =

Seqnent.s =]
COVERPAGE

HIR_FTR_TOC

DOCUMENTS

SYSTEM_OVERVIEL

FUNCTIONS

CONT_CH

GEMERIC_ACT_CH =
FUNCT LOMAL _DESC

PROC_AND_GEN

BEHAVIORAL _DESC

DICTIOMARY =

Ok I Eancell Help |

Select the segment you want to edit.
Click OK. The segment opens in the system’s text editor.

Make your changes, then select File > Save and File > Exit in the text editor.

Deleting a Document

To delete a document:

1.

Select the document from the list in the Document Management dialog box.

To delete multiple documents, hold down the CTRL key when making your selections.
Click Delete.

The Documentor prompts you to confirm the deletion. Answer Yes.

26

Documentor Reference Guide



Producing the Document Segments

Regenerating Document Segments

The Documentor enables you to regenerate particular segments of your document without re-
executing the entire template. After generating some of the document’s segments, you might want
to go back and generate other segments that you did not originally select. Perhaps you altered the

template or changed your specification. You will need to regenerate those segments affected by
the modifications.

Using the New option for this task is inefficient. When you create a new document, any previous
segments for the document are erased, then the specified segments are generated. This is why
Documentor provides an additional document operation, Regenerate. This option allows you to
redo particular segments, without affecting existing segments of your document.

To regenerate a document segment:
1. Select the document from the list in the Document Management dialog box.

2. Click Regenerate. The Regenerate Document dialog box opens.

Rational Statemate 27



Using Documentor

x
Parameter Mame ||Parameter Walue "
TOP_CH_MAME ACTIMITY _CHART_TEST
HERDER_TEXT
WORD_DEYICE WORD
HPGL_PLOTS FALSE
TD_LOMG_DESC TRUE
COMER_PAGE
DOC_TITLE
SPEC_REYISION
REMISION_DATE Tue Apr 29 09:50:34
T0C_AUTHOR ehopkins

APPLICABLE_DOCS
SYS_OVERMIEW

TREE_HODE TRIE
TT_COL_WIDTH 1000
TT_OLD_STYLE FALSE
IMS_EXT_FILE TRLE
GEM_TR_TABLES TRLE
WITH_LAEELS TRIE
CHG_LOG_BY_TIATE TRLE
CHG_LOG_ALL_CH TRLE
WITH_HYPER TRIE

| | Expand

oK | Cancel | Help |

3. By default, all segments are selected. Unselect the segments that you do not want to
regenerate by clicking on the Yes next to it; the field changes to No.

You can change parameter values. However, changing the parameter values can be
problematic when regenerating segments. It is usually undesirable to have some segments
generated with one set of parameter values, and other segments created with a different
parameter set. If you alter some parameters and regenerate a portion of your document,
the Documentor asks you to confirm the regeneration.

4. Click OK to apply your changes and dismiss the dialog box.

28 Documentor Reference Guide



Producing the Final Document

Producing the Final Document

After generating the document segments, you output them as an assembled finished document. If
the document segments contain formatting instructions, you send them to a formatter to produce
the final document.This procedure also depends on whether the Documentor can invoke the
formatter. For example, Interleaf cannot be activated from within the Documentor.

Select one of the following three ways to produce the final document depending on your formatter:

¢ For ASCII and PostScript files, use Print.
¢ For FrameMaker, Interleaf, Word, and troff files, use Export.
¢ For Glyph files, use Format.

Printing a Document

Use Print for document segments that do not contain formatting instructions (such as ASCII and
PostScript) that you want to send directly to your local printer. This option is also useful for shipping a
document in a machine-readable format to another site.

To print a document:
1. Select the document from the list in the Document Management dialog box.

2. Select Print. The Print Document dialog box opens, as shown in the following figure.

Print Document REAR_DEFDG x|

Seqnent.s =]
COVERPAGE

HIR_FTR_TOC

DOCUMENTS

SYSTEM_OVERVIEL

FUNCTIONS

COMT_CH

GEMERIC_ACT_CH =
FUNCT LONAL _DESC

PROC_ANDI_GEN

BEHAVIORAL _DESC

DICTIOMARY =l

I8

Cancel Help |

Rational Statemate 29



Using Documentor

3. Select the segments you want to print:

¢ Select one segment by clicking on it.

¢ Select multiple segments by holding the CTRL key.

+ Do not select any segments to print all the segments.
4. Click OK to dismiss the dialog box and print the document.

Exporting a Document

Use Export for document segments that contain formatting instructions for formatters that cannot
be activated from within the Documentor (such as FrameMaker, Interleaf, Word, and troff).

To export a document to an external file:

1. Select the document you want to export from the list in the Document Management dialog
box.

2. Click Export. The Export Document dialog box opens with the name of the document you
selected in the title bar. It lists all the generated segments for the selected document.

3. Select the segments you want to export:

¢ Select one segment by clicking on it.

¢ Select multiple segments by holding the CTRL key.

+ Do not select any segments to export all the segments.
4. Click OK to dismiss the dialog box.

5. Enter the output file path name (using the operating system conventions for your host
computer). This is the file destination for the output.

Note: You can also enter a new name by clicking on the ellipsis (...) to display the
Export Files dialog box.

6. Click OK. The tool assembles the segments in the correct order and writes them to the
specified destination.

7. Invoke your formatter on that external file.

30 Documentor Reference Guide



Working with Different Formatters

Formatting a Document

Use Format for document segments that contain formatting instructions for formatters that can be
activated directly from within the Documentor (such as Glyph).

To format a document:
1. Select the document from the list in the Document Management dialog box.
2. Click Format. The Format Document dialog box opens.
3. Specify the field values:

+  Select the segments that you want in your document.
+ Optionally, select additional output devices Terminal, Printer, or both.

+ Specify the output file path name. This is the file that contains the final document.
The file is produced by the formatting system.

4. Click OK. The Documentor assembles the segments, then activates the formatter to produce the
document.

Working with Different Formatters

Overview of Documentor explains the relationship between the Documentor and formatters. To use
any formatter, it must be present on your host computer. You can edit or generate Documentor
files on any computer running Documentor, but you can use the Format option only on a host that
actually runs the target formatting system.

Rational Statemate 31



Using Documentor

Using nroff and troff

nroff and troff are UNIX-based formatting systems.

nroff is a textual formatting system that prepares output for standard ASCII devices such as
terminals, disk files, and printers. You can activate nroff directly from the Documentor using the
Format option on templates attached to the troff formatter.

troff is a graphical formatting system that prepares output for laser printing devices. Despite the
difference, these systems are compatible in that troff can use nroff input files to produce final
output. troff cannot be activated directly from the Documentor.

Note

+ nroff input requires preprocessing for commands used with equations and tables. If you
use such commands in your template or include files, you should not activate nroff
directly from the Documentor. The Documentor does not support preprocessing of output
before sending it to nroff.

+ If you run nroff externally, predefined reports generated by the Reports tool use the
macros library me.

For information on troff and nroff, see the UNIX system documentation for your computer.

Using Interleaf

Interleaf is a documentation preparation system available on various computer systems. Because it
is interactive, Interleaf cannot be activated directly from the Documentor. In addition, you must
make sure to include the file interleaf_glob in the first segment of your template. The file is
supplied as an include file in the databank. You must load this include file into your workarea for
Documentor to access it. This file contains global definitions that are used in Rational Statemate
reports.

For more information on Interleaf, see the Interleaf documentation provided with the formatter.

32 Documentor Reference Guide



Document Templates

A template is a text file consisting of instructions for generating a document. The instructions are
written in the Document Generation Language (DGL). This section, divided into three parts, explains
the fundamentals of DGL:

¢ Principles of DGL
+ Data-items and expressions

+ Detailed explanation of DGL statements

Part one covers the basic concepts of DGL and shows you the general principles of template
writing. In part two, we discuss identifiers and the types of data they can represent. We also detail
the various kinds of expressions that you can use in DGL statements. In part three, we present each
DGL statement.

In your template, you can call functions that extract the information stored in the specification
database, and write this information into your document. The use of Database Extraction Functions
is covered in Overview of the Extraction Functions.

Principles of DGL

DGL is a structured programming language and displays features typical of other structured
languages such as Pascal. Among these are: declarations for identifiers, the use of variables,
parameters and constants, and control flow statements. In this section, the principles and
conventions of DGL are introduced.

DGL Template Structure

Every template consists of two main parts:

1. Initiation section—Contains declarations and statements that pertain to the overall
template. It may not include output statements.

2. Template segments—Sections of the program, each of which pertains to a particular
portion of the document.

Rational Statemate 33



Document Templates

TEMPLATE example Initiation section

contains global declarations and
VARIABLE

CHART ch_id;
INTEGER status;

BEGIN

ch_id :=stm_r_ch (‘CH1’ status) ;

SEGMENT seg 1; segment
contains local declarations and
VARIABLE
STRING fn:="/tmp/my_file’;
BEGIN
INCLUDE (fn);

TEMPLATE example Initiation section

contains global declarations and
VARIABLE

CHART ch_id;
INTEGER status;

BEGIN

ch_id :=stm_r_ch (‘CH1’ status) ;

SEGMENT seg 1; segment
contains local declarations and
VARIABLE
STRING fn:="/tmp/my_file’;
BEGIN

INCLUDE (fn);

Template segments are the basic divisions of the document and, when executed, produce distinct
output files called document segments; these are later assembled into the final document. The segments
do not necessarily correspond to the document divisions (i.e. chapters, sections, etc.). However, we
recommend that you divide the segments according to such divisions. This gives you the ability to
generate separate sections or chapters individually; the initiation section, however, is executed whenever
any segment is executed. See the discussion on Template Sections for more information.

34 Documentor Reference Guide



Principles of DGL

The initiation section and template segments all have the same overall structure:

1.
2.

3.

Identifier line - (Required) Identifies the entire template or template segment by name.

Declaration part - (Optional) Contains the definitions of any constants, or variables used
by the template section during execution. Identifiers declared in the initiation section are
global, i.e., they may be used throughout the template; in the initiation section (only) you
may include parameter declarations, as well as variables and constants.

Body - (Required) Contains execution statements. The body is composed of a BEGIN/END
statement that delineates the section’s statements. Any number of statements may be
found in the body. The initiation section may not include output statements.

SEGMENT seg 1; identifier line

declaration part

VARIABLE . .
contains local declarations

CHART ch_id;
INTEGER status;

body

contains DGL statements
BEGIN

ch_id :=stm_r_ch (‘CH1’status) ; stm_plot
(ch_id, ‘my_file’, ...);

DGL Syntax Rules

DGL, like most programming languages, has a particular syntax that must be obeyed. The full
syntax of each DGL statement is given in DGL Statement Reference. A more formal DGL syntax,
written in BNF, is provided in BNF Syntax.

The following is a list of general syntax rules that apply to all DGL statements:

1.

DGL is not case sensitive. The exception to this rule is literal strings (inside apostrophe
marks). These are utilized exactly as they appear in the template.

DGL statements terminate with a semicolon.
Multiple statements on a single line are permitted.

A single statement may span several lines.

Rational Statemate 35



Document Templates

DGL has a set of reserved words and syntactical constructs. Each of these has a special
meaning and can be used only in the context for which it has been designed. The DGL
reserved words are listed in DGL Reserved Words.

An identifier (a name you assign to an object for identification purposes) can be any
string, beginning with a letter and consisting of any of the following characters: A-Z, a-z,
0-9, _. Reserved words may not be used as identifiers.

Literal strings may be assigned by enclosing them within apostrophe marks (7). Any
character sequence can be used inside literal strings.

Comments are preceded by a double dash (--) symbol. This symbol can be placed anywhere
in the line except within a literal string. After the comment symbol, all other characters on the
line are ignored.

Extra blank spaces within or between statements are ignored.

statements terminate with

SEGMENT seg 1;

a semicolon.
VARIABLE
chArt ch 9: 'de_ntifier _can'be any
not case sensitive - string beginning with
INTE- status: a letter and consisting

of characters A-Z, 0-9, _
ch_9:=stm r ch

single statement may span two
(‘CH1’ | status) ; J yp

lines.

BEGIN
WRITE (“ This is a Plot *); ————literal strings enclosed in
apostrophes.
STM_PLOT_ (ch_9, ‘my_file’, ...);
- i —comment lines preceded by a
END; -- this keyword ends double dash.

-- this section

extra blank spaces within state-
ments or between statements
are ignored.

36

Documentor Reference Guide



Principles of DGL

Special Features of DGL

We mentioned before that DGL resembles other structured programming languages. DGL also
includes special constructs and features important for the document generation process.

Extensions to Conventional Programming Constructs
Some of the features unique to DGL are:

+ \Verbatim Inclusion—Text may be included in a template and passed “as is”, i.e. literally
to the output document segments. This is particularly useful for passing formatting
commands to the formatter.

*

Include File—Text from another file may be copied to the output document segments.
+ Calling External Programs—External programs (e.g., operating system services) may be
called from within the template.

+ Include Statemate Reports and Plots—Rational Statemate predefined reports and

graphical plots may be included in the document.

Database Extractions

A set of functions can be used to extract database information regarding specific elements and

produce lists of elements according to specified criteria. Database extraction functions and their
use are explained in Documentor Functions.

There are several kinds of functions:

+ Single-Element Functions—Return element details (as strings, or numbers). Such

functions can be used to return an element name, synonym, type, definition, short
description, or attribute values. Parts of an element’s long description may be retrieved
through the use of keywords.

¢ Query Functions—Retrieve a list of elements having a certain relationship with other

specified elements or having a specified attribute value. For example, you may retrieve all
descendants of a given activity and store them in a list.

¢ Utility Functions—Perform operations and manipulations (e.g. sort) on lists, single

integers and strings.

Rational Statemate 37



Document Templates

Overview of DGL Statements

Here is a brief overview of DGL statements. Subsequent sections provide you with the full range
of available statements and their syntax. DGL is written as statements, each of which is a specific
command to the Documentor Tool. The types of statements vary, and most are similar to constructs

in other languages.

DGL statements consist of the following types:

¢ Structure statements—Define the structure of the template.

¢ Declaration statements—Declare the type of identifier for variables, constants and

parameters.

¢ Assignment statement—Assign a value to a variable.

¢ File handling statements—Open or close files or the dialog area, and read data from

files.

¢ Output statements—~Pass information to output document segments, or to the dialog

area.

¢ Control flow statements—For conditional and iterating execution of statements.

SEGMENT seg 1;

VARIABLE
CHART ch_id;
INTEGER status;
BEGIN
ch_id := stm_r_ch (‘CH1’ status) ;

IF status = stm_success
THEN
WRITE (“This is a Plot’);

STM_PLOT(ch_id, ‘my_file’, ...);

ELSE
WRITE(‘Retrieval failed’ );
END IF;

END;

structure statement
declaration statement

structure statement

databa_se extraction function in
an assignment statement
control-flow statement

output statement

output statement (plot statement)
control-flow statement

output statement

structure statement

38

Documentor Reference Guide



Data-types and Expressions

Data-types and Expressions

Identifiers are names that are used in a template and can represent constants, variables or
parameters. The differences between these are noted here:

¢ Constants are identifiers whose values are constant and cannot be changed in DGL
statements.

* Variables are identifiers whose values can change in DGL statements.

+ Parameters are variables whose values may be assigned in a special form before
executing the template.

Before you use an identifier, you must declare whether it is a constant, variable or parameter.
Furthermore, you must declare the particular type of value that can be assigned to the identifier; we
call this type a data-type.

For instance, an identifier (whether constant, variable, or parameter) may be declared to hold
integer values, float values, string values, etc.

Identifiers can be combined to construct expressions; these can be used in various kinds of
statements and database extraction functions. Various kinds of expressions can be constructed,
depending on the data-types of the identifiers of which they are constituted.

For instance, you may construct numeric or string expressions as well as Rational Statemate
element expressions.

This section deals with both data-types and the expressions you can construct from them. In
addition, enumerated types; variables or return values of a function that take a restricted number of
discrete values, are described.

Data-types

You declare identifiers and their data-types in declaration statements; these are described in later
sections. Below we list the various data types that are recognized in DGL declaration statements.

Conventional Types found in Other Programming Languages

INTEGER (numeric)
FLOAT (numeric)
Boolean

STRING

FILE

Rational Statemate 39



Document Templates

Rational Statemate Element Types

These data-types are Rational Statemate elements. Typically, you use identifiers of this type in

Rational Statemate database extraction functions. For example:

ACTIVITY ac;
STRING ac_nhame;

ac := stm_r_ac (ac_name , st);
WRITE( activity synonym is 7,
stm_r_ac_synonym(ac,st));

The variable ac is declared here to be of type ACTIVITY.

A database extraction function assigns a value to ac (the value is an activity whose name is the value of
the variable ac_name). In the WRITE statement that follows, ac is used as an argument in another

function that returns the synonym for the activity represented by ac.

There are two kinds of type declarations for Rational Statemate elements:

¢ ELEMENT - this declaration allows you to assign any Rational Statemate element to the

identifier.

¢ Specific Statemate element Types - The following types are recognized:

ACTION
ACTIVITY
A_FLOW_LINE
CHART
CONDITION
CONNECTOR
DATA_ITEM
DATA_STORE
DATA_TYPE
EVENT

FIELD

FUNCT ION
INFORMAT ION_FLOW
M_FLOW_LINE
MODULE
REQUIREMENT
STATE
TRANSITION

The variables having Rational Statemate element data-type hold an 1D number which is used for

internal representation.

You may use identifiers of type ELEMENT in place of using identifiers with specific type declarations.
For instance, in the previous example, we could have legitimately declared the variable ac to be of type

ELEMENT instead of type ACTIVITY.

40

Documentor Reference Guide



Data-types and Expressions

However, there are advantages to using specific element type declarations. When you use a
specific element type declaration, identifier assignments and function parameters are checked to
ensure that values are of the proper type. This is of particular importance for assignments by
database extraction functions. For instance, in this above example, the function stm_r_ac returns
an activity 1D that is assigned to ac; if we use ac with a function call that returns a module, the
Documentor detects this as an error during template compilation. If, however, we had declared ac to be
of type ELEMENT, no syntax error would have been detected.

In some cases, you must declare an identifier to be of type ELEMENT instead of being of a specific
element type. This case comprises identifiers that are assigned values from a list of elements of mixed
type (i.e., of more than one element type). For an illustration of this, see the example below for type LIST
OF ELEMENT.

LIST OF simple_type

Identifiers declared as LIST OF simple-type can be assigned values of a list of items of any data-type.
Simple-type may be any of the above types (e.g. LIST OF STRING, LIST OF ACTIVITY, etc.).

The following example shows a typical use of identifiers of this type; in this case, we have
declared an identifier of type LIST OF STATE.

VARIABLE
LIST OF STATE sub_st;
STATE st_id;
INTEGER st;
BEGIN

st_id := stm_r_st (“S1” , st) ;
sub_st := stm_r_st_logical_sub_of st({st_id},st) ;

END;
In this example, the variable st_id is assigned the 1D of the state S1.

This variable is then used with another database extraction function to extract all of the substates
of st_id and assign their values to the variable sub_st of type LIST OF STATE.

Rational Statemate 41



Document Templates

Expressions

Parameters, variables and constants are used to build expressions, suchasa + 5.

Expressions such as these may be used in assignment statements, in calls to predefined functions,
and in Boolean expressions (comparisons). In addition, functions themselves may participate in
expressions.

Expressions can be constructed for any of the data-types:

*

*

*

*

*

NUMERIC: for example, a*(b+3.2)

STRING: for example, >DATA-1TEM DICTIONARY”
Boolean: for example, A > B

Statemate element: for example, stm_r_ac ( “AA” , st)
LIST: for example, a_list + b_list

In the following sections, we present a more detailed explanation of the expression types that you
can construct.

Numeric Expressions

These are integer and real numbers. Their constant values are the same as in conventional
programming languages.

Binary operations (+, -, *,/, **) and unary operations (- , + ) follow conventional precedence

rules.

Numeric expressions may mix integer or real operands.

Parenthesis may be used to change the precedence of operations.

42

Documentor Reference Guide



Data-types and Expressions

Boolean Expressions

The basic Boolean expressions are comparisons between expressions of other types. Note that not
all comparisons are legal for all data-types.

Operator Meaning Allowed types
= Equality all
<> inequality all
< Less than numeric and lists
<= Less than or equal to numeric and lists
> Greater than numeric and lists
>= Greater than or equal to numeric and lists

For LIST types, Boolean comparisons are understood in terms of inclusion. For example, for lists A and
B, A < B if B contains all elements of A and also other elements.

The Boolean operations NOT, OR, and AND are also supported.

In addition there are two predefined Boolean constants: TRUE and FALSE.

String Expressions
String literals are written within apostrophes, for example: ABC”
Spaces within literal strings are always considered. For example,
A BC ~ isdifferent from <ABC”. String literals may contain formatting characters using the backslash
character (\) character:
¢ \n: inserts anew line in the string.
¢ \t: inserts atab in the string.

¢ \: the backslash, when followed by any other character, includes that character literally
into the string. This is not intended for use with alphanumeric characters but for including
special characters in the string - especially \ and ~.

String expressions may include string constants, string variables, and functions that return strings.

Concatenation of strings is supported; it is indicated by the “+” sign. For example: str1” +
“abc” resultsin “strlabc”.

Rational Statemate 43



Document Templates

Rational Statemate Element Expressions

Expressions of this type may be either declared variables or function calls that return a Rational
Statemate element (refer tp Documentor Functions). For example, md := stm_r_md (md_name ,
st); returns a value of type MODULE and assigns it to the variable md in the assignment statement.

As another example, consider the following:

stm_r_md_synonym (stm_r_md (’M1” , stl) , st2)
Here we use the module extracted by the function stm_r_md as an argument in another function.
There are no constants for Rational Statemate elements. The variables of the above types get their
values via the Rational Statemate predefined functions, and are used as arguments in other

predefined functions to retrieve additional information. Rational Statemate element ID numbers are
used as values of these expressions.

List Expressions

This type is used to handle collections of items of any of the DGL types. A list is created either by
explicitly enumerating the items in the list, or as a result of a function call. Explicit enumeration is
written as:

{ list_item , list_ item , ... }
asinthe string list: {*abc”, ’def”, *xyz’} .
A list item must be an expression of the list type.

All items in the list must be of the same type. Lists can be created from other lists using the
operations: union (+), subtraction (-), intersection (*), and concatenation (&).

This last operation differs from union when two identical lists are used, for instance:

{’Alpha’}+{ Alpha”} produces {’Alpha’},

while {*Alpha’} & {’Alpha’} produces {’Alpha’,’Alpha’} .
A list expression can also be built as a result of a function. For example,

stm_r_md_name_of md ( *M*” , st) .

The value of this list expression is all modules whose names begin with M.

44 Documentor Reference Guide



Data-types and Expressions

Enumerated Types—Predefined Constants

A variable or return value of a function is considered of enumerated type if it may take a restricted
number of discrete values. For example, a variable that represents a day of the week may have only seven
values, Sunday through Saturday.

DGL does not directly support enumerated types. The way to deal with variables of such a type is
to declare them as INTEGER, and to define constants that are equal to the specific possible values. In
order to make the template clearer, you may use meaningful names for these constants. For instance, you
may define constants for the days of the week: SUNDAY:= 1, MONDAY:= 2, and so on.

The Documentor has several sets of predefined constants used as enumerated types. The names for
these constants always begin with the prefix stm_.

For example, a very useful enumerated type is Element Type. The possible values for this type are
stm_state, stm_event, etc; each of these identifiers has a unique integer value.

You may use predefined constants in your template without even knowing their numerical values.
However, you must make sure that variables that are to be assigned enumerated values are
declared as INTEGER.

For example, another widely used predefined enumerated type is the function return status code
(see Documentor Functions). Status codes have a restricted number of values, each value denoting some
information about the operation of the function being used.

For example, stm_success, denoting the successful completion of the function operation, corresponds to
the value 0. You do not have to explicitly use the value 0 when writing this status code into your
template; for instance, you can write:

VARIABLE
INTEGER status ;

md_ia = stm_r_md (CM1” , status);
IF status = stm_success THEN

Predefined enumerated types are listed in their relevant sections.
For instance, an enumerated type that is returned by a certain function is listed in the description of
that function.

Rational Statemate 45



Document Templates

DGL Statements

This section presents the DGL statements and their syntax, along with examples of their use.

Structure Statements

These statements define the structure of the template. There are four statements that define the
structure of your template:

¢ TEMPLATE statement—First statement of the template.

¢ SEGMENT statement—Starts a new segment section.

¢ PROCEDURE statement—Starts a new procedure section.

¢+ BEGIN/END statement—Marks the boundaries of a template section.
In addition, Comment statements can be used to indicate program comments.

Next is a more detailed discussion of each structure statement.

TEMPLATE Statement
Statement Syntax:

TEMPLATE template_name ;

The TEMPLATE statement is the first statement in the template, and assigns an identifying name to the
template. This name is used for internal documentation purposes only and does not have to correspond to
the name you use to designate the template in the Create Template form.

SEGMENT Statement
Statement Syntax:

SEGMENT segment_name ;

The SEGMENT statement starts a new segment section. It is the first statement of a segment, and assigns
an identifying name to it. The identifier is limited to 16 characters maximum. The segment name is used
by the tool in its operation forms to identify the output segments.

46 Documentor Reference Guide



DGL Statements

PROCEDURE Statement
Statement Syntax:

PROCEDURE procedure_name [RETURN type] ;

The PROCEDURE statement begins a procedure section. It assigns an identifying name to the procedure
and defines the return type, if the function returns a value. The procedure name is limited to 16 characters

maximum.

BEGIN/END Statement
Statement Syntax:

BEGIN
statements
END;

The BEGIN/END statement delineates the body of a template section. Recall that a section body contains
DGL statements to be executed by the program. You may included any number of statements between

BEGIN and END.

Comment Statement
Statement Syntax:

-- free text

DGL may include programmer comment lines in the template. These are lines of free text that are
not interpreted or handled by the Documentor during execution. Such comments are useful for

documentation purposes.

Comments are preceded by two dashes. The comment symbol may start anywhere in a line, except
within a literal string. All characters after the comment symbol until the end of the line are ignored.

An example of a comment:

-- This line contains program comments

Rational Statemate 47



Document Templates

Declaration Statements

You declare identifiers and their data-types in declaration statements in the declaration part of each
template section.

Declarations for global identifiers and parameters are made in the initiation section - these
identifiers can then be used throughout the template.

Declarations for local identifiers, i.e., identifiers to be used only in the relevant segment, are made
after each segment identifier line. Procedures start with declarations of parameters and local
identifiers.

PARAMETER Statement
Statement Syntax:

PARAMETER data-type identifier [:= value] ,
For Example:

PARAMETER STRING activity_name ;

There are “template parameters” for the entire template and “procedure parameters” for
procedures. Template parameters are variables whose value may be changed interactively when
the template is executed.

Declaration of template parameters is allowed only in the initiation section. The keyword
PARAMETER appears only once in the declaration section, before the data-type assignments for
parameters. Each data-type statement may be followed by as many identifiers of the same type as you
want to define.

For Example:

PARAMETER STRING activity_name, state_name, event_name;
As many type statements as desired may follow the PARAMETER keyword.

For Example:

PARAMETER

STRING activity_name;
FLOAT a:=3.243;

48 Documentor Reference Guide



DGL Statements

Template parameters may not hold a Rational Statemate element, while it is legal for a procedure
parameter to be of this type. Procedure parameters are In/Out parameters.

Value assignments for PARAMETER statements are optional and allowed only for template parameters
(we made one such assignment in the above example). If it is assigned, it represents the default value of
the parameter at the first generation of a particular document. The value may only be a literal constant,
not a constant identifier or an expression.

Note

Avoid changing template parameters within the template. It may cause confusion and can
create inconsistent results when parameters are changed within segments.

CONSTANT Statement
Statement Syntax:

CONSTANT data-type identifier := value ,
Constants are identifiers that have a defined value that cannot be changed in DGL statements.
The keyword CONSTANT appears only once in the declaration section, before the data-type assignments

for constants. Each data-type statement may be followed by as many identifiers of the same type as you
want to define.

For Example:

CONSTANT integer a:=1, b:=2, c:=3;
As many type statements as desired may follow the CONSTANT keyword.

For Example:

CONSTANT
STRING activity hame:=’Print”;
FLOAT a:=3.243;
INTEGER c:=6;

The constant type may not be a Statemate element, or a list of type.

The identifiers in the CONSTANT statement must have their values assigned in the statement. The value
may be any expression not containing variables or parameters.

Rational Statemate 49



Document Templates

VARIABLE Statement

Statement Syntax:

VARIABLE data-type identifier [:= value],... ;
Variables are identifiers whose values may be changed in other DGL statements.
The keyword VARIABLE appears only once in the declaration section, before the data-type assignments

for variables. Each data-type statement may be followed by as many identifiers of the same type as you
wish to define.

For Example:

VARIABLE STRING act_name, act_syn, act_desc;
As many type statements as desired may follow the VARIABLE keyword. For example:

VARIABLE

string activity_nhame;

float a:=3.243;

activity act_id;
Value assignments are optional (we made one such assignment in the above example). If they are
assigned, they represent the default value of the variable at the first generation of a particular
document. The value may be any expression that does not contain other variables or parameters.

Variables that are declared as Statemate elements and list of items may not be assigned initial values.

50

Documentor Reference Guide



DGL Statements

Assignment Statement

Statement Syntax:

variable := expression;
This statement should be interpreted as follows: the variable on the left-hand side of the statement
is assigned the value of the expression on the right-hand side.

The expression and the variable must be of the same or compatible type. If the expression is of
type STATE, ACTIVITY, etc., the variable is of the same type, or of type ELEMENT.

Here is an example of a template with a declaration section, followed by a section containing an
assignment statement.

VARIABLE
LIST OF STATE st_list;
LIST OF ACTIVITY act_list;
LIST OF ELEMENT el_list;
BEGIN

el _list := st_list + act_list;

END;

File Handling Statements

These statements open and close files or the dialog area, to and from which you can pass text or
messages, through the use of WRITE and READ statements. The READ statement is also included in the
file handling statements, whereas the WRITE is considered to be an output statement.

OPEN Statement
Statement Syntax:

OPEN (I, file_name, mode [, status]);
where 1 is an identifier of type FILE and mode is either INPUT or OUTPUT.
This statement is used with mode=OUTPUT to open a file or the dialog area so that a subsequent

WRITE statement can pass text to it, and with mode=INPUT for subsequent READ statements. The
statement assigns a value to fI .

The dialog area is frequently opened to pass run-time messages to it. To open the dialog area, use
the string ‘DIALOG’ (with the apostrophes) for the file_name.

Optionally, you may include the status function code status which returns the value stm_success
upon successful execution of the statement.

Rational Statemate 51



Document Templates

If the file opened for output does not exist, this statement creates a new file.

If the file exists, it is initialized by the OPEN statement; i.e., the written information overwrites the
existing contents of the file.

CLOSE Statement
Statement Syntax:

CLOSE (fI);

where 1 is an identifier of type FILE. This statement closes a file that was previously opened with the
OPEN statement.

READ Statement
Statement Syntax:

READ(Ffl, variablel, variable2, ...) ;
where 1 is an identifier of type FILE that points to a file that was opened using an OPEN statement, in
INPUT mode. The variables are identifiers of type integer, float, or string.

Each READ statement reads a line from the file. The numeric elements in the input line are separated by
blank or tabs. Reading to a string variable reads the rest of the line.

For Example:

READ(fd, i, str)
where i is an integer and str is a string. This statement, when applied to an input line: 12May 1991,
results in: 1=12, str="May 1991".

The READ statement may operate as a function that returns either stm_success, stm_cannot_read_file, or
stm_end_of file.

52 Documentor Reference Guide



DGL Statements

Output Statements

Output statements pass text to the output segment files. The text can originate from a number of
sources: the template itself, user text files, database retrieval functions, Rational Statemate reports
and plots, external programs, and evaluated expressions. Output statements cannot be put in the
initiation section.

Below, we detail the various types of output statements.

Verbatim Statement
Statement Syntax:

/@ verbatim text @/

When the verbatim symbols /@ and @/ frame text in the template file, the text is passed literally
(without interpretation) to the output segment file. Comments inside the frame, rather than being ignored,
are passed literally as well. The end-of-statement character, “;”, is not required following the concluding
verbatim symbol.

Verbatim statements may be used to pass the following to the output file:

+ Formatting commands applicable to a specific formatter.

+ Short text passages such as titles, opening remarks, etc.
In spite of the absence of any length restriction on verbatim text, longer text passages are
usually passed using the INCLUDE file statement.

For example, when this verbatim section of the template is executed:

SEGMENT sectionl;

BEGIN /0@
.title ACTIVITY-SPEC
.skip 2

-center; AN ACTIVITY SPECIFICATION
-- This section will describe the
-- purpose of the activities.

/

-- this line will not appear in the output
END ;

it results in the following output:

title ACTIVITY-SPEC

.skip 2

.center; AN ACTIVITY SPECIFICATION
-- This section will describe the
-— purpose of the activities.

Rational Statemate 53



Document Templates

WRITE Statement
Statement Syntax:

WRITE ( [fl,] write_expression , ... ) ;
The WRITE statement to write expression values to any of the following

¢ The document output segment
* Another file
+ The dialog area of the tool window

You may write a numeric or string expression that is evaluated in the template, or a literal piece of
text. The WRITE statement can also be used to write information retrieved from the database, such as
element names.

Using the WRITE statement to write to a file or to the dialog area is particularly useful if you want to
write messages (error messages, run-time messages, etc.). When writing to a file or to the dialog area,
you must include the F1 identifier. In such cases you must also precede the WRITE statement with an
OPEN statement.

The WRITE statement is commonly used to write lines that include text (string literals) together with
expression values.

For example: WRITE(’NAME:~, di_name);
results in the following being written in the output segment file NAME: KUKU , where KUKU is a value
of di_name.

From the examples you can see that there can be more than one write expression. When there are
multiple expressions they are separated by commas.

Lines of pure text are more suitably handled using the Verbatim statement.
Literal strings may include the formatting characters:

\n - new-line
\t - tab

For example, WRITE(*\n~ ,alpha);
would write the value of alpha at the beginning of the next line in the output segment file.

Optionally, you can specify the minimum number of characters to be written in the output file. You
do this by using the following syntax for the write expression:

expression - num

where expression can be either a numeric or a string expression, and num is an integer constant or
integer expression that represents the minimum number of characters that expression will occupy.
expression and num may involve operands, operations, and function calls.

54

Documentor Reference Guide



DGL Statements

For Example:

WRITE(act_name: 10, ”,” , act_synonym);

results in the string value for act_name being written in the output file to a length of at least 10
characters; if the name has less than this number, blanks are added to achieve the specified string length -
asin:

COMP , SET
In this example, spaces have been added to “COMP” to give it a length of 10 characters.

The use of num determines the minimum number of characters to be written in the output file, as
follows:

+ For astring, the length of the string is the minimum number of output characters. When
specified, and where num is greater than the string length, blanks are padded to the right of
the string to achieve a total string length of num.

+ Foran integer, when num is specified, and where num is greater than the number of digits
in the integer, blanks are padded to the left of the number to achieve a total output length
of num.

*  For a real number, when num is not specified, the value is output to no more than 8
decimal places. Thereafter, the number is automatically rounded. When specified, and
where num is greater than the digits output according to the default above, blanks are
padded to the left of the number to achieve a total output length of num. Where num is
less than the digits output according to the default above, the decimal portion of the
number may be rounded to arrive at a specified output length of num. However, in no case
will the integer portion of the real number be truncated.

For Example:

WRITE (°"Name:”:8, name, ’\n’, ’Value:’:8, v) ;
Assume that name contains “Xfactor” and v is an integer that equals 5105. This writes the following
lines to the output file:

Name: Xfactor
Value: 5105

Note

The WRITE command may not access a list variable directly; if you attempt to write a
variable which refers to a list, an error message is displayed. To output a list, use a control
flow construct such as a loop - writing one list item at a time.

Rational Statemate 55



Document Templates

Using WRITE to Produce Messages
A WRITE statement may also be used to write information to a file or to the dialog area, instead of to the
document itself. For this, you must first open a file in OUTPUT mode using the OPEN statement.
To write a string message to the file use the following syntax:

WRITE (Ffl, write_expression);
where F1 is the file pointer to which you want to write the messages.

INCLUDE Statement
Statement Syntax:

INCLUDE (file_description [, status]);
where file_description is either afile-name or an identifier of type FILE.

This statement copies the text of a specified file to an output segment file. The text is passed to the
file verbatim and may contain formatting commands for the format processor that is used to
produce the formatted document.

When the file_description is afile_name. It can be any string expression; it may be a literal string
inside quotes (e.g. “ABC”) or an evaluated expression that produces a file name (e.g., a variable that
contains a file name).

Note

Thefile_name may include the directory pathname of the file, using the file name
conventions of the host operating system. If you do not specify the pathname, the Workarea
is searched for the file.When the file_description is of type FILE, the file from which you
are copying text must first be opened with an OPEN statement in OUTPUT mode.

When using the INCLUDE statement you may optionally include the status function code status
which, upon successful execution of the statement, returns a value of stm_success.

56 Documentor Reference Guide



DGL Statements

EXECUTE Statement
Statement Syntax:

EXECUTE (calling_sequence);

This statement invokes a program that is external to Rational Statemate. The Documentor searches
for the program name using the regular system search path. The tool then invokes the program and
sends its standard output to the document’s segment file.

The cal ling_sequence is a string expression containing the name of a program and any arguments.
This is exactly the calling sequence used to invoke the program from the operating system.

The calling sequence can be a literal string in quotes or an expression that evaluates to a string.

For Example:

EXECUTE (’DATE”) ;
calls the operating system function DATE and prints the date in the output file.

The EXECUTE statement function operates as a function that returns either stm_success or stm_error.

Include Reports Statement
Statement Syntax:

stm_rpt_report_name ( report_parameters ) ;

This statement generates and writes a Rational Statemate predefined report such as a Tree,
Structure, Interface etc. into the output file. It activates the Reports Tool, generating the specified
report with the given parameters.

For example, the statement:

stm_rpt_tree(list,5);

produces a Tree Report for the items in a list represented by the variable list to a depth of 5 in the
hierarchy. The report is included in the output file.

The output from the Reports Tool contains formatting commands applicable to the format
processor attached to the template. If no formatter is specified, the Reports Tool cannot be invoked
and an error message is issued.

Rational Statemate 57



Document Templates

Each of the predefined reports is invoked for a list of elements. The input parameter that represents
this list is denoted by a variable name that must be of type list of one of the Rational Statemate
element types. This variable, along with all other identifier names used in the calling sequence, must be
declared in an appropriate declaration section. For example:

VARIABLE
LIST OF ACTIVITY ac_list;
The identifier ac_list may be assigned a list of activities and then be included in a statement that
generates a Dictionary Report, like this:

stm_rpt_dictionary(ac_list,. . . );

The report is generated for each item in the list represented by the ac_list variable.

A number of arguments are used to define the parameters for each report. Some are called single
character string arguments. These are used to indicate restricted parameter choices. For example, in the
Interface Report statement

stm_rpt_interface(elist, A, ...);

the value of the second argument > A~ indicates that the Interface Report should be of type activities;
specifying an *M~ for this parameter would indicate that the report should be generated for modules.

The single character string arguments can be more than one character, but only the first character
of the string is actually passed to the Reports Tool. If a non-valid character is passed to the Reports
Tool, the report is not generated, and an error status code is returned.

Some of the arguments are Boolean and are evaluated as true or false to indicate whether or not
some parameter is set. For example, in the Dictionary Report statement stm_rpt_dictionary
(elist, true, ...);theBoolean constant true indicates that the long description will be included
in the report.

58

Documentor Reference Guide



DGL Statements

The following a list of the Rational Statemate reports that can be invoked, together with their
calling name, and required parameters.

¢ Dictionary Report
stm_rpt_dictionary(elist, ldes,attr,attr_title) ;

elistis a list expression of Rational Statemate elements for which the report is
produced.

Ides is a Boolean expression indicating whether or not the long description of each
element should be included in the report.

attr is a Boolean expression indicating whether the attributes of an element are
included in the report.

attr_title is astring indicating the attribute names whose value will precede the
element name in the report.

¢ Tree Report
stm_rpt_tree(elist, depth) ;

elistis a list expression of Rational Statemate elements for which the report is
produced.

depth is an integer argument indicating to what hierarchical level the report should
be generated. For all levels, enter the number “99”.

+ Protocol Report
stm_rpt_protocol(elist, attr_title) ;

elistis a list expression of Rational Statemate elements for which the report is
produced.

attr_title is a string indicating the attribute name whose value will precede the
element name in the report.

¢ List Report
stm_rpt_list(elist) ;

elistis a list expression of Rational Statemate elements for which the report is
produced.

¢ Structure Report
stm_rpt_structure(elist, width) ;
elistisa list expression of Statemate elements for which the report is produced.

Rational Statemate 59



Document Templates

width is an integer argument indicating the page width (in characters) to be used for
the report.

60 Documentor Reference Guide



DGL Statements

¢ Attribute Report
stm_rpt_attribute(elist, attrs, attr_title) ;

elistis a list expression of Rational Statemate elements for which the report is
produced.

attrs is a list of strings that contains the specific attribute names for which the
report should be generated. If this list is empty, then the report retrieves all the
attributes for each element.

attr_title is astring indicating that the attribute value will precede its element
name in the report.

¢ Interface Report

stm_rpt_interface(elist, rtype, chart, lact
Imod, ftype, dis, names) ;

elistis a list expression, that must be of the type list of modules, for which the
report is produced.

rtype is a single character string argument indicating the report type:

— ‘A’ indicates activity interface report.
— ‘M’ indicates module interface report.
— “I’ indicates information interface report.

chart is a single character string argument indicating which arrows are taken into
account when the report is generated:

— ‘A’ indicates activity-chart arrows.
— ‘M’ indicates the module-chart arrows.

lact is an argument of type list of activities indicating which activities are taken
into account when the report is generated. If lact is an empty list, the default is all
activities implemented by the center module.

Note: If chartis ‘M’, then this parameter has no function. lact must still be
supplied here. For simplicity, the null list (nul 1) may be used.

Imod is an argument of type list of modules indicating the side modules that interface with the
central module for which the report is to be generated. If Imod is empty, the default is all modules
except the center module’s own ancestors and descendants.

Rational Statemate 61



Document Templates

ftype is a single character string argument indicating the kind of information flow to appear in the
report:

— ‘D’ indicates data-flows.
— ‘C’ indicates control-flows.
— ‘B’ indicates both.

dis is asingle character string argument indicating the kind of information to appear
in the report:

— ‘I’ indicates flow labels.

— ‘P’ indicates parent information items.

— ‘B’ indicates basic information items.
names is a single character string argument:

— ‘N’ indicates that the name appears for elements that flow between the boxes.

— ‘S’ indicates that the synonym appears for elements that flow between the
boxes.

¢ N2 Chart Report

stm_rpt_n2chart(elist, names, level, env, chart,
dis, ftype)

elist is a list expression, which must be of the type list of modules or list of
activities, specifying the elements in the diagonal.

names is a single character string argument:

— ‘N’ indicates that names of the elements appear on the diagonal of the matrix.

— ‘S’ indicates that synonyms of the elements appear on the diagonal of the
matrix.

level is a single character string argument indicating what appears on the diagonal
when both parent box and sub-box are in the list.

— ‘B’ indicates that sub-box is placed on the diagonal of the matrix.
— ‘P’ indicates that the parent box is placed on the diagonal of the matrix.
env is a Boolean expression; if true then the environment is added to the matrix.

chart is a single character string argument indicating which arrows are taken into
account when the report is generated:

— ‘A’ indicates activity-chart arrows.
— ‘M’ indicates the module-chart arrows.

62 Documentor Reference Guide



DGL Statements

dis is a single character string argument indicating the kind of information to appear
in the report:

— ‘I” indicates flow labels.
— ‘P’ indicates information items.
— ‘B’ indicates basic information items.

ftype is a single character string argument indicating the kind of information flow to
appear in the report:

— ‘D’ indicates data-flows.
— ‘C’ indicates control-flows.
— ‘B’ indicates both.
¢ Resolution Report
stm_rpt_resolution(clist,type)
clist is a list of charts. It determines the scope of the report.

type is stm_type of elements to include in the report. The type may be one of the
following:

stm_textual, stm_graphical, stm_mixed, stm_state, stm_module, stm_activity, or
stm_data_store.

Include Plots Statement
Statement Syntax:

stm_plot (plot_parameters) ;

This statement is used to include any chart in the document. It generates the specified plot with the
indicated parameters (e.g., plot size, output device, etc.). The plot_parameters are specified in the
order given below.

The output is designated for a particular device (one of the output devices defined in Rational
Statemate). The destination of the plot output is specified by one of the parameters. If its
destination is left unspecified, it is included as part of the output segment file. This is done by
using an empty string for the output file parameter.

The plot function returns a status which can be one of: stm_success, stm_unknown_plotter,
stm_can_not_open_file, stm_id_not_found, stm_id_out_of range, stm_plot_failure,
stm_illegal_parameter, stm_not_enough_memory, stm_empty_chart, stm_unresolved.

Whether you are plotting Statecharts, Activity-charts, Module-charts, or Block Diagrams, the
parameters are the same:

Rational Statemate 63



Document Templates

stm_plot (id, file, width, height, with_label, with_name, with_note, device,
title_position, title, do_rotate, with_file_header, actual_height)

*

*

*

id - is the ID number of a Rational Statemate chart to be plotted.

file - is a STRING with the name of the file destination to which the plot is written. The
operating system pathname conventions are followed. You may specify a full pathname to
any directory for which you have write access. If a simple filename is specified, the plot is
written to your Workarea. If the parameter is left empty (< *), the plot is included as part
of the output file.

width - is a numeric argument of type FLOAT that indicates the maximum possible width
of the plot (in inches).

height - is a numeric argument of type FLOAT that indicates the maximum possible height
of the plot (in inches).

with_label - is a BOOLEAN parameter which indicates whether arrow labels are (TRUE)
or are not (FALSE) printed in the plot.

with_name - is a BOOLEAN parameter indicating whether box names are (TRUE) or are
not (FALSE) printed in the plot.

with_note - is a BOOLEAN parameter indicating whether notes are (TRUE) or are not
(FALSE) printed in the plot.

Note:
— device isa STRING argument that indicates the plotting device. This may
indicate a supported formatting language if the plot is to be handled by a
formatting processing system that has its own graphics language. To

configure a new plotter or printer (for example, a paper type), select Utilities
> Qutput Devices from the main Rational Statemate menu.

— Plots created using the Word format in the Output Device dialog are RTF
files.

title_position is a STRING parameter indicating where to place the plot title. This
parameter accepts one of the following values:

stm_plt_none - the title is not included.
stm_plt_top - the title is placed a the top of the plot.
stm_plt_bottom - the title is placed a the bottom of the plot.

64

Documentor Reference Guide



DGL Statements

¢ title is a STRING argument that specifies what title will be printed with the plot.

¢ do_rotate isa BOOLEAN parameter where TRUE indicates landscape and FALSE
indicates portrait.

¢ with_file_header isa BOOLEAN parameter where TRUE indicates that a header is

to be added at the beginning of the file. (Use this if you do not want the plot as part of the
document.)

¢ actual_height is a numeric argument of type FLOAT that indicates the actual height (in
inches) of the plotted output.

The following is an example of how a plot is generated in DGL. A template contains the following

statements:
VARIABLE
CHART ch_id;
INTEGER status;
FLOAT real_ht;

ch_id:= stm_}_ch(’XL25’,status);
stm_plot(ch_id,”/san/p_x125”,5.0,7.0,true, true, false,
POSTSCRIPT” ,stm_plt_top, ’SystemXL25” ,true, true ,real_ht);

This produces a plot for the chart XL25 that is limited to a maximum size of 5 inches by 7 inches,
prints labels and box names and does not print notes.

Output to the file specified by the path /sam/p_x125.

This file is in Postscript format, as defined for device called ‘POSTSCRIPT in Utilities > Output
Devices from the main Rational Statemate menu.

The file will have the appropriate header for the output device.
The plot will be printed in landscape orientation.

A title “system XL25 is printed at the top of the plot; the actual
height is returned by the variable real_ht.

Rational Statemate 65



Document Templates

Include Table Statement
Statement Syntax:

stm_table_simple (title, columns, contents, page width, page height, anchor);

This statement generates a simple table. You specify the number of columns and their width, and
the information to be included in the table. The parameters are as follows:

+ title is the title of the table. The title appears centered over the table.

+ columnsis a list of integers that specify the width of each column in number of characters.
For instance: {16} & {16} & {20} specifies a table having three columns, the first
two columns being 16 characters wide and the last column being 20 characters wide.

+ contents is a list of strings containing the information to be entered into each cell of the
table. The information fills the table horizontally, row by row, depending on how many
columns were specified. For instance, if you specified three columns in the columns
parameter, the following contents:

{’Project Name’} & {’Date’} & {’Location’} &
{’Alpha’} &{ April 1987} & {’Boston’}

would produce this table:

Project Name Date Location

Alpha April 1987 Boston

+ page width determines the width of the page in inches. It is only relevant for Interleaf - for
other systems, you may specify 0.0 for this parameter.

+ page_height determines the height of the page in inches. It is only relevant for Interleaf -
for other systems, you may specify 0.0 for this parameter.

+ anchor, relevant only for Interleaf. A character string indicates where to place the table.
The options are ‘A’ - at anchor, ‘F’ - following anchor. The default is ‘F’.

For formatters other than Interleaf, precede the table with your system’s no fill and no adjust
formatting commands.

66 Documentor Reference Guide



DGL Statements

The following is an example of how a table can be generated using function calls. Notice how we
repeatedly assign new values to the List_str variable to build the table.

Also note that the first statement uses the NROFF commands for

no fill (. nF) and no adjust (- na). These commands cause the word processor to take the text “as
is.” Some word processors see this mode as “verbatim” or “literal.” The last statement uses the
NROFF commands (- Fi) and (-ad) to return to fill and adjust modes.

WRITE (’\n.nf \n.na \n”);
BEGIN

List_str:={"ACTIVITY NAME’} & {”ID”} & {’LANGUAGE’};"*
act_list:=stm_r_ac_logical_desc_of_ac({act_chart},st);
FOR act IN act_list LOOP

List_str:=List_str & {stm_r_ac name(act,st)};
attr_list:=stm_r_ac_attr_val(act,’ID_NUMBER”,st);

IF (st = stm_success) THEN
attr_val:=stm_list_first_element(attr_list,st);
List_str:=List_str & {attr_val};

ELSE

List_str:=List_str & { *N/A”};

END IF;

attr_list:=stm_r_ac_attr_val (act, LANGUAGE” ,st);

IF (st = stm_success) THEN
attr_val:=stm_list_first_element(attr_list,st);
List_str:=List_str & {attr_val};

ELSE

List_str:=List_str & {°N/A’};

END IF;

END LOOP;

WRITE (C\n.nf\n_na\n”);

title := "Table CC1. Simple Table Example~”;

Col_list := {16} & {10} & {40};
stm_table_simple(title,Col_list,List_str,pg w,pg_h, “A%);
WRITE (C\n.fi\n.ad\n”);

END;

The formatted output:

ACTIVITY NAME ID LANGUAGE
FUNCTION1 AC1-Al1.1 FORTRAN
FUNCTION2 AC1-A1.2 N/A
FUNCTION3 AC1-A1.5 ADA
FUNCTION4 AC1-Al.4 N/A

Rational Statemate

67



Document Templates

Control Flow Statements

Several control flow constructs provide you with options for conditional and iterating statement
execution. These resemble constructs in other conventional programming languages.

IF/THEN/ELSE Statement
Statement Syntax:

IF boolean_expression THEN
statements

[ ELSE statements ]
END IF

The IF/THEN/ELSE construct is used for conditional execution of DGL statements.
In this statement, the statements following the THEN (and before any ELSE) are executed if the

boolean_expression evaluates to true. If it is evaluated to false, the statements following the ELSE
are executed, when present.

Here is an example:

IF a >= b THEN
EXECUTE (°DATE”) ;
INCLUDE ("sample.txt”) ;
ELSE
WRITE (Ca is less than b”) ;
END IF ;
SELECT/WHEN Statement

The SELECT/WHEN construct is used for conditional execution of DGL statements. This statement is
more powerful than the previous IF/ THEN/ELSE statement, in that it allows you to systematically list
multiple conditions for statement execution.

Statement Syntax:

SELECT [selection_mode]

WHEN trigger => statements
[ WHEN trigger => statements ]

[ WHEN ANY => statements 1

[ WHEN trigger => statements ]
[ WHEN ANY => statements 1

L OTHERWISE => statements 1
END SELECT ;

68 Documentor Reference Guide



DGL Statements

The optional selection_mode can be either the keyword FIRST or ANY. The selection-mode
determines the way the statements are checked for possible execution - this will be explained shortly. The
default selection-mode is FIRST.

Note that WHEN statements are composed of two parts: the trigger to the left of the arrow, and
statements on the right side of the arrow. The trigger is any valid Boolean expression. The statements
following a trigger are performed only when the trigger is true. Whether or not these statements are
actually executed also depends upon the selection-mode, as follows:

+ If the selection-mode is ANY, then the statements are executed whenever their corresponding
trigger is true.

+ If the mode is FIRST (or not given), then only the first true trigger in the entire SELECT
construct is executed; the rest are ignored, regardless of whether their triggers are true or not.

¢ TheWHEN ANY statements are executed when one or more of the preceding WHEN statements
have been executed.

¢ The OTHERWISE statements are executed only if no WHEN statement within the SELECT
construct is triggered.

To demonstrate the execution of the SELECT/WHEN construct, consider the following example. a, b,
and c are numeric variables.

SELECT ANY

WHEN a =5 == b = 10 ;

WHEN a > b => b = 10 ;

WHEN a = 0 => Db = 0 ;

WHEN ANY => write ("a may influence b”) ;

WHEN ¢ =5 => Db =5 ;

WHEN ¢ > b =>b =5 ;

WHEN ¢ = 0 => Db =0 ;

WHEN ANY => write (’c may influence b”) ;
OTHERWISE => write (b has not been changed’) ;

END SELECT;
The execution is determined by:

1. Each WHEN statement is triggered if its corresponding expression is evaluated to true.
2. The first WHEN ANY statement is triggered if a is equal to 5, greater than b, or equal to zero.

3. The second WHEN ANY statement is triggered if at least one of these same conditions is true with
respect to the variable c instead of a.

4. The OTHERWISE statement is triggered only if the value of b has not been changed within the
SELECT statement’s evaluation.

When processing a WHEN ANY statement, the Documentor Tool only “looks back” to the previous
WHEN ANY construct (if one exists). Therefore, in the above example, if a = 0 and none of the tests of ¢
were true, the WRITE statement’s message cmay influenceb is not issued.

Rational Statemate 69



Document Templates

In this example, what would happen if the selection mode was FIRST instead of ANY, and the
conditions a>b and c =5 were both true ?

In this case the assignment b: = 10 and the first write message (the corresponding WHEN ANY
statement) are executed. The assignment of b to 5 along with its corresponding WHEN ANY statement are
not done because ¢ = 5 is not the first true trigger.

The statements following the => symbol in the WHEN constructs may be any valid DGL statements.
You may even enter a SELECT construct at this point. This allows you to nest SELECT constructs. There
is no limit to the depth of nested SELECT blocks.

FOR/LOOP Statement
Statement Syntax:

FOR i1dentifier IN list LOOP
statements
END LOOP ;

The FOR/LOOP construct is used for iterative execution of DGL statements. The statements after the
keyword LOOP are executed for each element in the specified list.

Alternatively, a range of integers can be specified in place of the list, as in the following example:

FOR i IN {1..100} LOOP
statement ;

END LOOP ;

The identifier is a variable whose value is set sequentially to the items in the list. The type of the
identifier must match the type of the 1ist. This variable may be used within the body of the loop.

The following example writes the name and synonym for each state found in the list defined by the
variable sub_states:

VARIABLE
STATE st_id ;
LIST OF STATE sub_states;

FOR st _id IN sub_states LOOP
WRITE(stm_r_st_name(st_id,status), ’ 7,
stm_r_st_synonym(st_id,status), ’\n’) ;
END LOOP ;

70 Documentor Reference Guide



DGL Statements

WHILE/LOOP Statement
Statement Syntax:

WHILE boolean_expression LOOP
statements
END LOOP ;
The WHILE/LOOP construct is used to iteratively execute DGL statements. The execution of
statements is determined by evaluation of the boolean_expression.

The statements are executed until the expression evaluates to false. For example,

WHILE a > b LOOP
b:=b +k :

END LOOP ;
The statements between the keywords LOOP and END LOOP are executed as long as a is greater than b.
Assume that b changes its value inside the loop and in one of the iterations the expressiona > b

becomes false. In the next iteration, the expression is examined and, since a > b is now false, the
execution of template statements continues with the first statement after the END LOOP.

EXIT Statement
Statement Syntax:

EXIT ;
The EXIT statement is relevant only inside FOR or WHILE loops. It results in an exit from the current
loop to the statement after the loop construct or to the construct that contains the current loop.

Typically, a condition would be tested in a loop, and the exit would be based upon the evaluation
of that condition.

For example, the following structure would continue the execution of the statements between the
LOOP and END LOOP, depending on the value of the conditiona > b.

Rational Statemate 71



Document Templates

The iterations go on as long as the status st is equal to 0. When st is not equal to stm_success, it

causes the iterations to stop. The IF statement here is used to force an abnormal EXIT from within the
WHILE loop.

The execution resumes at the next statement after the END LOOP.

WHILE a > b LOOP
md_id := stm_r_md (name , st) ;
IF st <> stm _success THEN

WRITE (’Tllegal Status’®) ;
EXIT ;
END IF ;

END LOOP :

STOP Statement
Statement Syntax:

STOP ;

The STOP statement stops execution of the template.

Typically, a specific condition is tested and the template is stopped if this condition has a value for
which further processing is meaningless.

For example, in the following statements we check whether the specified system_name is proper.
If not, i.e., if an error has been detected, a message is issued to the dialog area and the template is stopped.

md := stm_r_md (system_name, status) ;
IF (status <> stm_success) THEN
WRITE (dialog_area, ’Execution Stopped due
error’) ;
STOP ;
END IF ;

to

72

Documentor Reference Guide



Documentor Functions

When you write reports on system design specifications, it is often necessary to include
information from the Rational Statemate database that contains the specifications. The
Documentor provides you with this capability through the use of database extraction functions.

Overview of the Extraction Functions

The database extraction functions are a collection of routines that enable you to extract information
from the specification database.

There are four types of database extraction functions:

*

Single-element - Provide information about a discrete Rational Statemate element in the
specification database. For example, you can retrieve the contents of the description field
in the form for a particular state. See Single-Element Functions for detailed information.

Query - Extract lists of elements from the database that conform to a specific criterion.
For example, you can extract a list of activities from the database that are control
activities. Each function corresponds directly to a query of the property sheet. Function

output consists of a list of Rational Statemate elements. See Query Functions for detailed
information.

Utility - Perform operations on lists and strings. Most of these functions do not extract
information from the database, but enable you to manipulate the information you have
already retrieved. See Utility Functions for detailed information.

Project management - Extract information about the Statemate project, manager, and
members.

Rational Statemate 73



Documentor Functions

Function Structure

The following figure shows the structure of the database extraction functions.

Database
Extraction
Functions

Single-
Element
Functions

Query
Functions

Utility
Functions

There are scores of database extraction functions. However, it is easy to become proficient in their
use because of the systematic structure of the package. The functions are documented in Single-
Element Functions.

Using Database Extraction Functions

Database extraction function calls can appear anywhere in your template where expressions of the
same type are valid.

Consider the following call:

state_id = stm_r_st (’S1’, status);

This call retrieves the state whose name is s1 from the database and assigns it to the variable
state_id. (In actuality, the call retrieves the state’s ID. This ID is a value that Rational Statemate
uses to identify each element in the database.)

Function calls are frequently used in sequence. For example, because you have already retrieved
the 1D for state s1, you can now call the following function:

sub_st := stm_r_st _physical_sub_of st
({state_id}, status);

This function call builds a list of substates contained in state S1 and assigns the list to the variable
sub_st.

74

Documentor Reference Guide



Calling Conventions

At this point, you can print out a list of all substates of state s1. The list is to include the name of
the individual state as well as the description appearing in the state’s form. To do this, include the
following lines in your template:

FOR s in sub_st LOOP
WRITE (’\n Name:”, stm_r_st _name (s, status));

WRITE (°\n Desc:’, stm_r_st _description (s, status));
END LOOP;

Calling Conventions

Database extraction functions provide you with information from the Rational Statemate database.
To extract this information, you call the specific function that retrieves the information you want.
You specify the particular Rational Statemate elements that interest you as input arguments to the
function. The function returns the information and a status code (as an output argument). This
status code informs you whether your function call was successful.

Function Names

Single-element and query functions use the following prefix:

stm_r_
This prefix designates the function as a Rational Statemate database retrieval function.

Utility functions use the following prefix:

stm_

Element Type Abbreviations

Database extraction functions use two-character abbreviations to identify the type of Rational
Statemate elements referenced in function calls. The following table lists the element types and
their abbreviations.

Element Abbreviation
A-flow-lines (basic) ba
A-flow-lines (compound) af
A-flow-lines (local) laf
Actions an
Actors actor
Activities ac
Boundary boxes bb

Rational Statemate




Documentor Functions

Element Abbreviation
Charts ch
Combinational assignments ca
Conditions co
Connectors cn
Data-items di
Data-stores ds
Enumerated value en
Events ev
Fields fd
Information-flows if
Local data Id
Messages msg
Mixed (multiple types) mx
M-flow-lines (basic) bm
M-flow-lines (compound) mf
M-flow-lines (local) Imf
Modules md
Module-occurrences om
Off-page activities oa
Routers router
Separators sep
States st
Subroutines sb
Subroutine parameters sp
Timing constraints tc
Transitions (basic) bt
Transitions (compound) tr
Use cases uc
User-defined types dt

For example, stm_r_ac_name retrieves the name of an activity, whereas stm_r_st_name retrieves the
name of a state.

The naming structure for each type of database extraction function is explained in the section that
describes each specific type. Note that element type and the information to be extracted are
contained in the function name and are not passed as arguments.

76

Documentor Reference Guide



Calling Conventions

Arrow Elements
Arrow elements (transitions, a-flow-lines, and m-flow-lines) can be either basic or compound:

+ A basic arrow connects a box or connector to another box or connector.

¢ Compound arrows are the logical connection between boxes and can possibly be
composed of several basic arrows, passing through their connectors.

Rational Statemate 77



Documentor Functions

Function Input Arguments

Database extraction functions require input arguments in order to locate Rational Statemate
elements in the database. Input arguments consist of elements or lists of elements for which
information is sought.

Some functions require additional input arguments. Each argument must be declared to be of a
data type recognized by DGL. This guide includes a complete list of input arguments for each type
of database extraction function in the sections that describe the specific function type.

See the function reference appendixes for the lists of arguments relevant for each function.

Status Codes

Database extraction functions return only one argument—the function status code. This code
reports whether the function call was successfully completed. When the function call fails, the status
code indicates the problem. You can use the status code to pinpoint run-time errors in your template. For
example, assume the following call appears in your template:

state_id = stm_r_st (C%’, status);

The function requires a state name for the first (input) argument. In this case, the function returns a
status code of 3, stm_illegal_name, because % is not a valid element name.

The status code is an integer value. Therefore, the status argument must be a variable declared as
INTEGER. The Documentor provides predefined constants for the function status codes. This enables you
to use the status name attached to each status code in your template.

For example, assume that you want to print out the synonym of the state s1. If there is no synonym
defined in the state’s form, print “missing synonym”. Your template should contain the following code:

VARIABLE
INTEGER status;

state_id = stm_r_st (’él’, status);
synonym = stm_r_st _synonym (state_id, status);
IF status = stm_missing_synonym THEN

WRITE ( ”\n synonym: *missing synonym* ”);
ELSE

WRITE ( ”\n synonym: 7, synonym);
END IF;

Status codes have severity levels that you can check to ensure that your function call was
successful. These severity levels, and a complete list of status codes are documented in Function
Status Codes.

78 Documentor Reference Guide



Calling Conventions

Function Return Values

Database extraction functions return values that are of DGL data types (see Data-types for more
information). Different functions return different types of values. For example, a function that
retrieves the name of a Rational Statemate element returns a value of type STRING, whereas a
function that retrieves a state’s ID returns a value of type STATE (or ELEMENT).

The return value data type must be valid when the function is used in statements and expressions.
For example, a return value that is a STRING can appear in places where string expressions are
allowed, as shown in the following WRITE statement:

WRITE (stm_r_st_name (st_id, status));

This statement prints out the name of the state whose ID is st_id. The return values of each function
are listed in the sections that describe the specific functions.

Return Values of Type ELEMENT

There are a number of database extraction functions that retrieve elements or list of elements from
the specification database. In the case of elements, the functions return values that belong to DGL
data types STATE, EVENT, ELEMENT, and so on. For example, consider the following function call:

state_id := stm_r_st (’S1’, status);

This call extracts the state s1 from the database. Because the function returns a STATE, state_id
must be declared to be of type STATE or ELEMENT.

In the case of list of elements, the functions return values that belong to the DGL data types LI1ST
OF STATE, LIST OF ACTION, LIST OF ELEMENT, and so on. All query functions return a list of
Rational Statemate elements.

Return Values of Filename

A number of database extraction functions store extracted information in files, such as a function
that retrieves an element’s long description. In this case, the function returns the name of the file
that contains the requested information. The filename returned is of DGL type STRING.

Rational Statemate 79



Documentor Functions

Return Values of Enumerated Types

DGL does not directly support enumerated data types. Functions that return discrete numerical
values are considered to be of type INTEGER. The Documentor enables you to reference these
numerical values by name. In reality, these names are internally defined as predefined constants in DGL.
These names contain the prefix stm_.

For example, the function stm_r_st_type extracts the type of state specified in the function call.
The possible state types are stm_st_and, stm_st_or, stm_st_diagram, and stm_st_component.
These correspond to the values 0, 1, 2, 3 (respectively).

You can use the value names in your template. For example:

IF stm_r_st_type (st_id, status) = stm_st_component
THEN

The possible values that functions return, and their names, are documented in the function
reference sections.

80 Documentor Reference Guide



Model Templates

This section provides complete examples of templates—two that do not contain commands for a
formatter (formatting is accomplished through DGL WRITE statements) and two that contain
formatting commands for specific formatters.

The templates are as follows:

¢ Properties

¢ Activity Interface Report
¢ Template for nroff

¢ Template for Interleaf

Properties

This template uses database extraction functions to generate properties. It produces the property
report for a list of data-items whose names match the specified pattern.

Each entry includes the name of the data-item, a short description, synonym, type (real, integer,
and so on), and attributes and their values. In addition, it includes specific information extracted
from each data-item’s long description.

The template is as follows:

TEMPLATE di_dict;

-- this template produces information for each
-- data-item in a list no text formatter is used.
-- Formatting is done in WRITE statements.

PARAMETER
STRING di_pattern; -- the pattern that
-- determines the data-item list
VARIABLE
INTEGER st; -- return status code

LIST OF DATA_ITEM di_ids; -- list of
-- data-items for which the report
-— is produced

BEGIN
di_ids:= stm_r_di_name_of _di (di_pattern, st);
END;

Rational Statemate 81



Model Templates

SEGMENT report;

VARIABLE
DATA_ITEM di;
STRING di_name, di_synonym;
STRING di_sdesc;
INTEGER di_type;
STRING di_desc_file;
LIST OF STRING attr_list, attr_val_list;
STRING attr, attr_val;
BEGIN

-- write report heading
WRITE (°\n\n~”,” ”:20, “DATA-ITEM PROPERTY?);

FOR di IN di_ids LOOP
di_name := stm_r_di_name (di, st);

-- write entry heading

WRITE (\n\n\n DATA-ITEM: 7, di_name);

-- get short description and print it out
di_sdesc:= stm_r_di_description (di, st);
WRITE (’\n\n”, di_sdesc);

-- get synonym and print it out

di_synonym := stm_r_di_synonym (di, st);
WRITE (\n\n SYNONYM: ~”, di_synonym,’\n” );
-- get structure\type and print it out
di_type = stm_r_di_data_type (di, st);

SELECT

WHEN di_type = stm_di_alias =>
WRITE (°\n TYPE: ALIAS \n” );

WHEN di_type = stm_di_constant =>
WRITE (°\n TYPE: CONSTANT \n~” );

WHEN di_type = stm_di_primitive =>
WRITE (°\n TYPE: PRIMITIVE \n” );

WHEN di_type = stm_di_reference =>
WRITE (°\n TYPE: REFERENCE \n~” );

WHEN di_type = stm_di_compound =>
WRITE (\n TYPE: COMPOUND \n~” );

END SELECT;

-- retrieve the attributes for the
-- data-item of iInterest
attr_list := stm_r_di_attr_name (di, st);

-- write out the attribute names and values

FOR attr IN attr_list LOOP
attr_val_list:= stm_r_di_attr_val (di, attr,st);
FOR attr_val IN attr_val list LOOP
WRITE (°/n”, attr + ”:7:20, attr_val);
END LOOP;
END LOOP;

-- write out various parts of the data-item’s
-- long description

82 Documentor Reference Guide



Properties

di_desc_file := stm_r_di_keyword (di, *!'PURPOSE”,
>IEND PURPOSE”, ”7, st);
WRITE (>\n\nPURPOSE: \n”);

IF st = stm_success
THEN
INCLUDE (di_desc_file);
SE

IF st = stm_starting_keyword_not_found
THEN

WRITE(® not available \n”);
END IF;

END IF;
di_desc_file = stm_r_di_keyword (di, “ITIMING”,
IEND TIMING”, *7, st);
WRITE (C\n\nTIMING: \n?);

IF st = stm_success

THEN
INCLUDE (di_desc_file);
ELSE
IF st = stm_starting_keyword_not_found
THEN
WRITE(® not available \n”);
END IF;
END IF;

di_desc _file:=
stm_r_di_keyword (di, ”!REPRESENTATION”,
> TEND REPRESENTATION”, ” 7, st);
WRITE (\n\nREPRESENTATION: \n”);

IF st = stm_success
THEN
INCLUDE (di_desc_file);
ELSE
IF st = stm_starting_keyword_not_found
THEN
WRITE ( not available \n”);
END IF;
END IF;

END LOOP;
END;

Rational Statemate

83



Model Templates

Properties Template Structure
As for all templates, this template is divided into two parts:

+ An initiation section that contains global declarations and statements.

+ Template segments, each of which contains local declarations and statements. Recall that
each template segment, when executed, generates a document segment.

In this template, there is an initiation section and one segment. The initiation section follows the
template identifier line:

TEMPLATE di_dict;.
The segment section follows the segment identifier line:

SEGMENT report; .
Both the initiation section and the template segments consist of two parts:

+ Declaration section - Where the identifiers’ types are declared.

+ Body - Contains execution statements. These statements are contained within the
keywords BEGIN and END.

Properties Initiation Section

The initiation section begins with the mandatory TEMPLATE identifier line that specifies the name of
the template (in this case, di_dict). Following this are several optional comment lines describing the
purpose and features of the template. As the comment lines state, this template does not contain
formatting commands for any specific formatter.

Declaration Part
Identifier declarations follow the comment lines. There is one parameter, di_pattern, which is
declared as a string and represents a string pattern. It will be used in a database extraction function
to retrieve data-items whose names match this pattern. Because di_pattern is a parameter, you
specify its value in a form before executing the template. Changing the string pattern enables you
to generate the properties for different lists of data-items.

84 Documentor Reference Guide



Properties

Next, the template declares two variables:

* st - Returns a status code used with all Statemate database extraction functions. It is
declared as type INTEGER. See Documentor Functions for more information on using
return status codes

¢ di_ids - Represents the list of IDs of data-items for which the report is produced. It is
declared as a L1ST OF DATA_ITEM.

The identifiers declared in the template so far belong to the initiation section and thus are global in
scope (they can be used throughout the entire template).

Body

The body of the initiation section is between the BEGIN and END keywords. In this template, the
body consists of only one statement, an assignment statement that assigns a value to the L1ST OF
DATA_ITEM variable, di_ids. A database extraction function assigns to di_ids a list of elements
whose names match the string pattern di_pattern. These are the data-items for which the report
will be generated. In this example, assume that you specified the string pattern SIGNAL*. The data-
items for which the properties are generated will all have names that begin with SIGNAL (see the
generated output in Final Output for Data-item Properties.

Note that the template uses a status code variable, st, as an argument in the function. However, the
template does not include a statement to check st. If st does not indicate success, the returned list
of data-items assigned to di_ids is empty.

Properties Segment Section

The long segment of the template begins with its mandatory identifier line, SEGMENT report;. This
name is used to attach a name to the segment that follows. In templates possessing more than one
segment, you can use this name to identify the specific segment. See Using Documentor.

The declaration part follows. First, it declares the variable di to represent a data-item. This
variable will be used to iterate on the list of data-items.

Next, the template declares variables used in database functions to extract information about each
data-item in the properties. The variables—di_name, di_synonym, and di_desc—correspond to
the information contained in the name, synonym, and description fields of the data-item form
shown previously. All three of these variables are declared to be of type STRING.

The next variable, di_type, represents the information entered in the type field of the data-item
form. Because each of the options in this field corresponds to an integer value, this variable is
declared to be of type INTEGER. Each integer value corresponds to a predefined constant; these
constants, instead of the integer values, are used later in the template.

The string variable di_desc_fi le represents the name of a file. This variable will be used for the
names of the files that include portions of the data-item’s long description.

Rational Statemate 85



Model Templates

Next, the template includes variables having to do with information pertaining to the attribute
fields. The variable attr_list represents the list of attribute names entered in the attribute name
field of the data-item form. You will build this list later in the template through the use of a
Statemate database extraction function. Similarly, the variable attr_val_list represents the list
of attribute values. Lastly, the variables attr and attr_val are used to represent individual
attribute names and values, respectively; these variables are used later to iterate on the list of
attribute names and values.

Generating the Report Heading

The first line of the template body produces a report heading for the properties. To produce this
heading, use a WRITE statement (preceded by a comment):

-- write report heading
WRITE (\n\n”,” >:20, ’DATA-ITEM PROPERTY”);

The character \n causes a blank line to be inserted in the text. In this case, two blank lines are inserted
and the string “DATA-1TEM PROPERTY” is written, indented by blanks. The blank, =~ , followed by the
number 20 that appears in the WRITE statement acts as a tab, indenting the line 20 spaces. In actuality, this
number determines the minimum length that the printed expression is to reach. If the output falls short of
this, blank spaces are added after the last character to complete the number. In this case, a single blank is
used as the expression to be printed, causing 19 spaces to be added to the blank before the start of the next
word.

Iteration: Using the FOR/LOOP Statement

The data-item properties will consist of information for more than one data-item—you want
information for a list of data-items. Each data-item in the list should appear as a separate entry with the
corresponding information (synonym, description, attributes, and so on). To generate the same type of
information for all the data-items in the list, use a FOR/LOOP statement. This structure iteratively
performs statements for a given identifier whose value is set sequentially to the items in a list. The
program executes all statements following the LooP keyword for the identifier’s current value until it
reaches the END LOOP; the program then loops back to the first statement in the loop and performs the
same sequence of statements for the next item in the list.

In this example, the list is composed of data-items and is represented by the variable di_ids. The
sequence of statements in the loop is generated for each item of the list, represented by the variable
di . The loop terminates at the END LOOP, which is the second to the last statement in the template.

86

Documentor Reference Guide



Properties

Generating the Entry Heading

Each data-item entry in the properties is marked by a heading that writes the words “DATA-1TEM:”
followed by the name of the data-item for which the entry is made. The function stm_r_di_name
extracts the name for the data-item represented by di. The name of the data-item entry is represented by
the variable di_name.

To produce the entry heading, use a WRITE statement (preceded by a comment):

-- write entry heading
WRITE (\n\n\n DATA-ITEM: ~”, di_name);

Extracting and Printing Information from the Data-ltem Form

The next part of the template includes statements that extract and write information contained in
the data-item form. This includes the data-item short description from the description field,
synonym, data-item type, and attribute names and their values.

Description and Synonym

The first two statements in this part extract the short description of the data-item (the description
field of the data-item form) and prints it out. The template uses a database extraction function to

assign a value to the variable di_sdesc for the data-item represented by di. The WRITE statement
that follows inserts a blank line, then writes the description (di_sdesc) of the data-item.

Next, two statements extract the data-item’s synonym and prints it.

Using the SELECT/WHEN Construct

The next part of the template uses a SELECT/WHEN construct to extract and write the data-item type.
To see how this works, first consider the fact that there are a finite number of values that can be specified
for type. Turning to the type field in the data-item form, you can see that a data-item type can be one of

the following:
¢+ Record
¢ Integer
¢ Float
¢ String

The data-item type is referred to as an enumerated type—each of the values for this field is
represented by a unique number. These numbers correspond to predefined constants (stm_di_record,
stm_di_list, and so on). You use a database extraction function to extract this type for each data-item
di in your properties.

Rational Statemate 87



Model Templates

Next, you want the name of the data-item type to be written in the document. To do this, use a
SELECT/WHEN construct as shown in the template. This construct selects for execution one of the
statements contained between the keywords SELECT and END SELECT. Only one of these statements
is executed for each data-item. Each statement contains a trigger, beginning with the keyword
WHEN that, when satisfied, leads to the execution of the statement following the arrow. In this
template, the triggering condition is the value of the data-item type represented by the variable
di_type. When this value is equal to that of the particular value of the data-item type contained in
the WHEN statement, a WRITE statement is executed that inserts a blank line and writes “TYPE:”,
followed by the data-item type.

Note that you cannot write the data-item type directly from the variable di_type that represents it.
This is because this variable actually represents an integer value; writing the variable’s value
would result in an integer being written, instead of the name of the data-item type. You solve this
problem by writing an appropriate string name that corresponds to the variable’s value.

Using Nested FOR Loops to Extract Attribute Names and Values

The next part of the template involves the use of nested FOR/L0OP constructs for extracting and
writing the data-item’s attribute name and value. A data-item’s attributes and their values are recorded in
special fields in the data-item form. The information in these fields is textual and can involve any features
of the data-item that you want. The field enables you to record a list of attributes and values.

Recall that FOR loops are used to iterate on items of a list. In this template, the list of data-item
attributes is represented by a LIST OF STRING variable, attr_list. The template executes a
sequence of statements for each attribute (represented by the string variable attr) contained in the
list.

These statements involve extracting and writing the corresponding attribute values for each
attribute listed in the attribute name field. First, the template uses uses a database extraction
function to assign values to a LIST OF STRING variable, attr_val_list. This variable represents
the list of attribute values recorded in the attribute value field for a particular attribute name,
represented by the variable attr.

This template assumes that more than one value can be recorded for each attribute; therefore,
another FOR/LOOP construct is used to write the information for each value (represented by the
variable attr_val) in the list.

You want to write attribute name and value as a paired set, with the attribute value written next to
the attribute name. The template uses the number 20 in the WRITE statement to indent the second
output field 20 characters. Note that for “:” to appear after the attribute name, the template uses a
concatenation of two strings (attr +7:7).

88

Documentor Reference Guide



Properties

Using Keywords to Write Portions of the Long Description

In the last part of each property entry, you want to include information from the data-item’s long
description. This information consists of free text that is attached to the element’s form. The long
description can be divided into portions through the use of keywords. For example, you can set off
those portions of the text that deal with data-item purpose by enclosing the text within the
keywords 'PURPOSE and 1END PURPOSE. You can extract this information using a database
extraction function that searches for keywords in the text and returns (to a file) all the text
contained between these words. You can then use an INCLUDE statement to cause the file
containing the text to appear in the document.

For each section of text that you want to appear, you begin by assigning a value to the string
variable di_desc_File, which represents the name of the file with the desired text. Note that the
fourth argument of the database extraction function is an empty string. This argument is reserved
for the name of the file in which the desired text is returned. If you want the information in a
specific file, you can specify a name for this argument. If you specify an empty string, as shown in
the template, the Documentor writes the text in a temporary file. In either case, the function returns
the name of the file in which the text is written. For example, in the first section, di_desc_file
represents the temporary file that contains all the text between the keywords 'PURPOSE and
YENDPURPOSE.

The assignment for di_desc_file is followed by an 1F/THEN/ELSE statement that either includes
the text or prints a “not available” message if the starting keyword is not found. This is done by
means of the status parameter st, which appears in the keyword’s extraction function. If the value
of st is equal to stm_success, the text is included in the document. If the value of st is equal to
stm_starting_keyword_not_found, the message “not available” is written. Any other status
values will leave the paragraph empty.

The rest of the template extracts long description information in the same manner. The template
execution then loops back to the beginning, repeating the instructions for each data-item in the list.

The final output is shown in the following section.

Rational Statemate 89



Model Templates

Final Output for Data-item Properties

DATA-ITEM PROPERTY
DATA-ITEM: SIGNAL1
Signal specifying the current address
SYNONYM: SIG_1
TYPE: INTEGER

RANGE : 0 - 2046
RESOLUTION: 2

PURPOSE:
This signal designates the destination of the data that is sent to the system.

The system will transfer the signal to the component that is responsible to
the routing of information.

TIMING:
The address signal must be valid when the write signal is sent.

REPRESENTATION:
The signal uses the binary representation.

DATA-ITEM: SIGNAL2

Signal specifying the data to write

SYNONYM: SIG_2

TYPE: INTEGER

RANGE: 0 - 1000

PURPOSE:
This signal is the data that is sent to the system. The system will transfer
the data to its destination according to the specified address.
TIMING:
The data must be valid when the write signal is sent and stays valid for at
least two ms.

REPRESENTATION:
The data will be using an ASCII representation.

DATA-ITEM: SIGNALS
Signals specifying address and data
SYNONYM: SIGS
TYPE: RECORD

PURPOSE :
not available

TIMING:
not available

REPRESENTATION:
not available

90

Documentor Reference Guide



Activity Interface Report

Activity Interface Report

An activity interface report presents the input and output for a given activity. This template
produces an interface report for a given activity. No text formatter is used—formatting is done
using WRITE statements.

To understand the report, consider the activity chart in the following figure.

gear_position ldriver_commands

\ engine_running

SC_ACTIVITIES * l
accel_pressed -

> » | CONTROL_SC
brake_pressed
| ‘\ l b\_ shaft_rotation

current_speed

throttle_pos _/trlrottle_control J ‘ ( mileage
- v

The chart shows an activity named sc_ACTIVITIES with its subactivities. Flow-lines indicating the
flow of events, conditions, and data-items enter and exit SC_ACTIVITIES. Some of these flow-lines
lead directly to, or exit from, a particular subactivity, whereas others lead to, or exit from, the
parent activity (SC_ACTIVITIES itself). The interface report lists the elements flowing through
these flow-lines, indicating whether they are events, conditions, or data-items.

accel_deflections

For example:
DATA_ITEM  ACCEL_DEFLECTION
EVENT ACTIVATE_CRUISE
EVENT CLOCK

DATA_ITEM MILEAGE

Note that flow-lines also lead from one subactivity to another. These are not considered as inputs
and outputs to the main activity of the chart, and therefore information concerning them does not
appear in the interface report.

The template first searches for a_flow_lines using a query function. The template then extracts
the conditions, events, and a data-items that flow along these lines.

Rational Statemate 91



Model Templates

act_interface Template

TEMPLATE act_interface;

PARAMETER
STRING activity name; -- the activity for which
-- the report is generated.
VARIABLE
INTEGER st; -- return status code
ACTIVITY act; -- the id of subject activity
BEGIN
act := stm_r_ac (activity_name, st);
END;

PROCEDURE write_elements;
PARAMETER

LIST OF ELEMENT element_list;
VARIABLE

ELEMENT elm;

INTEGER element_type, status;
BEGIN

-- write elements
FOR elm IN element_list LOOP
element_type := stm_r_element_type (elm, status);
SELECT
WHEN element_type = stm_event =>
WRITE(”\n EVENT 7,stm_r_ev_name(elm, status));
WHEN element_type = stm_condition =>
WRITE(C’\n CONDITION ~”,stm_r_co_name(elm, status));
WHEN element_type = stm_data_item =>
WRITE(’\n DATA_ITEM ~”,stm_r_di_name(elm, status));
END SELECT;
END LOOP;

END;

SEGMENT report;

VARIABLE
LIST OF A_FLOW_LINE af_list;
LIST OF EVENT ev_list;

LIST OF CONDITION co_list;
LIST OF DATA_ITEM di_list;

LIST OF ELEMENT in_list, out_list;
ELEMENT elm;
INTEGER elm_type;

BEGIN

-- write title
WRITE (°\n\n”, ~ ~:20,” INTERFACE REPORT for ~,
activity name);

92

Documentor Reference Guide



Activity Interface Report

-- activity’s inputs

-— input title

WRITE (C\n\n Input elements:”);
WRITE (°\n”);-- get inputs

-- get input flow-lines
af_list := stm_r_af _ext_to_target_ac({act},st);

-- get input conditions
co_list := stm_r_co_flowing_through_af(af_list,st);

-- get input events
ev_list := stm_r_ev_flowing_through_af(af_list,st);

-- get input data_items
di_list := stm_r_di_flowing_through_af(af_list,st);

in_list:=co_list + ev_list + di_list; -- all inputs

-- order alphabetically
in_list := stm_list_sort_by name(in_list, st);

-— write elements
write_elements(in_list);

-- activity’s outputs

-- output title

WRITE (C\n\n Output elements:”);
WRITE (°\n”);-- get outputs

-- get output flow-lines
af_list := stm_r_af_ext_from_source_ac ({act}, st);

-- get output conditions
co_list := stm_r_co_flowing_through_af (af_list, st);

-- get output events
ev_list := stm_r_ev_flowing_through_af (af_list, st);

-- get output data_items
di_list := stm_r_di_flowing_through_af (af_list, st);

-- all outputs
out_list := co_list + ev_list + di_list ;

-- order alphabetically
out_list = stm_list_sort_by name (out_list, st);

-— write elements
write_elements (out_list);

END;

Rational Statemate 93



Model Templates

Activity Interface Report Initiation Section

Declarations and assignments in the initiation section apply throughout the template. In the
initiation section, one parameter is declared, activity_name, which can be assigned via a special
form before template execution. This is the name of the activity for which the interface report is to
be generated. In addition, two variables are declared:

¢ st - The status code returned by the database extraction function
¢ act - The ID of the activity for which the report is produced

The body of the initiation section has only one statement between the BEGIN and END keywords.
This is an assignment statement that assigns the activity’s ID to the act variable. Because elements
are identified in database extraction functions by their IDs and not their names, you must first find
the ID for the activity before you can extract information about it. To do this, use the activity’s
name as an argument in a database extraction function that returns the corresponding activity’s ID.
By assigning this ID to the act variable, you can later use it throughout the template whenever you
want to extract information about the activity.

Activity Interface Report Segment Section

The long template segment begins with the segment identifier line, SEGMENT report, SEGMENT
report;. This line is used to attach a name to the segment that follows. In templates possessing
more than one segment, you can use the name to select a segment for exclusive execution. Next,
there is a declaration section. followed by the segment body that consists of execution statements
enclosed between the BEGIN and END keywords.

Declarations

The declaration section consists of variables used to construct the list of element inputs and
outputs. The first four variables—af_list, ev_list, co_list, and di_list—represent lists of a-
flow-line elements and the events, conditions, and data-items that flow along them. The next two
variables, in_list and out_list, represent the union of the list of elements represented by the
variables ev_list, co_list, and di_list. The variable in_list represents a combined list of
input elements. The variable out_l1ist represents a combined list of output elements.

The next variable, elm, is used to extract elements from lists of elements using a FOR/LOOP. The
last variable, elm_type, is an enumerated type that is declared as an integer. It represents the
element type and is used in conjunction with a SELECT/WHEN construct to write out the type for
each element in the list of inputs and outputs.

94 Documentor Reference Guide



Activity Interface Report

Producing the Headings

The first WRITE statement in the body (statements starting after the keyword BEGIN) produces the
title of the report. This consists of 20 blank spaces (indicated by > >:20), followed by the words
INTERFACE REPORT for, and the name of the activity for which the report is generated (this name is
a parameter supplied at the time of template execution).

For a heading introducing the input elements, the template uses a second WRITE statement to insert
two new lines, then writes the heading Input Elements:. This is followed by another new line
command.

Building Element Lists

The next part of the template builds lists of input elements using database extraction functions.
First, the template extracts from the database all the a-flow-line elements that have the subject
activity (or its subactivities) as their target. This list is assigned to the variable af_list. Note that
the database extraction function that extracts this list has its parameter, act, enclosed in braces.
Braces indicate a list of items; because this particular extraction function is a query function, the
parameter must consist of a list. In this case, however, the “list” is only one activity ID,
represented by act.

The template builds three separate lists of elements:

+ Alist of input conditions, represented by the variable co_list
+ Alist of input events, represented by the variable ev_list
+ Alist of input data-items, represented by the variable di_list

Each of these variables is assigned values through a database extraction function that uses the
variable af_list as a parameter. In other words, once you have extracted all the a-flow-line
elements related to the specified activity, you extract the conditions, events, and data-items that
flow through them.

Alphabetizing and Sorting the List

To alphabetize all the elements in the lists, regardless of type, use the operation for union “+” to
create a combined list of all the input elements; this list is designated by the variable in_list. The
template uses a special utility function to sort by name the elements represented by in_list and
reassign themto in_list.

Rational Statemate 95



Model Templates

Writing the Input Elements

The next part of the template segment gives instructions for writing each element’s type (event,
condition, or data-item), followed by its name. To do this, use a FOR/LOOP construct to both extract
an element elm out of the alphabetized in_Iist and perform several statements iteratively.

The first statement in the loop extracts the type of the element represented by the variable elm. The
template then uses a SELECT/WHEN construct to write the element type and name. The triggers of
the WHEN statements are constructed so when the variable elm_type is equal to a particular element
type, the WRITE statement to the right of the arrow is executed.

“Element type” is referred to as an enumerated type; each of the possible values is represented by
a unique number. These numbers correspond to predefined constants (stm_event,
stm_condition, and stm_data_item). Note that the template does not use the value of the
variable elm_type to write the element type; doing so would cause the integer value to be written.
Instead, the template writes the string that corresponds to the integer value.

You must use a database extraction function in the WRITE statements to produce the elements’
names because the variable elIm that represents the individual element (as well as the list of
elements represented by the variable in_Iist) consists of element IDs, rather than names. To
produce the element’s names, use the IDs as parameters in a database extraction function that
returns element names.

After the WHEN construct is executed and the element’s type and name is written, the program loops
back to the beginning of the FOR/LOOP and the instructions are carried out for another element.
This continues until all input elements are written.

The last part of the template constructs lists of output elements and writes their types and names.
This part is identical for that of input elements, except that a different function is used to build the
output a-flow-line elements.

The final output is shown in the next section.

96

Documentor Reference Guide



Template for nroff

Final Output for Act_Interface Report

INTERFACE REPORT for sc_activities
Input elements:

DATA_ITEM  ACCEL_DEFLECTION

EVENT ACCEL_PRESSED
EVENT ACTIVATE_CRUISE
EVENT BRAKE_PRESSED
EVENT CLOCK

CONDITION ENGINE_RUNNING
DATA_ITEM GEAR_POSITION
CONDITION MEASURE_SIGNAL
DATA_ITEM MILEAGE

EVENT RESUME_CRUISE
EVENT SHAFT_ROTATION
DATA_ITEM  THROTTLE_POS

Output elements:

DATA_ITEM CURRENT_SPEED
DATA_ITEM MILEAGE

DATA_ITEM  THROTTLE_CONTROL

Template for nroff

Whereas the previous templates in this section produced reports that were formatted by DGL
WRITE statements, the templates in the following two sections contain commands specific to various
formatting languages.

After a template is executed, the generated information, together with the embedded formatting
commands for a particular formatting system, is passed to the output document segments. The file
can then be further processed by a formatting system so the embedded formatting instructions are
executed to produce the final document.

The following sections show how to use embedded formatting commands to produce the final
document, which is similar to the one documented in Qverview of Documentor. They are different
in their chapter and section headers.

This section explains the template logic for nroff. Because Interleaf has a slightly different logic,
especially with regards to plot generation, it is explained in a separate section. For both templates,
the initiation section is the same.

Rational Statemate 97



Model Templates

Template with nroff Commands

TEMPLATE example;

-- Initiation Section

PARAMETER

STRING act_name := *SC_ACTIVITIES”; -- the activity
-- for which the report is written.

STRING plot_dev:= *HP74757;

VARIABLE

ACTIVITY act_id; -- id of ”act_name”’.
INTEGER  st; -- return status code.
STRING title; -- title of plot.

FLOAT acty; -- actual height of plot.
BEGIN

act_id := stm_r_ac(act_name, st);
END;

SEGMENT segl;
BEGIN
INCLUDE(’nroff_glob~);
WRITE(’\n.bp~);
WRITE(’\n.ce\nDescription of 7, act_name);
WRITE(’\n.sp\n.sh 1 Overview”);
INCLUDE(”sys_overview’); -- “sys overview’ is an
-- include file in which
-- text with formatting
-- command is written.
END;

SEGMENT seg2;
VARIABLE
LIST OF ACTIVITY ac_list;

BEGIN

/0.bp

.sh 1 ”SYSTEM ACTIVITIES”
.sp

.sh 2 “Activity-chart”

.sp
This is the chart that describes the activities
of the system:

.br

@/

98

Documentor Reference Guide



Template for nroff

-- leave 40 lines in one page to the plot
WRITE(’\n.sp 40\n”);
title:= "Plot of * + act_name;
-- plot of activity-chart
stm_plt(act_id,’act_plot’,6.5,9.0,°F*,°F~,
true,999,plot_dev,stm_plt_top,title,acty);
-- second section
/

.bp
.sh 2 ”Activities Description”

-sp
Detailed description of each activity in chart:
/

ac_list := stm_r_ac_physical_sub_of_ac({act_id},st);
-- Property Report
stm_rpt_dictionary(ac_list,true,true,” ”);

END;

Initiation Section (nroff)

In the initiation section of the templates, the string parameter act_name represents the name of the
activity for which the report is generated. The value of act_name can be assigned at the time of
template execution. Because you can also assign an initial value to the parameter, assume that
act_name was assigned an initial value of SC_ACTIVITIES.

A second parameter, plot_dev, represents the plotter output device on which you want to produce
the plot. This output device need not be identical to the one used to print the document. For
example, you might want to produce the plot and text separately, merging them together later. This
parameter is assigned an initial value, which you can change in a special form at the time of
template execution.

Next, the template declares four variables:
¢ act_id- The ID of the activity for which the report is generated. This variable is declared
of type ACTIVITY.

¢ st - A return status code for the database extraction functions. It is declared as an
INTEGER.

¢ title - The string used to pass the title to the plot tool.

¢ acty - A float that is an output parameter from the plot tool, which specifies the actual
height of the plot.

Lastly, in the body of the initiation section, there is one statement, an assignment for the variable
act_id. To make the assignment, the template uses a database extraction function that takes
act_name as a parameter and returns the corresponding ID.

Rational Statemate 99



Model Templates

Segment 1. Heading and Report Overview (nroff)

The first template segment includes global declarations and produces a report heading and
overview section. This section explains how these are produced with nroff.

Including Global Declarations

The first statement of seg1 passes the file nroff_glob to the output segment. This file, which is
found in the databank, must be checked out to the workarea to be used by the Documentor. The
file’s function is to change default settings for nroff. For example, it cancels the special setting for the
underscore symbol; this is done because Statemate uses underscores in element names.

Producing the Heading and Overview (nroff)

The template uses WRITE statements to write nroff formatting commands to the output document
segments. Note that there is a \n before each nroff command so each command written to the
output segment starts on a separate line. For example, after executing the template, the first three
WRITE statements cause the following to appear in the output segment segt:

.PAGE

-.CENTER; Description of SC_ACTIVITIES

.SKIP

-HL 1 Overview
The contents of the overview section are taken from an include file, sys_overview. This file
resides in your workarea. As written in the comments, this file can contain formatting instructions
in addition to the text. The entire file is passed verbatim to the output segment following the
overview header.

After the output segment has been generated, it can then be formatted by nroff so the formatting
commands are interpreted and the final, formatted document produced. For example, the
formatting commands in seg1 would cause a new page to be started; the words “Description of
SC_ACTIVITIES” would then be centered in the middle of the line, followed by a “skipped” line.
The next formatting command would produce a header marked by the number 1. Lastly, the text
contained in sys_overview is formatted according to the formatting instructions in this file or, if
missing, according to the nroff defaults.

100 Documentor Reference Guide



Template for nroff

Segment 2: Activity-Chart Plot and Property Report (nroff)

In the second segment of the template, seg2, the template produces the activity’s plot and
generates a property report of all of its subactivities using plot and report functions. Formatting
commands are introduced where appropriate. One variable (ac_list) is declared, which
represents the list of subactivities from which the property report is constructed.

The segment’s body begins with the DGL verbatim symbol, /@. This command indicates that
everything between it and the following @/ symbol is to be included verbatim in the output
document segment. The comments do not actually appear in the generated output, but explain the
purpose of each command when interpreted by nroff. The generated output is as follows:

-.PAGE -- starts a new page.

-HL 1 SYSTEM ACTIVITIES -- produces a header.
-SKIP -- skips a line.

-HL 2 Activity-chart -- produces a subheading.
_SKIP -- skips a line.

This is the chart that describes the activities
of the system:

.BREAK -- causes hard return (new line).

Note

nroff commands written in a verbatim environment must start at the extreme left of the line
(otherwise, the formatter does not correctly interpret them). Do not be misled into indenting
these commands in the desire to produce a more readable template.

The next WRITE statement passes a nroff formatting command to the output segment. This
command formats the page so as to provide a place for the plot that follows. A place for the plot
must be made because nroff has no inherent graphics capability. The statement passes a SKIP
command that causes the document to skip 40 lines to leave room for the activity chart plot.

Next, the template uses an Include Plot statement to generate a plot of the activity for which you
are producing the document. Note that the second argument is the name of the file in which the
output plot is contained. The file belongs to the file system outside of Statemate. If you do not give
the full path name (as in the example), the file will appear in your workarea.

The ninth argument represents the plotter type. This determines the graphical language in which
the plot is generated. Because this is a template parameter, you can change its initial value in a
form before executing the template.

The example template produces the plot for a pen plotter, and places it in a file called act_plot.
Following the execution of the template you must explicitly output the plot on the particular
plotting device and thereafter manually merge the plot into the blank space set aside for this. For
an explanation of the other parameters of the plot, see INCLUDE.

Rational Statemate 101



Model Templates

Now you can give instructions for the inclusion of the property report for the subactivities. First,
you include another section of formatting commands to be passed verbatim to the output segments.
These include instructions for a subheading, a blank line, and a sentence introducing the property
report. Next you assign a value to the variable ac_list, which represents the subactivities of the
subject activity. This is followed by an Include Property Report Statement, which causes the
property report to appear in the output segment before formatting with its nroff commands
embedded in the text. The Documentor embeds nroff commands because you attached the
template to the nroff formatter at the Create Template stage. Upon formatting, these commands are
interpreted along with the rest of the formatting commands.

Template for Interleaf

This section describes a template with formatting commands for Interleaf. The final formatted
output is the same as for the templates explained in the previous section.

The template is as follows:

TEMPLATE example;

-- Initiation Section

PARAMETER
STRING act_name; -- the activity for which the
-- report is written.
VARIABLE
ACTIVITY act_id; -- id of “act_name”’.
INTEGER st; -- return status code.
BEGIN
act_id := stm_r_ac(act_name, st);
END;

SEGMENT segl;
BEGIN
INCLUDE (’interleaf_glob”);
INCLUDE (’my_glob”);
WRITE ("\n<doc_title>");
WRITE (\nDescription of ”,act_name);
WRITE ("\n<sect>7);
WRITE (C\n<Autonum, List8, 1, Ffirst-Yes><TAB>Overview?);
INCLUDE (’sys_overview’); -- 7sys_overview’ is an
-- include file in which
-- text with formatting
-- commands is written.

END;
SEGMENT seg2;

VARIABLE
LIST OF ACTIVITY ac_list;
STRING title;

102

Documentor Reference Guide



Template for Interleaf

FLOAT acty;

BEGIN

/@

<my_new_page>

<sect>

<Autonum, List8, 1><TAB>System Activities

<subsect>

<Autonum, List8, 2><TAB>Activity-chart

This is the chart that describes the activities of the system:
@/

title:= ’Plot of > + act _name;

-- plot of activity-chart.

stm_plt (act_id, > *, 6.5, 9.0, ’F*, °F”, true, 999,
“interleaf’, stm_plt_top, title, acty);

/0

<my_new_page>

<subsect>

<Autonum, List8, 2><TAB>Activities Description
Detailed description of each activity in the chart:

@/

ac_list := stm_r_ac_physical_sub_of_ac ({act_id}, st);
-- property report

stm_rpt_dictionary (ac_list, true, true,”’”);

END;

Initiation Section (Interleaf)

The initiation section is similar to that for the nroff template; see the explanation of the nroff
initiation section.

Segment 1. Heading and Report Overview (Interleaf)

Because Interleaf commands have definitions that must be specified before the commands are
used, the template includes the file interleaf_glob, which contains these definitions. Among
other definitions, it contains instructions used in producing Statemate predefined reports for
Interleaf. This file is found in the databank and must be checked out to your workarea to be used
by the Documentor. In addition, the template includes user-defined definitions contained in the file
my_glob.

In the first segment, you pass both files to the output segment using INCLUDE statements. When the
segment is formatted, the formatting command definitions included in the files are interpreted.

Rational Statemate 103



Model Templates

Producing the Heading and Overview (Interleaf)

The template uses WRITE statements to write the Interleaf formatting commands to the output document
segments. Note that there is a \n before each Interleaf command so each command written to the
output segment starts on a separate line.

The Interleaf commands written to the output segment and used for the heading and overview
section are as follows:

<doc_title> -- starts a new page and defines the
title font and centers the title.
The definition of this command is
included in ”my_glob™.
<sect> -- starts a new section. It defines the
font of a section title, its margins etc.
The definition of this command is
included in ”my_glob”.
<Autonum, List8, 1, first-Yes> -- writes the first
section number.

The following text appears in the output segment immediately following the contents of the
include file:

<doc_title>

Description of SC_ACTIVITIES

<sect>

<Autonum, List8, 1, First-Yes><TAB>Overview

This is followed by the text of the sys_overview file. This is an include file and can contain text
and Interleaf formatting commands.

104

Documentor Reference Guide



Template for Interleaf

Segment 2: Activity-Chart Plot and Property Report (Interleaf)

The second segment of the template, seg2, produces the activity’s plot and generates a property
report for all of its subactivities using plot and report functions. Formatting commands are
introduced where appropriate. One variable (ac_list) is declared, which represents the list of
subactivities from which the property is constructed.

The segment’s body begins with the DGL verbatim symbol, 7@. This command indicates that
everything between it and the following @/ symbol is to be included verbatim in the output
document segment. The comments do not actually appear in the generated output, but explain the
function of each command when interpreted by Interleaf. The generated output is as follows:

<my_new_page> -- starts a new page. The definition
of this command is included
in ”my_glob”.
<sect> -- starts a section. (see Segment 1).
<Autonum, List8, 2><TAB>System Activities -- writes
-- section header.
<subsect> -- starts a subsection.
<Autonum, List8, 2><TAB> Activity-chart -- writes
-— subsection header.

This is the chart that describes the activities
of the system.

Note

Certain Interleaf commands, such as <sect> and <subsect>, that are written in a verbatim
environment must start at the extreme left of the line. Otherwise, the formatter does not
correctly interpret them). Do not be misled into indenting these commands in the desire to
produce a more readable template.

In the case of the activity chart plot, you follow a slightly different formatting logic from that of
nroff because Interleaf has a graphics capacity. Therefore, you do not have to leave space for the
plot—the language automatically prepares the page for this. To include the plot in the output file,
you supply an empty string as the second parameter in the Include Plot statement. This causes
the plot information to be passed directly to the output segment. Note that the ninth parameter is
> interleaf”, which specifies the output language in which the plot is generated. Upon
formatting, Interleaf interprets the plot graphics and draws it into the document.

For an explanation of the other parameters of this plot, see the stm_plot function.

Rational Statemate 105



Model Templates

Now you are ready to include the property report for the subactivities. First, you include another
section of formatting commands to be passed verbatim to the output segments. These include
instructions for a new page, a subheading, and a sentence introducing the property report. Next,
you assign a value to the variable ac_list, which represents the subactivities of the subject
activity. This is followed by an Include Property Report statement. This statement causes the
property report to appear in the output segment before formatting, with its Interleaf commands
embedded in the text. The Documentor embeds Interleaf commands because you attached the
template to the Interleaf formatter at the Create Template stage. Upon formatting, these commands
are interpreted along with the rest of the formatting commands. The final output is very similar to
the document in OQverview of Documentor (but there are differences in the appearance of the
headings).

106 Documentor Reference Guide



Single-Element Functions

This section documents the single-element extraction functions. For each function, the following
information is provided:

+ Return value type

* The elements for which it is relevant

+ Description

¢ Syntax

* Arguments

+ Status codes
The two characters xx in the function names denote element type abbreviations. See Element Type
Abbreviations for the list of element abbreviations.
Single-element functions provide information about discrete Statemate elements in the database.

Using single-element functions, you can retrieve any information attached to a particular element.
This information is usually entered into the database via forms. Data extraction is a multi-stage
procedure. Generally, when working with a Statemate element, you know the element’s name (path
name). You might want to know more about such an element, such as the element’s synonym or
what attributes are defined in the element’s form. Such information can be retrieved using the
single-element functions.

The retrieval process is as follows:
1. Specify the element name or synonym. Receive the element 1D.
2. Specify the 1D and the information requested. Receive the extracted information
3. Use the extracted information.

The element ID is an internal representation that Statemate uses to identify each element. You do
not see the ID; you extract it from the database using one function and pass it along to another
function that processes your information request.

The vertical ellipses in the diagram indicate that multiple functions can be called in succession for
the same element. For example, you can call a function to return an element’s synonym, then
immediately call a different function to return the contents of the same element’s description field.

Rational Statemate 107



Single-Element Functions

Calling Single-Element Functions

As shown in the diagram, extracting information from your database is at least a two-stage process.

¢ Stage 1—Pass the element name or synonym as a function argument to get the element ID.
The function calling sequence is as follows:

stm_r_xx (name, status)

In this syntax:

— stm_r_—Designates the function as a Statemate database retrieval function.
— xX—The two-character element type abbreviation.

— name—The name of the element for which information is requested. The
input argument name contains the name (path name) or synonym that
uniquely identifies the element of interest. The name can be a variable or a
literal string (enclosed by single apostrophe marks).

— status—The return function status code.
For example:

stm_r_st(’S1”,status)

This function call returns the ID for state S1. The value returned by the function is a
Statemate element of the type specified by xx. In this example, the value returned by
the function is of type STATE.

+ Stage 2—Pass the element ID as a function argument to get the information requested.
The function calling sequence is as follows:

stm_r_xx_info (inarg, ..., status)
or
stm_r_info (inarg, ..., status)

In this syntax:

— stm_r_—Designates the function as a Statemate database retrieval function.

— xX—The two-character element type abbreviation. Note that in some
functions, these two characters are omitted.

— info—The type of information to be extracted from the database.
— inarg—The required input arguments.
— status—The return function status code.

108 Documentor Reference Guide



Calling Single-Element Functions

For example:

stm_r_ac_description (a, status)
or
stm_r_description (a, status)

This function call retrieves the contents of the Description field for the activity
whose ID is contained in the variable a.

There is one function whose calling sequence differs from that shown above. This
function, stm_r_element_type, receives an element ID as input and returns the element
type. The function returns an enumerated type value of the form “stm_state”,
“stm_activity”, and so on.

Single-Element Function Input Arguments

The following table lists the input arguments for single-element functions.

Argument Function DGL Data Type

name The name of the Statemate element. It can be an element | String
name, path name, or synonym, including the chart name,
(for example, K:L.M).

element ID The value that Statemate uses to identify each elementin | Statemate element (ELEMENT,
the database. Statemate assigns a unique ID to every STATE, EVENT, and so on). For
element. example, if you call a function

that operates on events, the
element ID must be defined to
be of type EVENT (or ELEMENT).

attribute name Name of an attribute defined in the form for a Statemate String
element (in the attribute field).

begin keyword The string of text appearing in the long description String
attached to the specified Statemate element. This string
represents the beginning of the portion of the long
description that you want to extract from the database.

end keyword The string of text appearing in the long description String
attached to the specified element. This string represents
the end of the portion of the long description that you want
to extract from the database.

filename The path name of a system file. Long descriptions (and String
portions thereof) are copied to the system file specified in
this argument.

If this is an empty string (” ” - two contiguous
apostrophes), the Documentor creates a temporary file
where it stores the text. The name of this temporary file is
returned by the function.

Rational Statemate 109



Single-Element Functions

Examples of Single-Element Function Calls

This section shows how to use single-element function calls to perform common tasks.

Single-Element Function Example 1

Suppose you want to find the synonym and the short description for a state S1, as they appear in
the state’s form. Assume that the path name sss.s1 uniquely identifies the state. Include the
following code in your Documentor template:

VARIABLE
STATE state id;
STRING state_desc, state_syn;

INTEGER status;

sim_r_st (°SSS.S1”, status);
stm_r_st_synonym (state_id, status);
stm_r_st_description (state_id, status);

state_id
state_syn :
state_desc:

This example uses two consecutive function calls to extract first the synonym, then the short
description of the same element. The assigned variable and the function return value must have
compatible data types. Therefore, state_id is declared as STATE. (state_id could also be
declared as ELEMENT.)

Single-Element Function Example 2
The following example shows functions that return enumerated type values.

VARIABLE
STATE state_id;
STRING state _name, state_ type;

INTEGER st_type;
INTEGER status;

state_id := stm_r_st (state_name, status);
st_type := stm_r_st_type (state_id, status);
SELECT
WHEN st_type = stm_st_or =>
state_type = ’or’;
WHEN st_type = stm_st _and =>

state_type := “and’;

END SELECT;
WRITE (°The state ’,state_name, ’is of type 7,
state_type);
This example queries the database to determine the type of the state in state_name. When the type
is determined, the name and type of the state are printed out.

110 Documentor Reference Guide



List of Functions

Single-Element Function Example 3

The following example shows how to include a portion of the long description of the state S1in a
document. The section extracted is the text appearing between the strings Z 1BEGIN” and ” 1END".

VARIABLE

STATE state_id;
STRING descr_file;

state_id := sim_r_st (’S1”, status);

descr_file :=

stm_r_st_keyword (state_id, “I!BEGIN~,

>IEND”,””,status);
INCLUDE (descr_file);

The fourth input parameter (the empty string) of the function stm_r_st_keyword determines the
name of the file to which the extracted text is written. If the string is empty, as in this case, the
Documentor creates a temporary file where it stores the text. The name of this temporary file is returned
by the function. Using the INCLUDE statement, you write the text to the generated document.

List of Functions

As previously mentioned, the extraction functions take the form stm_r_<element_type><task>.
For example, stm_r_uc_attr_name returns the names of attributes associated with the specified
use case. Because this function can retrieve values for other elements besides use cases, it is
denoted as stm_r_xx_attr_name. This function would be included in the A section (for

attr_name).

The functions are as follows:

Function

Description

stm_r_sb_action_lang

Returns the action language of the specified subroutine.

stm_r_sb_action_lang_expression

Returns the action language expression of the specified
subroutine.

stm_r_sb_action_lang_local_data

Returns the action language local data associated with the
specified subroutine.

stm_r_actual _parameter_exp

Returns the actual binding of the formal parameter name in the
specified instance chart or component.

stm_r_actual _parameter_type

Returns the type of the formal parameter name in the specified
instance chart or component.

stm_r_elem_in_ddb_list

Searches for the specified element in the list created by the
properties browser.

stm_r_sb_ada_user_code

Returns the Ada code that was manually written by the user for the
specified subroutine.

Rational Statemate

111



Single-Element Functions

stm_r_sb_ansi_c_user_code

Returns the ANSI C code that was manually written by the user for
the specified subroutine.

stm_r_xx

Retrieves the element ID of the specified element.

stm_r_xx_array_lindex

Returns the left index of an element array.

stm_r_xx_bit_array_rindex

Returns the right index of an element array.

stm_r_xx_attr_enforced

Returns the enforced attributes specified by attr_name.

stm_r_xx_attr name

Returns the names of attributes associated with the specified
element.

stm_r_xx_attr_val

Returns the attribute values associated with a particular attribute
name for the specified element.

stm_r_xx_bit_array_lindex

Returns the left index of a bit array.

stm_r_xx_bit_array_rindex

Returns the right index of a bit array.

stm_r _xx_cbk _binding

Retrieves the callback binding for the specified element.

stm_r_xx_cbk_binding_enable

Retrieves the enabled callback bindings for the specified element.

stm_r xx_cbk_binding_expression

Retrieves the callback binding expression for the specified
element.

stm_r_xx_cbk_binding_expression_hyper

Retrieves the callback binding expressions.

stm_r_tt cell

Returns the contents of the specified cell in the given truth table.

stm_r_tt_cell _type

Returns the data-type of the specified cell in the given truth table.

stm_r_changes_log

Documents all the changes made to the specified charts in a log
file.

stm_r_xx_chart

Returns the chart ID for the specified element.

stm_r_xx_combinationals

Returns a list of strings. Each element of this list holds one
combinational assignment, which is connected to the specified
element.

stm_r_sb_connected_chart

Returns the ID of the procedural statechart connected to the
specified subroutine.

stm_r_xx_containing_fields

Returns a list of union or record elements that contain fields.

stm_r_ch_creation_date

Returns the date (as a string) on which the specified chart was
created.

stm_r_ch_creator

Returns the name of the Statemate user who created the specified
chart.

stm_r_xx_data_type

Returns the element subtype, including its data type and data
structure.

stm_r_xx_definition_type

Returns the definition type of the specified textual element.

stm_r_xx_desc_file

Returns the description file for the specified element.

stm_r_xx_description

Returns the short description of the specified element.

stm_r_design_attr

Retrieves the design attributes of an element in a form of a list of
strings.

stm_r_xx_displayed_name

Returns the name of the chart as it appears in the graphic editor
where the specified element is located.

stm_r_ddb_list_names

Returns the names of the lists created by the properties browser.

112

Documentor Reference Guide




List of Functions

stm_r_element_type

Returns the element type of the specified element.

stm_r_xx_expr_hyper

Returns the definition expression of the specified element found in
the Definition field of the element’s form, including hyperlinks to
referenced elements.

stm_r_xx_expression Returns the definition expression of the specified element found in
the Definition field of the element’s form.

stm_r_xx_ext_link Retrieves the external file link for the specified element.

stm_r_uc_ext_point_def Retrieves the extension point definitions for the specified use case
diagram.

stm_r_formal_parameter_names Retrieves the list of names of formal parameters that appear in the
bindings of instance boxes and components.

stm_r_alobal_interface_report Creates a global interface report from the specified input list.

stm_r_sb_global_data

Returns the global data associated with the specified subroutine.

stm_r_hyper_key

Retrieves the unique key for the specified element.

stm_r_md_implementation

Retrieves the implementation type for the specified module.

stm_r_included gds

Returns the list of global definition sets contained in the specified
chart.

stm_r_msqg_included_in_ord_insig Returns a list of messages that are bounded by an order-
insignificant element.

stm_r_cd_info Retrieves the description of the specified continuous chart.

stm_r_inherited_gds Retrieves the list of global definition sets that are “inherited”
(included indirectly) by the specified chart.

stm_r_xx_instance name Retrieves the name of an instance as it appears in the chart for the
specified hierarchical Statemate element.

stm_r_xx_keyword Returns a portion of the element’s long description.

stm_r_sb_Kkr_c_user_code Returns the K&R C code that was manually written by the user for
the specified subroutine.

stm_r_xx_labels Returns a list of strings that consists of all the labels of the
specified compound transition.

stm_r_xx_labels_hyper Returns a list of strings of message or transition labels, with
hyperlinks to referenced elements.

stm_r_local_interface report Creates a local interface report from the specified input list.

stm_r_xx_longdes Returns the long description attached to the specified element.

stm_r_xx_max_val Returns the maximum value of the specified element.

stm_r_xx_min_val Returns the minimum value of the specified element.

stm_r_xx_mini_spec Returns a string with mini-spec reactions or actions.

stm_r_ac_mini_spec_hyper Returns a string with the mini-spec, including hyperlinks to
referenced elements.

stm_r_xx_mode Returns the parameter or router mode.

stm_r_ch_modification_date Returns the date on which the version of the chart in the workarea
was saved to the database.

stm_r_xx_name Returns the element name.

Rational Statemate

113



Single-Element Functions

stm_r_next_msag

Returns the message after (in time) the decomposed sequence
diagram.

stm_r_xx_note Returns the notes in the specified element.

stm_r_tt_ num_of col Retrieves the number of columns in the specified truth table.

stm_r_tt num_of_in Retrieves the number of input columns in the specified truth table.

stm_r_tt num_of out Retrieves the number of output columns in the specified truth
table.

stm_r_tt_ num_of row Retrieves the number of rows in the specified truth table.

stm_r_uc_num_of scen Retrieves the number of scenarios for the specified use case.

stm_r_xx_number_of bits Returns the number of bits in the specified element.

stm_r_xx_of enum_type Returns the enumeration type ID (a user-defined type) for the
specified element.

stm_r_xx_of _enum_type_name_type Returns the enumerated name and type for the specified element.

stm_r_ord_insig_defined_in_ch Returns the origin of the specified requirement record.

stm_r_parameter_binding Returns the parameter expression from the generic charts and
components.

stm_r_parameter_mode Retrieves the parameter mode, including subroutine parameters

and the parameters of generic charts and components.

stm_r_sb_parameters

Returns the parameters of the specified subroutine.

stm_r_en_parent Returns the local data of the procedural statechart implemented
by the specified subroutine.

stm_r_previous_msg Returns the message previous (in time) to the decomposed
sequence diagram.

stm_r_sb_proc_sch_local_data Retrieves the local data of the procedural statechart implemented

by the specified subroutine.

stm_r_md_purpose

Retrieves the purpose of the module.

stm

r_xx_reactions

Returns the static reactions of the specified state.

stm_r_sb_return_type

Retrieves the subroutine’s return type.

stm_r_sb_return_user_type Returns the user-defined type ID returned by the specified
subroutine.

stm_r_sb_return_user_type_name Retrieves the subroutine’s return user type and name type.

stm_r_tt row Retrieves the values in the specified row in the truth table.

stm_r_uc_scen Retrieves the scenario, based on the specified index number.

stm_r_uc_scen_attr name Returns the names of attributes associated with the specified use
case scenario.

stm_r_uc_scen_attr_val Retrieves attribute values associated with a particular attribute

name for the specified use case scenario.

stm_r_sd_scope

Retrieves the scope of the specified sequence diagram.

stm_r_xx_select_implementation

Returns the implementation type of the specified element.

stm

r_st_static_reactions

Returns the static reactions defined for the specified state
element.

114

Documentor Reference Guide




List of Functions

stm_r_st_static_reactions_hyper

Returns a string with the static reactions, including hyperlinks to
referenced elements.

stm_r_xx_string_length Returns the string length of the specified element.
stm_r_xx_structure_type Returns the structure or type of the specified textual element.
stm_r_ac_subroutine bind Returns the subroutine binding connected to the specified activity.
stm_r_ac_subroutine_bind_enable Determines whether the subroutine bound to the specified activity

is enabled or disabled.

stm_r_ac_subroutine_bind_expr

Returns the subroutine binding expression connected to the
specified activity.

stm_r_xx_synonym Returns the synonym of the specified element.

stm_r_ac_termination Returns the activity termination type specified in the activity’s form.

stm_r_xx_truth_table Returns the elements that are implemented as truth tables.

stm_r_xx_truth table expression Returns the truth table expression for all the named elements.

stm_r_sb_truth table local data Returns a list of local data elements defined in truth tables that are
related to the input subroutine.

stm_r_xx_type Returns the element subtypes for the specified element.

stm_r_xx_type_expression Returns the type expression for the specified element.

stm_r_xx_uniguename Returns the unique path name for the specified element.

stm_r_ch_usage_type Returns the usage type for the specified chart.

stm_r_xx_user_type Returns the user-defined type ID referenced by the specified
element.

stm_r_xx_user_type_name_type Returns the name type of the user-defined type referenced by the
specified element.

stm_r_ch_version Returns the version of the specified chart.

stm_r_qds_visibility mode Returns the visibility mode for the specified global definition set
(GDS).

stm_r_msqg_where_tc_bedgins Returns the message where the timing constraint begins.

stm_r_msa_where_tc_ends Returns the message where the timing constraint ends.

stm_r_xx_chart Returns the chart ID for the specified element.

stm_r_xx_longdes Retrieves the long description attached to the specified element.

stm_r_xx_attr name Returns the names of attributes associated with the specified
element. Attributes are associated with elements via element
forms.

stm_r_xx_attr_val Retrieves attribute values associated with a particular attribute
name for the specified element.

stm_r_sb_connected_statechart Returns the enforced attributes specified by attr_name.

stm_r_sb_connected_statechart Returns the ID of the procedural Statechart connected to the
specified subroutine.

stm_r_sb_connected_flowchart Returns the ID of the Flowchart connected to the specified
subroutine.

stm_r_sb_proc_fch_local_data Retrieves the local data of the Flowchart implemented by the

specified subroutine.

Rational Statemate

115



Single-Element Functions

stm_r_xx_des_attr_val Retrieves attribute values associated with a particular attribute
name for the specified
element.
stm_r_xx_des_attr_name Returns the names of attributes associated with the specified
element. Attributes are
associated with elements via element forms.
stm_r_tt_cell_hyper Retrieves the contents of the specified cell in the given truth table,
including hyperlinks
to referenced elements.
stm_r_xx_default_val Returns a list of strings that represents a row in the truth table,
including hyperlinks to
referenced elements. Each string in the list includes the text in the
truth table cell. The
row's index range is [0..num_of_rows-1]. Row O returns the list of
table header strings.
stm_r_xx_default_val Returns the default value associated with the specified element.
stm_r_component param_binding Returns the value bound to the formal parameter of the specified
component’s instance
stm_r_component_param_mode Returns the mode of the formal parameter of the specified
component’s instance.
stm_r_stubs_names Returns a list of stub names of the specified component instance.
stm_r_information_stub_names Returns a list of stub names flowing through an info-flow of the

specified component instance.

116

Documentor Reference Guide




List of Functions

stm_r_xx

Retrieves the element ID of the specified element. This ID is an internal representation that
Statemate uses to identify each element in the database. Because Statemate requires the ID to
locate elements, this function is very often the first one called when using database exttraction

functions.

Function type

Statemate element

For elements

Syntax

action an
activity ac
actor actor
boundary box bb
chart ch
condition co
data-item di
data-store ds
enumerated value en
event ev
field fd
function fn
information-flow if
lifeline Il
module md
router router
state st
subroutine sb
subroutine parameter | sp
use case uc
user_defined_type dt

stm_r_xx (name, status)

Rational Statemate

117



Single-Element Functions

Arguments
Argument Input/ Type Description
9 Output yp P
name In STRING A Statemate element name or synonym.

Note the following:

 This can be an element name (path name) or synonym.
Hierarchical elements must be identified uniquely by
specifying a unique path name.

» The name can include the chart name (for example, A:B).
* The name is not case-sensitive.
status Out INTEGER The function status code.

The data type of the return value must be declared to be either
a Statemate element (STATE, EVENT, and so on) or ELEMENT.

Status Codes

¢ stm success

¢ stm_illegal_address
¢ stm_illegal_name

¢ stm name_not_found

¢ stm_name_not_unique
Example

Identify the ID of an event Ev1. Once the ID has been determined, you can use it to retrieve
information about Ev1 from the database, as follows:

VARIABLE
EVENT ev_id;
INTEGER status;
STRING synonym;

ev_id = stm r_ev (CEV1l’, status);
IF status = stm_success
THEN
synonym:= stm_r_ev_synonym (ev_id, status);

The ID for Ev1 is assigned to the variable ev_id. Note that ev_id is declared to be of type
EVENT.

118 Documentor Reference Guide



List of Functions

stm_r_sb_action_lang
Retrieves the action language of the specified subroutine.
Function type
LIST OF STRING

For elements

‘ subroutine ‘ sb

Syntax

stm_r_sb_action_lang (sb_id, status)

Arguments
Argument Input/Output Type Description
sb_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_out_of _range

¢ stm_id_not_found

¢ stm_missing_statemate_action_lang

¢ stm_unresolved

Rational Statemate 119



Single-Element Functions

stm_r_sb_action_lang_expression

Retrieves the action language expression of the specified subroutine.

Function type

STRING

For elements

Syntax

subroutine

‘sb

stm_r_sb_action_lang_expression (sb_id, status)

Arguments
Argument Input/Output Type Description
sb_id In Statemate element The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_out_of _range

¢ stm_missing_statemate_action_lang

¢ stm_unresolved

120

Documentor Reference Guide



List of Functions

stm_r_sb_action_lang local data

Retrieves the action language local data associated with the specified subroutine.
Function type
LIST OF STATEMATE ELEMENTS

For elements

subroutine ‘ sb ‘

Syntax

stm_r_sb_action_lang_local_data (sb_id, status)

Arguments
Argument Input/Output Type Description
sb_id In Statemate element | The element ID
status Out INTEGER The function status
code

Status Codes

¢ stm_success
¢ stm_missing_local_data
¢ stm_id_not_found

¢ stm_id_out_of_range

Rational Statemate 121



Single-Element Functions

stm_r_actual_parameter_exp

Returns the actual binding of the formal parameter name in the specified instance chart or
component.

Function type
INTEGER

For elements

activity ac
condition co
data-item di
event ev

Syntax

stm_r_actual_parameter_exp (xx_inst_boxid, formal_param_name, status)

Arguments
Input/ _
Argument Type Description
9 Output yp P
inst_boxid In Statemate The element ID.
element
formal_param_name In STRING The formal parameter name.
If this is a data-element (from the information stub
matrix in the DDE), the function returns the
corresponding data-element. If this argument is the
stub’s name, the function returns the information
flowing on the arrow connected to that stub.
status Out int The function status code.

Status Codes

¢ stm_success
¢ stm_id_out_of_range

¢ stm_name_not_found

122 Documentor Reference Guide



List of Functions

stm_r_actual_parameter_type

Returns the type of the formal parameter name in the specified instance chart or component.

Note: If there is an information-flow stub, the function returns
stm_information_flow.

Function type
STRING

For elements

Syntax

activity ac
condition co
data-item di
event ev

stm_r_actual_parameter_type (inst_boxid, formal_param name, status)

Arguments
Argument Input/ Type Description
Output
inst_boxid In Statemate element The element ID
formal_param_name | In STRING The formal parameter name
status Out INTEGER The function status code

Status Codes

¢ stm _success

¢ stm_id_out of _range

¢ stm name_not_found

Rational Statemate

123



Single-Element Functions

stm_r_elem_in_ddb_list

Searches for the specified element in the list created by the properties browser.

Function type

LIST OF ELEMENT stm_list

Syntax

stm_r_elem_in_ddb_list (list_name, &status)

Arguments

Argument Input/Output Type Description
list_name In char * STRING The input list of elements
status Out int INTEGER Function status code

Status Codes

¢  stm_no_such_list

¢ stm_success

124

Documentor Reference Guide



List of Functions

stm_r_sb_ada_user_code

Returns the Ada code that was manually written for the specified subroutine.
Function Type
LIST OF STRING

For elements

‘ subroutine ‘ sb

Syntax

stm_r_ada_user_code (sb_id, status)

Arguments
Argument Input/Output Type Description
sb_id In Statemate element | The element ID
status Out INTEGER The function status
code

Status Codes
¢ stm_success
¢ stm_id_out_of_range

¢ stm _missing_user_code

Rational Statemate 125



Single-Element Functions

stm_r_sb_ansi_c_user_code
Returns the ANSI C code that was manually written for the specified subroutine.

Function type
LIST OF STRING

For elements

subroutine ‘ sb

Syntax

stm_r_sb_ansi_c_user_code (sb_id, status)

Arguments
Argument Input/Output Type Description
sb_id In Statemate element | The element ID
status Out INTEGER The function status
code

Status Codes

¢ stm_success
¢ stm_id_out_of _range

¢ stm _missing_user_code

126 Documentor Reference Guide



List of Functions

stm_r_st_combinationals

Returns a list of strings. Each element of the list holds one combinational assignment, which is
connected to the specified element.

You can call this function without indicating the specific element type, as follows:

stm_r_combinationals (id, status)

Function type
LIST OF STRING

For elements

activity ac

chart ch

Syntax

stm_r_xx_combinationals (xx_id, status)

Arguments
Argument Input/Output Type Description
xx_id In Statemate element | The element ID
status Out INTEGER The function status
code

Status Codes

¢ stm success

¢ stm error_in_file

¢ stm missing_field

¢ stm_missing_label

¢ stm_missing_name

¢ stm file_not found
¢  stm_id_not found

¢ stm_id_out of _range

¢ stm_illegal_parameter

Rational Statemate 127



Single-Element Functions

stm_r_xx_array_lindex

Returns the left index of an element array.

You can call this function without indicating the specific element type, as follows:

stm_r_array_lindex (id, status)
Function type
STRING

For elements

condition co
data-item di
event ev
field fd
local data Id
subroutine parameter | sp
user-defined type dt

Syntax

stm_r_xx_array_lindex (xx_id, status)

Arguments
Argument Input/Output Type Description
XX_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm_id_not_found

¢ stm_id_out_of _range

128

Documentor Reference Guide



List of Functions

stm_r_xx_array_rindex

Returns the right index of an element array.

You can call this function without indicating the specific element type, as follows:

stm_r_array_rindex (id, status)
Function type
STRING

For elements

condition co
data-item di
event ev
field fd
local data Id
subroutine parameter | sp
user-defined type dt

Syntax

stm_r_xx_array_rindex (xx_id, status)

Arguments
Argument Input/Output Type Description
Xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm_id_not_found

¢ stm_id_out_of _range

Rational Statemate

129



Single-Element Functions

stm_r_xx_attr_enforced

Returns the enforced attributes specified by attr_name.

You can call this function without indicating the specific type, as follows:

Function type
BOOLEAN

For elements

Syntax

action an
activity ac
actor actor
boundary box bb
chart ch
condition co
data-item di
data-store ds
event ev
field fd
information-flow if
lifeline Il
module md
router router
state st
subroutine sb
use case uc
user-defined type dt

stm_r_attr_enforced (id, attr_name, attr_val, status)

stm_r_xx_attr_enforced (xx_id, attr_name, attr_val, status)

130

Documentor Reference Guide



List of Functions

Arguments
Argument Input/Output Type Description

xx_id In Statemate element | The element ID.

attr_name In STRING The attribute name.

attr_val In STRING The attribute value.

status Out INTEGER The function status code.
If no attributes exist for the specified element,
status receives the value
stm_attribute_name_not_found.

Status Codes

stm_success
stm_attribute_name_not_found
stm_id_not_found
stm_id_out_of_range
stm_illegal_name

stm_unresolved

Rational Statemate

131



Single-Element Functions

stm_r_xx_attr_name

Returns the names of attributes associated with the specified element. Attributes are associated
with elements via element forms.

You can call this function without indicating the specific element type, as follows:

Function type
LIST OF STRING

For elements

Syntax

stm_r_xx_attr_name (xXx_id, status)

stm_r_attr_name (id, status)

action an
activity ac
actor actor
boundary box bb
chart ch
condition co
data-item di
data-store ds
event ev
field fd
information-flow if
lifeline Il
module md
router router
state st
subroutine sb
use case uc
user-defined type dt

132

Documentor Reference Guide



List of Functions

Arguments
Argument Input/Output Type Description
xx_id In Statemate The element ID.
element
status Out INTEGER The function status code.
If no attributes exist for the specified
element, status receives the value
stm_attribute_name_not_found.

Status Codes

¢ stm_success

¢ stm_attribute_name_not_found
¢ stm_id_not_found

¢ stm_id_out_of_range

¢ stm_unresolved

Example

To perform operations on the attributes of the state WAIT, retrieve a list of WAIT’s attribute
names. The template contains the following statements:

VARIABLE
STATE st _id;
LIST OF STRING attr_list;
STRING attrib;
INTEGER status;

st_id = stm_r_st (;WAIT’, status);
attr_list = stm_r_st_attr_name (st_id, status);
FOR attrib IN attr_list LOOP

attr_list contains a list of attribute names for WAIT. In the FOR loop, perform the operations
on each item in the list of attributes (such as retrieving and printing the corresponding values).

Rational Statemate 133



Single-Element Functions

stm_r_xx_attr_val
Retrieves attribute values associated with a particular attribute name for the specified element.

You can call this function without indicating the specific element type, as follows:

stm_r_attr_val (id, attr_name, status)

Function type
LIST OF STRING

For elements

action an
activity ac
actor actor
boundary box bb
chart ch
condition co
data-item di
data-store ds
event ev
field fd
information-flow if
lifeline Il
module md
router router
state st
subroutine sb
use case uc
user-defined type dt

Syntax

stm_r_xx_attr_val (xx_id, attr_name, status)

134 Documentor Reference Guide



List of Functions

Arguments
Argument Input/Output Type Description

xx_id In Statemate element The element ID.

attr_name In STRING The attribute name.
The attribute name is not case-sensitive.

status Out INTEGER The function status code.
If attr_name does not exist for the specified
element, status receives the value
stm_attribute_name_not_found.

Note the following:

¢ Attribute values might exist for attributes with no name. Therefore, if you supply
contiguous apostrophes (> ») for attr_name, you retrieve all values for unnamed

attributes.

¢ In most cases, attributes have only one value. However, there are some cases
where more than one attribute value is simultaneously meaningful. For example,
a module has an attribute implementation. The attributes software and
hardware might both be meaningful for some modules. Therefore, Statemate
provides the capability of assigning multiple values to attributes, and the function
returns a list of these values. When there is a single value, the list consists of one

component.

Status Codes

*

stm_success

stm_attribute_name_not_found

stm_id_not_found

stm_id_out_of_range

stm_illegal_name

stm_unresolved

Rational Statemate

135



Single-Element Functions

Example

The following code prints the attribute values of all the attributes defined for the state wAIT:

VARIABLE
STATE st_id;
LIST OF STRING attr_list;
STRING attrib, value;
INTEGER status;

st_id := stm_r_st (CWAIT?, status);
attr_list :=stm_r_st attr_name (st_id, status);
FOR attrib IN attr_list LOOP
FOR value IN stm_r_st_attr_val (st_id, attrib, status)
LOOP
WRITE (°\n”, attrib,” is ”,value);
END LOOP;
END LOOP;

attr_list contains a list of attributes for WAIT. Write the attribute values for each item in this
list to the document.

136 Documentor Reference Guide



List of Functions

stm_r_xx_bit_array_lindex
Returns the left index of a bit array.
You can call this function without indicating the specific element type, as follows:
stm_r_bit_array_ lindex (id, status)
Function type
STRING

For elements

data-item di
field fd
local data Id

subroutine parameter | sp

user-defined type dt

Syntax

stm_r_xx_bit_array_lindex (xx_id, status)

Arguments
Argument Input/Output Type Description
Xx_id In Statemate element | The element ID
status Out INTEGER The function status
code

Status Codes
¢ stm_success
¢ stm_id_not_found

¢ stm_id_out_of_range

Rational Statemate 137



Single-Element Functions

stm_r_xx_bit_array_rindex

Returns the right index of a bit array.

You can call this function without indicating the specific element type, as follows:

stm_r_bit_array_rindex (id, status)
Function type

STRING

For elements

data-item di
field fd
local data Id

subroutine parameter | sp

user-defined type dt

Syntax

stm_r_xx_bit_array_rindex (xx_id, status)

Arguments
Argument Input/Output Type Description
xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm_id_not_found

¢ stm_id_out_of _range

138

Documentor Reference Guide



List of Functions

stm_r_xx_cbk_bind

Retrieves the callback binding for specified elements.

You can call this function without indicating the specific element type, as follows:

ing

stm_r_cbk_binding (id, status)

Function type
LIST OF STRING

For elements

activity ac
condition co
data-item di
event ev
state st
Syntax
stm_r_xx_cbk_binding (xx_id, status)
Arguments
Argument Input/Output Type Description
xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_not_found

¢ stm_id_out_of _range

¢ stm_missing_cbk_binding

¢ stm_unresolved

Rational Statemate

139



Single-Element Functions

stm_r_xx_cbk_binding_enable
Retrieves the enabled callback bindings.
You can call this function without indicating the specific element type, as follows:
stm_r_cbk_binding_enable (id, status)
Function type
LIST OF STATEMATE ELEMENTS (predefined constant)

For elements

activity ac
condition co
data-item di
event ev
state st

Syntax

stm_r_xx_cbk_binding_enable (id, status)

Arguments
Argument Input/Output Type Description
Xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm_id_not_found
¢ stm_id_out_of _range

¢ stm_missing_cbk_binding

140 Documentor Reference Guide



List of Functions

Return Values

Although the return value of this function is of type INTEGER, the Documentor enables you to
reference this value by name. The name is defined internally as a predefined constant in DGL.

Element

Element Subtype

activity

stm_ac_cbk_enable

stm_ac_cbk_disable

stm_ac_cbk_bind_missing

condition

stm_co_cbk_enable

stm_co_cbk_disable

stm_ac_cbk_bind_missing

data-item

stm_di_cbk_enable

stm_di_cbk_disable

stm_di_cbk_bind_missing

event

stm_ev_cbk_enable

stm_ev_cbk_disable

stm_ev_cbk_bind_missing

state

stm_st_cbk_enable

stm_st_cbk_disable

stm_st_cbk_bind_missing

Rational Statemate

141



Single-Element Functions

stm_r_xx_cbk_binding_expression
Retrieves the callback binding expressions.
You can call this function without indicating the specific element type, as follows:
stm_r_cbk_binding_expression (id, status)
Function type
STRING

For elements

activity ac
condition co
data-item di
event ev
state st

Syntax

stm_r_xx_cbk_binding_expression (id, status)

Arguments
Argument Input/Output Type Description
xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_not_found

¢ stm_id_out_of _range

¢ stm_missing_cbk_binding

¢ stm_unresolved

142 Documentor Reference Guide



List of Functions

stm_r_xx_cbk_binding_expression_hyper

Retrieves the callback binding expressions.

You can call this function without indicating the specific element type, as follows:

stm_r_cbk_binding_expression_hyper (id, status)

Function type
STRING

For elements

Syntax

activity ac
condition co
data-item di
event ev
state st

stm_r_xx_cbk_binding_expression_hyper (id, status)

Arguments

Argument Input/Output Type Description
xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_not_found

¢ stm_id_out_of _range

¢ stm_missing_cbk_binding

¢ stm_unresolved

Rational Statemate

143



Single-Element Functions

stm_r_tt_cell

Retrieves the contents of the specified cell in the given truth table.

Function type
STRING

For elements

action an
activity ac
subroutine sb
Syntax
stm_r_tt_cell (el, row_num, col_num, status)
Arguments
Argument Input/Output Type Description
el In Statemate element | The element ID
row_num In INTEGER The row number of the cell
col_num In INTEGER The column number of the cell
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_out_of _range

¢ stm_id_not_found

¢ stm_unresolved

¢ stm_missing_truth_table

¢ stm_truth_table_invalid_row

¢ stm_truth_table_invalid_column

144

Documentor Reference Guide



List of Functions

stm_r_tt_cell_type
Retrieves the data-type of the specified cell in the given truth table.
Function type
INTEGER

For elements

action an
activity ac
subroutine sb

Syntax

stm_r_tt_cell_type (el, row_num, col_num, status)

Arguments
Argument Input/Output Type Description
el In Statemate element | The element ID
row_num In INTEGER The row number of the cell
col_num INTEGER The column number of the cell
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_out_of _range

¢ stm_id_not_found

¢ stm_unresolved

¢ stm_missing_truth_table

¢ stm_truth_table_invalid_row

¢ stm_truth_table_invalid_column

Rational Statemate 145



Single-Element Functions

Return Values

Although the return value of this function is of type INTEGER, the Documentor enables you to
reference this value by name. The name is defined internally as a predefined constant in DGL.
The possible values are as follows:

¢ stm_tt _cell_type_missing

¢ stm_tt_cell_rpn_same_as_down

¢ stm tt _cell_rpn

¢ stm_tt_cell_dont_care

¢ stm_tt_is_generate_ev

¢ stm_tt_is_not_generate_ev

¢ stm_tt_cell_empty_same_as_up

¢ stm_tt_cell_empty_same_as_up_and_down

¢  stm _tt_is_empty _cell

146 Documentor Reference Guide



List of Functions

stm_r_changes_log
Provides a change log.
Function type
LIST OF STRING

For elements

‘ chart

Syntax

stm_r_changes_log (ch_Ist, ascending, per_date, dont_format, status)

Arguments
Input/ N
Argument Output Type Description

ch_lIst In LIST OF CHART The list of charts to track.

ascending In BOOLEAN Determines whether the changes are listed in
ascending order TRUE).

per_date In BOOLEAN Determines whether the changes are listed
chronologically (TRUE).

dont_format In BOOLEAN Determines whether the log file is formatted. If
this is TRUE, each log entry is inserted into a
returned list element. If it is FALSE, each field
of the log entry is inserted into a returned list
element.

status Out INTEGER The function status code.

Status Codes

¢ stm_id_out of _range

¢ stm not chart_id
¢  stm _id_not_ found

¢ stm success

Rational Statemate




Single-Element Functions

stm_r_xx_chart

Returns the chart ID for the specified element.
Note the following:

* You can call this function without indicating the specific element type, as follows:

stm_r_chart (id, status)

¢ For compound arrows, this function retrieves the chart only when all the arrow
segments are in the same element. Otherwise, it returns the value 0.

Function type

CHART

148 Documentor Reference Guide



List of Functions

For elements

a-flow-line (basic) ba
a-flow-line (compound) af
action an
activity ac
actor actor
boundary box bb
condition co
connector cn
data-item di
data-store ds
event ev
field fd
function fn
information-flow if
lifeline Il
local data Id
m-flow-line (compound) mf
module md
router router
state st
subroutine sb
subroutine parameter sp
transition (basic) bt
transition (compound) tr
use case uc
user-defined type dt

Syntax

stm_r_xx_chart (xx_id, status)

Rational Statemate 149



Single-Element Functions

Arguments
Argument Input/Output Type Description

xx_1id In Statemate element | The element ID

status Out INTEGER The function status code

Status Codes

¢ stm success

¢ stm_id_out _of _range

¢  stm _id_not found

Example

To write the name of the chart in which state s1 is found, the template would contain the
following statements:

VARIABLE

STATE state_id;

INTEGER statusl, status?2, status3;
state_id = stm_r_st (°S17,statusl);

WRITE (C\n Chart name is:”, stm_r_ch_name(

stm_r_st_chart(state_id,status?),status3);

150

Documentor Reference Guide



List of Functions

stm_r_xx_combinationals

Returns a list of strings. Each element of the list holds one combinational assignment, which is
connected to the specified element.

You can call this function without indicating the specific element type, as follows:
stm_r_combinationals (id, status)
Function type

LIST OF STRING

For elements

activity ac

chart ch

Syntax

stm_r_xx_combinationals (xx_id, status)

Arguments

Argument Input/Output Type Description
xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm error_in_file

¢ stm _missing_field

¢ stm _missing_label

¢ stm_missing_name

¢ stm_file_not_found
¢ stm_id_not_found

¢ stm_id_out_of_range

¢ stm_illegal_parameter

Rational Statemate 151



Single-Element Functions

stm_r_sb_connected_chart

Returns the ID of the procedural statechart connected to the specified subroutine.

Function type
STATEMATE ELEMENT

For elements

‘ subroutine ‘ sb

Syntax

stm_r_sb_connected_chart (sb_id, status)

Arguments
Argument Input/Output Type Description
sb_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm_id_not_found
¢ stm_id_out_of _range

¢ stm_no_connected_chart

152

Documentor Reference Guide



List of Functions

stm_r_xx_containing_fields
Returns the list of union or record elements that contain fields.
You can call this function without indicating the specific element type, as follows:
stm_r_containing_fields (id, status)
Function type
LIST OF FIELDS

For elements

data-item di

user-defined type dt

Syntax

stm_r_xx_containing_fields (xx_id, status)

Arguments
Argument Input/Output Type Description
xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm success

¢  stm _id_not_ found

¢ stm_id_out of _range
¢ stm _missing_field

¢ stm unresolved

Rational Statemate 153



Single-Element Functions

stm_r_ch_creation_date

Returns the date (as a string) on which the specified chart was created.

Note: This function is relevant only for charts that were explicitly defined using one
of the graphic editors.

Function type
STRING

For elements

‘ chart ‘ ch

Syntax

stm_r_ch_creation_date (ch_id, status)

Arguments

Argument Input/Output Type Description
ch_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm success

¢  stm _id_not_ found

¢ stm_id_out of _range
¢ stm unresolved

Example

To retrieve the chart date, use the following statements:

VARIABLE
CHART chart_id;
INTEGER status;

chart_id := stm;r_ch (CTOP”, status);
WRITE (C\n Chart created on:~,
stm_r_ch_creation_date (chart_id, status));

The template writes to the document the date on which the chart named Top was created.

154 Documentor Reference Guide



List of Functions

stm_r_ch_creator

Returns the name of the Statemate user who created the specified chart. This function is
relevant only for charts that were explicitly created using one of the graphic editors.

Function type
STRING

For elements

‘ chart ‘ ch

Syntax

stm_r_ch_creator (ch_id, status)

Arguments
Argument Input/Output Type Description
ch_id In Statemate element | The element ID
status Out INTEGER The function status
code

Status Codes

¢ stm_success
¢ stm_id_out_of _range
¢ stm_id_not_found

¢  stm_unresolved

Example

To retrieve the name of the user who created the chart, use the following statements:

VARIABLE
CHART chart_id;
INTEGER status;

chart_id .= stm_r_ch (CTOP?, status);
WRITE (°\n Chart created by:~,
stm_r_ch_creator (chart_id, status));

The name written to the document is the name of the user who created the chart named TOP.

Rational Statemate 155



Single-Element Functions

stm_r_xx_data _type
Returns the element subtype, including its data type and data structure. For example:

stm_xx_union_array, stm_xx_integer, stm_xx_real_queue

You can call this function without indicating the specific element type, as follows:
stm_r_data_type (id, status)
Function type
INTEGER

For elements

data-item di
field fd
local data Id

subroutine parameter | sp

user-defined type dt

Syntax

stm_r_xx_data_type (xx_id, status)

Arguments
Argument Input/ Type Description
9 Output yp P
xx_1id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm error_in_file

¢ stm_file_not_found

¢ stm_illegal_parameter

¢ stm _missing_field

156 Documentor Reference Guide



List of Functions

stm_r_rt_date
Returns the date field of the specified requirement record.
Function type
STRING stm_date

For elements

‘ requirement ‘ rt

Syntax

stm_r_rt_date (rt_id, status)

Arguments

Argument Input/Output Type Description
rt_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_error_in_file

¢ stm_file_not_found

¢ stm_id_out_of _range

¢ stm_illegal_parameter

¢  stm_missing_field

Rational Statemate 157



Single-Element Functions

stm_r_xx_definition_type
Returns the definition type of the specified textual element.
Note the following:
* You can call this function without indicating the specific element type, as follows:

stm_r_definition_type (id, status)

¢ The enumerated type that reflects whether the textual element has a form. The
nature of the definition field in the form is stm_definition_type, whose values
are as follows:

stm_reference—The element has no form.

— stm_primitive—The definition field is empty.

— stm_compound—T he definition field contains a compound expression.
— stm_constant—The definition field contains a constant.

— stm_alias—The definition field contains an identifier, a bit array, a
component, or a slice (relevant for di only).

— stm_explicit—The info_flow has a form.
— stm_predefined—~Predefined function.

* Note that these types are not explicitly specified, but derived from the
specification.

Function type
INTEGER

For elements

action an
condition co
data-item di

enumerated value en
event ev
function fn
information-flow if

local data Id

subroutine sb
subroutine parameter | sp

Syntax

stm_r_xx_definition_type (xx_id, status)

158 Documentor Reference Guide



List of Functions

Arguments
Argument Input/Output Type Description
xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm success

¢  stm _id_not found

Return Values

Although the return value of this function is of type INTEGER, the Documentor enables you to
reference this value by name. The name is defined internally as a predefined constant in DGL.
The following table lists the possible values for each Statemate element sub type:

Element

Abbreviation

Element Sub-Type

action

an

stm_an_reference

stm_an_primitive

stm_an_compound

condition

co

stm_co_reference

stm_co_primitive

stm_co_compound

stm_co_constant

data-item

di

stm_di_reference

stm_di_primitive

stm_di_compound

stm_di_constant

stm_di_alias

event

ev

stm_ev_reference

stm_ev_primitive

stm_ev_compound

field

stm_fd_primitive

information-flow

stm_if_reference

stm_if_explicit

local data

stm_sp_defined

Rational Statemate

159



Single-Element Functions

subroutine

sb

stm_sb_reference

stm_sb_predefined

stm_sb_function

stm_sb_procedure

stm_sb_task

subroutine parameter

sp

stm_sp_defined

user-defined type

dt

stm_dt_reference

stm_dt_primitive

160

Documentor Reference Guide



List of Functions

stm_r_xx_desc_file
Returns the description file for the specified element.

You can call this function without specifying the element, as follows:
stm_r_desc_file (el, status)
Function type

STRING

For elements

actor actor
boundary box bb
use case uc
Syntax
stm_r_xx_desc_file (elem, status)
Arguments
Argument Input/Output Type Description
elem In Statemate element | The element
status Out INTEGER The function status code

Status Codes

¢ stm_id_out_of _range

¢ stm_missing_description_file
¢ stm_not_use_case

¢ stm_not_actor

¢ stm_not_boundry_box

¢ stm_success

Rational Statemate 161



Single-Element Functions

stm_r_xx_description

Returns the short description of the specified element. The short description is defined in the

element’s form.

You can call this function without indicating the specific element type, as follows:

stm_r_description (id, status)
Function type
STRING

For elements

action an
activity ac
actor actor
boundary box bb
chart ch
condition co
data-item di
data-store ds
event ev
field fd
information-flow if
lifeline Il
local data Id
module md
router router
state st
subroutine sb
subroutine parameter | sp
user-defined type dt

Syntax

stm_r_xx_description (xx_id, status)

162

Documentor Reference Guide



List of Functions

Arguments
Argument Input/ Type Description
9 Output yp P
xx_id In Statemate element | The element ID.
status Out INTEGER The function status code
If no description exists in the element’s form,
status receives the value
stm_missing_short_description.

Status Codes

¢ stm_success

¢ stm_unresolved

¢ stm_id_out_of _range
¢ stm_id_not_found

¢ stm_missing_short_description
Example

To retrieve the contents of the short description field in the form of state SSs.S1, use the
following statements:

VARIABLE
STATE state_id;
STRING state_desc;
INTEGER status;
state_id := stm_r;st (*SSS.S1”, status);

state_desc:= stm_r_st_description (state_id, status);

state_desc contains the short description for the state SSs.s1 (whose ID is state_id).

Rational Statemate 163



Single-Element Functions

stm_r_design_attr

Retrieves the design attributes of an element in a form of a list of strings. Each element in the
list includes a key-value pair.

Function type
LIST OF STRING

For elements

Syntax

‘ element ID

stm_r_design_attr (el, status)

Arguments

Argument Input/Output Type Description
el In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm success

164

Documentor Reference Guide



List of Functions

stm_r_xx_displayed name

Returns the name of a chart, as it appears in the graphic editor where the specified element is
located.

You can call this function without indicating the specific element type, as follows:

stm_r_displayed_name (id, status)

Function type: STRING

For elements

activity ac
data-store ds
module md
module-occurrence om
off-page activity oa
router router
state st

Syntax

stm_r_xx_displayed_name (xx_id, status)

Arguments
Argument Input/Output Type Description
xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_not_found

¢ stm_id_out_of_range

¢ stm error_in_file

¢ stm_illegal_parameter
¢ stm_file_not_found

¢ stm_missing_name

¢ stm _missing_field

Rational Statemate 165



Single-Element Functions

Example

To retrieve the name of the chart as it appears in the title bar of the graphic editor (for example,
FUNC PROC EXAMPLE) and write it to the document, use the following statements:

VARIABLE
STATE state_id;

INTEGER status;

state_id := stm_r_ét (*S1.S3”, status);
WRITE (stm_r_st_displayed_name (state_id, status));

If this function does not meet your needs, there are two other name functions that return
different values:

¢ stm_r_xx_name

¢ stm_r_xx_uniquename

166 Documentor Reference Guide



List of Functions

stm_r_ddb_list hames

Returns the names of the lists created by the properties browser.

Syntax

stm_r_ddb_list_names (&status)

Arguments
Argument Input/Output Type Description
status Out int INTEGER The function status code

Status Codes

¢ stm_success

Rational Statemate

167



Single-Element Functions

stm_r_element_type

Returns the element type of the specified element.

Function type

INTEGER (predefined constant)
For elements

All types

Syntax

stm_r_element_type (id, status)

Arguments
Argument Input/Output Type Description
id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_out_of_range

¢ stm_id_not_found

Return Values

Although the return value of this function is of type INTEGER, the Documentor enables you to
reference this value by name. The name is defined internally as a predefined constant in DGL.
each element type has an associated predefined value, as shown in the following table:

Element Type Value
a-flow-1ine (basic) stm_a_flow_line
a-flow-1ine (compound) stm_compound_a_flow_line
action stm_action
activity stm_activity
chart stm_chart
condition stm_condition
connector in activity-chart stm_a_connector
connector in module-chart stm_m_connector
connector in statechart stm_s_connector

168

Documentor Reference Guide



List of Functions

Element Type

Value

data-item

stm_data_item

data-store

stm_data_store

decomposed sequence diagram

stm_decomposed_sd

event

stm_event

external lifeline

stm_external_lifeline

flow label

stm_flow_label

information-flow

stm_information_flow

lifeline

stm_lifeline

m-Flow-1ine (basic)

stm_label

m-Flow-1ine (compound)

stm_m_flow_line

message

stm_message

module

stm_compound_m_flow_line

module occurrence

stm_module

order insignificant

stm_order_insignificant

separator stm_separator
subroutine stm_subroutine
state stm_module_occurrence

timing constraint

stm_timing_constraint

transition (basic)

stm_state

transition (compound)

stm_transition

transition label

stm_compound_transition

Example

The sample template performs the following tasks:

* Generates a list of elements (of type MIXED) using
stm_r_mx_in_definition_of_co. Elements in this list are all elements (not
necessarily conditions) appearing in the definition field of the condition c1.

+ Searches this list for conditions. If any are found, it prints them in the document.

VARIABLE
CONDITION cond_id;
LIST OF ELEMENT elmnt_list;
ELEMENT el;
INTEGER status, el_type;
cond_id := stm_r_co (°C1”, status);

elmnt_list :=stm_r_mx_in_definition_of_co
({cond_id}, status);
FOR el IN elmnt_list LOOP

el_type := stm_r_element_type (el, status);

Rational Statemate 169



Single-Element Functions

IF el_type = stm_condition THEN

WRTTE (>\n Condition Name:”, stm_r_co_name(
el, status));

END IF;
END LOOP;

stm_r_xx_expr_hyper

Returns the definition expression of the specified element found in the Definition field of the
element’s form, including hyperlinks to referenced elements.

Function type
STRING

For elements

a-flow-lines (basic) ba
action an
condition co
data-item di
event ev
message msg

Syntax

stm_r_xx_expr_hyper (elem, format, status)

m-flow-line (basic)

bm

subroutine action language

sb_action_lang

transitions (basic)

bt

user-defined type

dt

Arguments

Argument Input/Output Type Description
elem In Statemate element The element ID
format In STRING Either FRAMEMAKER or WORD
status Out INTEGER The function status code

Status Codes

¢ stm success

Documentor Reference Guide



List of Functions

¢ stm_id_out_of _range
¢ stm_id_not_found
¢ stm_unresolved

¢ stm _primitive_element

stm_r_xx_expression

Returns the definition expression of the specified element found in the Definition field of the
element’s form. For arrows, this function returns the label attached to the arrow. The function
is performed for basic arrows (arrow segments that connect boxes and connectors).

Note the following:

+ You can call this function without indicating the specific element type, as follows:
stm_r_expression (id, status)

+ This function is valid for compound textual elements, which are defined as an
expression using the Definition field of its form.

Function type
STRING

For elements

a-flow-line (basic) ba
action an
condition co
data-item di
event ev
message msg
m-flow-line (basic) bm
transition (basic) bt
user-defined type dt

Syntax

stm_r_xx_expression (xx_id, status)

Rational Statemate 171



Single-Element Functions

Arguments
Argument Input/Output Type Description
xx_id In Statemate The element ID.
element
status Out INTEGER The function status code.

If xx_id belongs to a primitive (not a
compound) element, status receives
the value stm_primitive_element.

Status Codes

¢ stm_success

¢ stm_id_out_of_range
¢ stm_id_not_found

¢ stm_unresolved

¢ stm _primitive_element
Example

To retrieve the definition of c1 from the database for a system that contains a condition c1
(where c1 is defined as c2 or c3 in the form of c1), use the following function calls:

VARIABLE
CONDITION cond_id;
STRING cond_def;
INTEGER status;
cond_id := stm_r_co (°C1”, status);
cond_def := stm_r_co_expression (cond_id, status);

cond_def is assigned the string value *C2 or C3".

172 Documentor Reference Guide



List of Functions

stm_r_xx_ext_link

Retrieves the external file link for the specified element. You specify the external link by
selecting Edit > Link in the properties for the element.

You can call this function without specifying an element type, as follows:
stm_r_ext_link (elem, status)
Function type
STRING

For elements

action an
activity ac
actor actor
boundary box bb
chart ch
condition co
data-item di
data-store ds
event ev
field fd
information-flow if
lifeline Il
module md
router router
state st
subroutine sb
use case uc
user-defined type dt

Syntax

stm_r_xx_ext_link (elem, status)

Rational Statemate 173



Single-Element Functions

Arguments
Argument Input/Output Type Description
elem In The Statemate
element
status Out INTEGER The function status
code

Status Codes

¢ stm_id_not_found

¢ stm_id_out_of _range

¢ stm_name_not_found

¢ stm_auto_defined

¢ stm_missing_external_link

¢ stm_success

174

Documentor Reference Guide



List of Functions

stm_r_uc_ext_point_def

Retrieves the extension point definitions for the specified use case.

Function type

STRING

For elements

‘ use case ‘ uc
Syntax
stm_r_uc_ext_point_def (uc, status)
Arguments
Argument Input/Output Type Description
uc In USE_CASE The use case
status Out INTEGER The function status code

Status Codes

¢ stm_id_out_of _range

¢ stm_not_use_case

¢ stm_missing_extension_point_definition

¢ stm_success

Rational Statemate

175



Single-Element Functions

stm_r_formal_parameter_names

Returns a list of names of formal parameters that appear in bindings of instance boxes and

components.

Function type
LIST OF STRING

For elements

Syntax

action an
condition co
data-item di
event ev

stm_r_formal_parameter_names (inst_box_id, status)

Arguments

Argument Input/Output Type Description
xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_out_of_range

176

Documentor Reference Guide



List of Functions

stm_r_sb_global data

Returns the global data associated with the specified subroutine.
Function type
LIST OF ELEMENT

For elements

‘ subroutine ‘ sb

Syntax

stm_r_sb_global_data (sb_id, status)

Arguments

Argument Input/Output Type Description
Xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm_missing_global_data
¢ stm_id_out_of _range

¢ stm_id_not_found

Rational Statemate 177



Single-Element Functions

stm_r_sb_global data_mode

Returns the mode of a subroutine’s global variable.

Function type

stm_parameter_mode

For elements

Syntax

subroutine

stm_r_sb_global_data_mode (fn_id, stm_id pd_id, int *status)

Arguments

Argument Input/Output Type Description
fn_id The subroutine ID.
pd_id The global variable ID.
status Out int The function status code.

Status Codes

¢ stm success

¢ stm _missing_global_data

¢ stm_id_out _of _range

¢  stm_id_not_ found

178

Documentor Reference Guide



List of Functions

stm_r_global interface_report

Creates a global interface report from the specified input list.
Function type
LIST OF STRING

For elements

activity ac
external router ext_router
router router

Syntax

stm_r_global_interface_report (elm_Ist, sort_by elm, status)

Arguments
Argument Input/Output Type Description

elm_list In LIST OF ELEMENT | The list of elements to include in the
report

sort_by elm In BOOLEAN Specifies whether to sort the elements in
the report by element name (TRUE) or
activity name (FALSE)

status Out INTEGER The function status code

Status Codes

¢ stm_id_out _of _range

¢ stm success

Rational Statemate 179



Single-Element Functions

stm_r_xx_cbk_binding_expression_hyper
Retrieves the callback binding expressions, with hyperlinks to referenced elements.
You can call this function without indicating the specific element type, as follows:
stm_r_cbk_binding_expression_hyper (id, &status)
Function Type

stm_expression

For Elements

activity ac
condition co
data-item di
event ev
state st

Syntax

stm_r_xx_cbk_binding_expression_hyper (id, char* formator int*status)

Arguments
Argument Input/ Type Description
Output
xx_id In stm_id The element ID.
format In STRING Either FrameMaker or Word.
status Out int The function status code.

Status Codes

¢ stm success

¢  stm_id_not_ found

¢ stm_id_out _of _range

¢ stm missing_cbk_binding

¢ stm unresolved

180 Documentor Reference Guide



List of Functions

stm_r_xx_graphic
Returns the graphical information associated with the specified element.

Note the following:

* You can call this function without indicating the specific element type, as follows:
stm_r_graphic(id, status)

+ Each environment module can have several occurrences with the same name in a
chart. Call the query function stm_r_om_of_md to get the graphical information of
its occurrences, then use the function stm_r_om_graphic for each occurrence.

Function type
STRING

For elements

activity ac
basic a-flow-line ba
basic m-flow-line bm
basic transition bt

combinational assignment ca

connector cn
data-store ds
module md
module-occurence om
note nt
off-page activity oa
state st
Syntax
stm_r_xx_graphic (xx_id, status)
Arguments
Argument Input/Output Type Description
Xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Rational Statemate 181



Single-Element Functions

Status Codes

¢ stm_success

¢ stm_id_out_of_range

¢ stm_unresolved

¢ stm_id_not_found

¢ stm _missing_graphic_data
Note

When stm_unresolved is returned, no record is received.

182

Documentor Reference Guide



List of Functions

stm_r_hyper_key
Retrieves the unique key for the specified element.
Function type
STRING

For elements

‘ element ID ac

Syntax

stm_r_hyper_key (el, status)

Arguments
Argument Input/Output Type Description
el In ELEMENT The element ID whose key you want
status Out INTEGER The function status code

Status Codes

¢ stm_id_out_of _range

¢ stm_success

Rational Statemate 183



Single-Element Functions

stm_r_md_implementation

Retrieves the implementation type for the specified module.

Function type

STRING

For elements

‘ module ‘ md

Syntax

stm_r_md_implementation (md_id, status)

Arguments
Argument Input/Output Type Description
md_id In Statemate element | The module ID
status Out INTEGER The function status code

Status Codes

*

stm_success
stm_id_out_of_range
stm_id_not_found
stm_unresolved

stm_not_instance

184

Documentor Reference Guide



List of Functions

stm_r_included_gds

Returns the list of global definition sets contained in the specified chart.
Function type
LIST OF CHART

For elements

‘ chart ‘ ch

Syntax

stm_r_included_gds (ch_id, status)

Arguments

Argument Input/Output Type Description
ch_id In CHART The chart
status Out INTEGER The function status code

Status Codes

¢ stm_id_out_of _range
¢ stm_use_all_public_gds

¢ stm_success

Rational Statemate 185



Single-Element Functions

stm_r_msg_included in_ord_insig

Returns a list of messages that are bounded by an order-insignificant element.

Function type
LIST OF MESSAGE

For elements

Last of order insignificance

‘ ord_insig_list ‘

Syntax

stm_r_msg_included_in_ord_insig (ord_insig_list, status)

Arguments
Input/ o
Argument Output Type Description
ord_insig_list | In LIST OF A list of elements
ORDER_INSIGNIFICANT
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_out_of_range

¢ stm _not_order_insignificant

186

Documentor Reference Guide



List of Functions

stm_r_cd_info

Retrieves the description of the specified continuous chart.

Function type
STRING

For elements

Syntax

stm_r_cd_info (ch, status)

‘ chart

Arguments
Argument Input/Output Type Description
cd In ChART The chart
status Out INTEGER The function status code
Status Codes

¢ stm_id_out_of _range

¢  stm_null_string

¢ stm_success

Rational Statemate

187



Single-Element Functions

stm_r_inherited_gds

Retrieves the list of global definition sets that are “inherited” (included indirectly) by the

specified chart.

Function type

LIST OF CHART

For elements

‘ chart ‘ ch

Syntax

stm_r_inherited_gds (ch_id, status)

Arguments

Argument Input/Output Type Description
ch_id In CHART The chart
status Out INTEGER The function status code

Status Codes

¢ stm_id_out of _range
¢ stm_use_all_public_gds

¢ stm_success

188

Documentor Reference Guide



List of Functions

stm_r_xx_instance_name

Returns the name of the instance as it appears in the chart for a specific hierarchical Statemate
element.

Note the following:

* You can call this function without indicating the specific element type, as follows:
stm_r_instance_name (id, status)

* This function is relevant only for states, internal modules, and regular or control
activities, because only these elements can have instances.

Function type
STRING

For elements

activity ac
module md
state st
Syntax
stm_r_xx_instance_name (xx_id, status)
Arguments
Argument Input/Output Type Description
xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm success

¢ stm_id_out _of _range
¢ stm _id_not_ found

¢ stm unresolved

¢ stm not instance

Rational Statemate 189



Single-Element Functions

Example

To retrieve the name of an instance for state named S1@s1_def, use the following statements:

VARIABLE
STATE state_id;
INTEGER status;

state_id := stm_r_st (°S1’, status);
WRITE (C\n Instance Name:~”,

stm_r_st_instance_name (state_id, status));

The name written to the document is S1@S1_DEF.

190 Documentor Reference Guide



List of Functions

stm_r_xx_keyword

Retrieves a portion of the element’s long description. An element’s long description is attached
to its form.

You can call this function without indicating the specific element type, as follows:

stm_r_keyword (id, begin_keyword, end_keyword, filename, status)

Function type
STRING (a file name)

For elements

action an
activity ac
actor actor
boundary box bb
chart ch
condition co
data-item di
data-store ds
event ev
field fd
information-flow if
lifeline Il
module md
router router
state st
subroutine sb
use case uc
user-defined type dt

Syntax

stm_r_xx_keyword (xx_id, begin_keyword, end_keyword, filename, status)

Rational Statemate 191



Single-Element Functions

Arguments
Argument Input/Output Type Description

xx_id In stm_id The element ID

begin_< In char * The beginning of the portion of the string in

keyword the long description to extract

end_keyword In char * The end of the portion of the string in the
long description to extract

filename In stm_filename | The name of the file to contain the long
description

status Out int The function status code

Note the following:

*

The arguments begin_keyword and end_keyword are strings of text appearing in
the element’s long description. The portion extracted from the database begins
with the line following begin_keyword and extends to the line preceding
end_keyword.

If the value of begin_keyword does not appear in the long description, the function
creates an empty file; status then receives the value
stm_starting_keyword_not_found.

If the value of end_keyword does not appear in the long description, the entire long
description (from the line following the value of begin_keyword) is retrieved; status
receives the value stm_ending_keyword_not_found.

The values of begin_keyword and end_keyword must appear at the beginning of a
line in the long description.

filename follows the conventions of the operating system. It returns the value of
the argument Fi lename (when one is specified). If an empty string ~ > (two
contiguous quotation marks) is specified for filename, Statemate creates a
temporary file where it stores the text. The name of this temporary file is returned
by this function.

If no long description exists for the element, status receives the value
stm_missing_long_description.

192

Documentor Reference Guide



List of Functions

Status Codes

¢ stm_success

¢ stm_unresolved

¢ stm_id_out_of_range

¢ stm_id_not_found

¢ stm_can_not_open_Tfile

¢ stm_name_not_found

¢ stm _missing_long_description

¢ stm_starting_keyword_not_found

¢ stm_ending_keyword_not_found
Example
The long description for the state WAIT contains the following section:

1BHV_DESCR

When the assembly process reaches the critical stage where all parts
must be carefully selected, mounted and assembled, we wait for the
interrupt signal to tell us that all the required parts are in place
before continuing. This state acts as a synchronization point in the
assembly process.

TEND_DESCR

To extract the portion of the long description beginning with “When the...” and ending with
“... assembly process,” use the following function call:

VARIABLE
STATE state_id;
STRING descr_file;
INTEGER status;

state_id:=stm_r_st (CWAIT?, status);
descr_file:=stm_r_st keyword (state_id,”!BHV_DESCR”,

>1END_DESCR”,””,status);
INCLUDE (descr_file);

The portion of the long description is written to a temporary file and written to your document.

Rational Statemate 193



Single-Element Functions

stm_r_sb_kr_c_user_code

Returns the K&R C code that was manually written by the user for the specified subroutine.

Function type

LIST OF STRING

For elements

Syntax

‘ subroutine

‘sb

stm_r_sb_kr_c_user_code (sb_id, status)

Arguments

Argument Input/Output Type Description
sb_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_out_of _range

¢ stm_missing_user_code

194

Documentor Reference Guide



List of Functions

stm_r_xx_labels

Returns a list of strings that consists of all the labels of the specified compound transition or
message. The labels appear on the transition segments that comprise the specified compound
transition, or on the message. The syntax of these labels is trigger/action.

Note: To divide the labels into their trigger and action parts, use the utility routines
stm_trigger_of _reaction and stm_action_of _reaction.

Function type
LIST OF STRING

For elements

message msg
transition tr
Syntax
stm_r_xx_labels (tr_id, status)
Arguments
Argument Input/Output Type Description
xx_id In TRANSITION ELEMENT | The element ID
or MESSAGE
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_unresolved

¢ stm_id_out_of _range
¢ stm_id_not_found

¢ stm _missing_label

Rational Statemate 195



Single-Element Functions

Example

To extract all the labels of transitions exiting from state s1, the template should contain the
following statements:

VARIABLE
STATE state_id
INTEGER status;
LIST OF STRING labels;
LIST OF TRANSITION trans;
TRANSITION tr;
STRING lab;

state_id := stm_r_st (’S17,status);
trans = stm_r_tr_from_source_st ({state_id}, status);
FOR tr IN trans LOOP
labels:=stm_r_tr_labels(tr, status);
IF status = stm_success THEN
FOR lab IN labels LOOP

END FOR;
END IF;
END FOR;

196 Documentor Reference Guide



List of Functions

stm_r_xx_labels_hyper

Returns a list of strings of message or transition labels, with hyperlinks to referenced elements.

Function type
LIST OF STRING

For elements

message msg

transition tr

Syntax

stm_r_xx_labels_hyper (message, format, status)Arguments

Argument Input/Output Type Description
elem_id In Statemate element | The element ID
format In STRING Either FrameMaker or Word
status Out INTEGER The function status code
Status Codes

¢ stm_success
¢ stm_id_out_of _range
¢ stm_id_not_found

¢ stm_unresolved

Rational Statemate 197



Single-Element Functions

stm_r_local_interface _report

Creates a local interface report from the specified input list.

Function type

LIST OF STRING

For elements

Syntax

activity ac
external router ext_router
router router

stm_r_local_interface_report (elm_Ist, status)

Arguments
Argument Input/Output Type Description
elm_list In LIST OF ELEMENT | The list of elements to include in
the report
status Out INTEGER The function status code

Status Codes

¢ stm_id_out_of _range

¢ stm_success

198

Documentor Reference Guide



List of Functions

stm_r_xx_longdes
Retrieves the long description attached to the specified element.

You can call this function without indicating the specific element type, as follows:

stm_r_longdes (id, filename, status)

Function type
STRING (Ffile name)

For elements

action an
activity ac
actor actor
boundary box bb
chart ch
condition co
data-item di
data-store ds
event ev
field fd
information-flow if
lifeline Il
module md
router router
state st
subroutine sb
use case uc
user-defined type dt

Syntax

stm_r_xx_longdes (xx_id, filename, status)

Rational Statemate 199



Single-Element Functions

Arguments
Argument Input/Output Type Description
xx_1id In Statemate element | The element ID
filename In stm_filename The name of the file that will contain the
STRING long description
status Out INTEGER The function status code

Note the following:

+ The filename follows the conventions of the host operating system.

+ This function returns the value of the argument fi lename when one is specified. If
an empty string ~~ (two contiguous quotation marks) is specified, Statemate
creates a temporary file where it stores the text. The name of this temporary file is
returned by the function.

+ If no long description exists for the element, status receives the value
stm_missing_long_description.

Status Codes

¢ stm_unresolved

¢ stm_success

¢ stm_id_out_of _range

¢ stm_id_not_found

¢ stm_can_not_open_Tfile

¢ stm_missing_long_description
Example

To retrieve the long description for the activity A1, use the following statements:

VARIABLE
ACTIVITY act_id;
STRING long_des_file;
INTEGER status;

act_id := stm_r_ac (;Al’,status);

long_des_file:=
stm_r_ac_longdes(act_id, *text._txt’,status);

The long description for activity A1 is written to the file text. txt. This file resides in the
current working directory. The variable long_des_fi le contains the string “text.txt’.

200 Documentor Reference Guide



List of Functions

stm_r_lookup_table header

Retrieves the header for the lookup table.
Function type
LIST OF STRING

For elements

lookup table ‘Iookuptabm

Syntax

stm_r_lookup_table_header (el, status)

Arguments
Argument Input/Output Type Description
el In Statemate element | The element ID
status Out INTEGER The function status
code

Status Codes

¢ stm_success

Rational Statemate 201



Single-Element Functions

stm_r_xx_max_val
Returns the maximum value of the specified element.

You can call this function without indicating the specific element type:
stm_r_max_val (id, status)
Function type
STRING

For elements

data-item di
field fd
local data Id

subroutine parameter | sp

user-defined type dt

Syntax

stm_r_xx_max_val (xx_id, status)

Arguments

Argument Input/Output Type Description
xx_id In Statemate element The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm_id_not_found

¢ stm_id_out_of _range

202 Documentor Reference Guide



List of Functions

stm_r_xx_min_val
Returns the minimum value of the specified element.

You can call this function without indicating the specific element type, as follows:
stm_r_min_val (id, status)
Function type
STRING

For elements

data-item di
field fd
local data Id

subroutine parameter | sp

user-defined type dt

Syntax

stm_r_xx_min_val (xx_id, status)

Arguments
Argument Input/Output Type Description
xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm_id_not_found

¢ stm_id_out_of _range

Rational Statemate 203



Single-Element Functions

stm_r_XxXx_mini_spec

Returns a string with mini-spec reactions or actions.

You can call this function without indicating the specific element type, as follows:

stm_r_mini_spec (id, status)

Function type
STRING

For elements

‘ activity ‘ ac
Syntax
stm_r_xx_mini_spec (xx_id, status)
Arguments
Argument Input/Output Type Description
xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_out_of _range

¢ stm_id_not_found

¢ stm_unresolved

¢ stm_missing_label

204

Documentor Reference Guide



List of Functions

stm_r_ac_mini_spec_hyper
Returns a string with the mini-spec, including hyperlinks to referenced elements.
Function type
STRING

For elements

activity ac

Syntax

stm_r_ac_mini_spec_hyper (elem, format, status)

Arguments
Argument Input/Output Type Description
elem In Statemate The element ID
element
format In STRING Either FrameMaker or Word
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm_id_out of _range
¢ stm_id_not_found

¢ stm_unresolved

Rational Statemate 205



Single-Element Functions

stm_r_xx_mode

Returns the parameter or router mode.
Function type
INTEGER

For elements

‘ parameter ‘ parameter

Syntax

stm_r_xx_mode (elem_id, status)

Arguments

Argument Input/Output Type Description
elem_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm_id_out_of _range
¢ stm_id_not_found

¢ stm_unresolved

Retrun Values

Although the return value of this function is of type INTEGER, the Documentor enables you to
reference this value by name. The name is defined internally as a predefined constant in DGL.

206

Documentor Reference Guide



List of Functions

stm_r_ch_modification_date

Returns the date in which the version of the chart in the workarea was saved in the databank.
This function is relevant only for charts that were explicitly defined using one of the graphics
editors.

Function type
STRING

For elements

chart ‘ ch ‘

Syntax

stm_r_ch_modification_date (ch_id, status)

Arguments
Argument Input/Output Type Description
ch_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm success

¢ stm_id_out _of _range
¢  stm _id_not found

¢ stm unresolved

Example

To retrieve the date of the last modification for a chart, use the following statements:

VARIABLE
CHART chart_id;

INTEGER status;

chart_id := stm r_ch i’TOP’, status);
WRITE (C\n Chart modified on:”,
stm_r_ch_modification_date (chart_id, status));

The template writes to the document the date on which the chart named Top was last modified.

Rational Statemate 207



Single-Element Functions

stm_r_xx_name

Returns the element name. For hierarchical elements, the function returns the name associated
with the box. Because hierarchical elements can share the same name, the return value does

not necessarily uniquely identify an element. To return a unique name, use the function
stm_r_xx_uniquename.

Note the following:

¢ This function returns a pointer to a static area of memory. Subsequent calls to this
procedure will overwrite the old string. If the name needs to be preserved, use the
strdup() function from the string library.

* You can call this function without indicating the specific element type, as follows:

stm_r_name (id, status)

¢ For boxes that have no names, this function returns the definition chart name. For
example, for box @ABC, this function returns ABC.

Function type

STRING

208 Documentor Reference Guide



List of Functions

For elements

action an
activity ac
actor actor
boundary box bb
chart ch
condition co
data-item di
data-store ds
enumerated value en
event ev
field fd
function fn
information-flow if
lifeline I
local data Id
module md
router router
state st
subroutine sb
subroutine parameter | sp
use case uc
user-defined type dt
Syntax
stm_r_xx_name (xx_id, status)
Arguments
Argument Input/Output Type Description
Xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Rational Statemate

209



Single-Element Functions

Status Codes

¢ stm_success

¢ stm error_in_file

¢ stm_id_out_of_range

¢ stm_id_not_found

¢ stm_missing_name

¢ stm _missing_field

¢ stm_illegal_parameter

¢ stm_file_not_found

Example

To retrieve and print the name of a state in a statechart, use the following statements:

VARIABLE
STATE state id;
INTEGER status;

state_id := stm_}_st (*S1.S3”,status);
WRITE (stm_r_st_name (state_id, status));

In this example, the state name is provided and this value is used to retrieve the same state
name from the database. The purpose of this example is to demonstrate the value returned by
this function, in contrast to the value returned by the function stm_r_xx_uniquename.

210 Documentor Reference Guide



List of Functions

stm_r_next_msg

Returns the message after (in time) the decomposed sequence diagram.

Function type
MESSAGE

For elements

‘ decomposed SD ‘ dec_sd
Syntax
stm_r_next_msg (dec_sd_id, status)
Arguments
Argument Input/Output Type Description
dec sd_id In REFERENCED_SD The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_out_of _range

¢ stm_not_decomposed_sd

¢ stm_message_not_found

Rational Statemate

211



Single-Element Functions

stm_r_xx_note

Returns the note for the specified element in the sequence diagram.

Function type
LIST OF STRING

For elements

separator sep
order insignificant line ord_insig
message msg
timing constraint tc
Syntax
stm_r_xx_note (tr_id, status)
Arguments
Argument Input/ Type Description
9 Output yp P
tr_id In Statemate element The transition ID
status Out INTEGER The function status code

Status Codes

¢ stm_id_out _of _range

¢ stm_missing_note

¢ stm success

212

Documentor Reference Guide



List of Functions

stm_r_xx_notes

Returns the note for the specified input transition.
Function type
LIST OF STRING

For elements

chart ch

transistion tr

Syntax

stm_r_xx_notes (tr_id, status)

Arguments
Argument Input/ Type Description
9 Output yp P
tr_id In Statemate element The transition ID
status Out INTEGER The function status code

Status Codes

¢ stm_id_out _of _range
¢ stm_missing_note

¢ stm success

Rational Statemate

213



Single-Element Functions

stm_r_tt_ num_of col

Retrieves the number of columns (including blank ones) in the specified truth table, as viewed
in the truth table editor.

Function type

INTEGER

For elements

Syntax

function stm_r_tt_num_of _col (el, status)

truth table

‘tt

Arguments
Argument Input/Output Type Description
el In ELEMENT The element ID
status Out INTEGER The function status code

Status Codes

¢ stm _missing_truth_table

¢ stm_success

214

Documentor Reference Guide



List of Functions

stm_r_tt_num_of_in
Retrieves the number of input columns in the specified truth table.
Function type
INTEGER

For elements

\ truth table \ tt

Syntax

stm_r_tt_num_of_in (el_id, status)

Arguments
Argument Input/Output Type Description
el _id In ELEMENT The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_missing_truth_table

¢ stm_success

Rational Statemate 215



Single-Element Functions

stm_r_tt_ num_of out

Retrieves the number of output columns in the specified truth table.

Function type

INTEGER

For elements

Syntax

‘ truth table

stm_r_tt_num_of out (el_id, status)

Arguments

Argument Input/Output Type Description
el _id In ELEMENT The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_missing_truth_table

¢ stm_success

216

Documentor Reference Guide



List of Functions

stm_r_tt_ num_of row

Retrieves the number of rows (including blank ones) in the specified truth table, as viewed in
the truth table editor.

Function type
INTEGER

For elements

‘ truth table ‘ tt

Syntax

stm_r_tt_num_of_row (el_id, status)

Arguments

Argument Input/Output Type Description
el_id In ELEMENT The element ID
status Out INTEGER The function status code

Status Codes

¢ stm _missing_truth_table

¢ stm_success

Rational Statemate 217



Single-Element Functions

stm_r_uc_num_of_scen

Retrieves the number of scenarios for the specified use case.

Function type
INTEGER

For elements

use case ‘ uc

Syntax

function stm_r_uc_num_of_scen (uc, status)

Arguments
Argument Input/Output Type Description
uc In USE_CASE The use case
status Out INTEGER The function status code

Status Codes

¢ stm_success

218

Documentor Reference Guide



List of Functions

stm_r_xx_number_of bits
Returns the number of bits in the element.

You can call this function without indicating the specific element type, as follows:

stm_r_number_of _bits (id, status)

Function type
STRING

For elements

data-item di
field fd
local data Id

subroutine parameter | sp

user-defined type dt

Syntax

stm_r_xx_number_of_bits (xx_id, status)

Arguments
Argument Input/Output Type Description
XX_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm_id_not_found

¢ stm_id_out_of _range

Rational Statemate 219



Single-Element Functions

stm_r_xx_of _enum_type

Retrieves the enumerated type ID (a user-defined type) for the specified element.

You can call this function without indicating the specific element type, as follows:

stm_r_of_enum_type (id, status)
Function type
DATA_TYPE

For elements

data-item di
field fd
local data Id

subroutine parameter | sp

user-defined type dt

Syntax

stm_r_xx_of_enum_type (xx_id, status)

Arguments
Argument Input/Output Type Description
XX_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm_id_out_of _range
¢ stm_id_not_found

¢ stm_missing_of_enum_type

220

Documentor Reference Guide



List of Functions

stm_r_xx_of _enum_type name_type
Retrieves the enumerated name type for the specified elements.

You can call this function without indicating the specific element type, as follows:

stm_r_of_enum_type_name_type (id, status)

Function type
INTEGER (predefined constant)

For elements

data-item di
field fd
local data Id

subroutine parameter | sp

user-defined type dt

Syntax

stm_r_xx_of_enum_type_name_type (xx_id, status)

Arguments
Argument Input/Output Type Description
xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm_id_out of _range
¢ stm_id_not_found

¢ stm_missing_of_enum_type

Rational Statemate 221



Single-Element Functions

Return Types

Although the return value of this function is of type INTEGER, the Documentor enables you to
reference this value by name. The name is defined internally as a predefined constant in DGL.
The possible values are as follows:

¢ stm_ntc_name

¢ stm_ntc_synonym

¢ stm_ntc_unknown

222 Documentor Reference Guide



List of Functions

stm_r_ord_insig_defined_in_ch
Returns the list of order-insignificant elements for the specified charts.
Function type
LIST OF ORDER_INSIGNIFICANT

For elements

chart ‘ ch ‘

Syntax

stm_r_ord_insig_defined_in_ch (ch_Ist, status)

Arguments
Argument Input/Output Type Description
ch_Ist In LIST OF CHART The list of charts
status Out INTEGER The function status code

Status Codes
¢ stm_success
¢ stm_id_out_of _range

¢ stm_not_order_insignificant

Rational Statemate 223



Single-Element Functions

stm_r_parameter_binding

Returns the parameter expression from generic charts and components.

Function type
STRING

Syntax

stm_r_parameter_binding (xx_paramid_in_gen,

inst_boxid, status)

Arguments
Argument Input/Output Type Description
XX_paramid_in_gen In Statemate element | The element ID
inst_boxid In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm success

¢ stm_id_out of _range

¢ stm_param_not_compatible

¢ stm name_not_found

¢ stm_not_a_parameter

224

Documentor Reference Guide



List of Functions

stm_r_parameter_mode

Retrieves the parameter mode, including subroutine parameters and the parameters of generic
charts and components.

You can call this function without indicating the specific element type, as follows:

stm_r_parameter_mode (xx_id, status)

Function type

STRING

For elements

chart ch

subroutine parameter sp
Syntax

stm_r_xx_parameter_mode (xx_id, status)

Arguments
Argument | Input/Output Type Description
xx_id In Statemate element The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_out_of_range

¢ stm_not_a_parameter

Return Values

Although the return value of this function is of type INTEGER, the Documnetor enables you to
reference this value by name. The name is defined internally as a predefined constant in DGL.
The possible values are as follows:

*

*

stm_in_parameter
stm_out_parameter
stm_inout_parameter

stm_constant_parameter

Rational Statemate

225



Single-Element Functions

stm_r_sb_parameters
Retrieves the parameters of the subroutine.

Function type

LIST OF SUBROUTINE PARAMETERS

For elements

‘ subroutine ‘ sb

Syntax

stm_r_sb_paramaters (sb_id, status)

Arguments

Argument Input/Output Type Description
sb_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm_id_out_of _range
¢ stm_not_a_ parameter

¢ stm_missing_subroutine_params

226

Documentor Reference Guide



List of Functions

stm_r_en_parent

Returns the parent type of the specified enumerated value.
Function type
DATA_TYPE

For elements

‘ enumerated value en

Syntax

stm_r_en_parent (en, status)

Arguments

Argument Input/Output Type Description
en In e ELEMENT The enumerated value
status Out ¢ INTEGER The function status code

Status Codes

¢ stm_success

Rational Statemate 227



Single-Element Functions

stm_r_previous_msg

Returns the message previous (in time) to the decomposed sequence diagram.

Function type
MESSAGE

For elements

Syntax

‘ decomposed SD ‘ dec_sd

stm_r_previous_msg (dec_sd_id, status)

Arguments
Argument Input/Output Type Description
dec sd_id In REFERENCED_SD | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_out_of _range

¢ stm_not_decomposed_sd

¢ stm_message_not_found

228

Documentor Reference Guide



List of Functions

stm_r_sb_proc_sch_local data

Retrieves the local data of the procedural statechart implemented by the specified subroutine.
Function type
LIST OF LOCAL_DATA

For elements

subroutine ‘ sb ‘

Syntax

stm_r_sb_proc_sch_local_data (sb_id, status)

Arguments

Argument Input/Output Type Description
sb_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm_missing_local_data

¢ stm_no_connected_chart

Rational Statemate 229



Single-Element Functions

stm_r_md_purpose

Returns the purpose of the module.
Function type
INTEGER

For elements

‘ module ‘ md

Syntax

stm_r_md_purpose (id, status)

Arguments

Argument Input/Output Type Description
id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_not_found

¢ stm_id_out_of _range
¢ stm_unresolved

¢ stm_not_instance

230

Documentor Reference Guide



List of Functions

stm_r_xx_reactions

Returns the static reactions of the specified state. The syntax of these reactions is trigger/
action.

Note the following:

+ To divide the static reactions into their trigger and action parts, use the utility
routines stm_trigger_of reaction and stm_action_of_reaction.

* You can call this function without indicating the specific element type, as follows:

stm_r_reactions (st_id, status)

Function type
LIST OF STRING

For elements

activity ac

state st

Syntax

stm_r_xx_reactions (xx_id, status)

Arguments
Argument Input/Output Type Description
xx_st_id In Statemate element | The state ID
status Out INTEGER The function status
code

Status Codes

¢ stm_success

¢ stm_unresolved

¢ stm_id_out _of range
¢ stm_id_not_found

¢ stm_missing_label

Rational Statemate 231



Single-Element Functions

Example

To extract all static reactions of state s1, use the following statements:

VARIABLE
STATE state_id
INTEGER status;
LIST OF STRING reactions;
STRING react;
state_id := stm_r_st (’S1’, status);
reactions := stm_r_st _reactions (state_id, status);

IF status = stm_success THEN
FOR react IN reactions LOOP;

232 Documentor Reference Guide



List of Functions

stm_r_param_binding_hyper

Retrieves the generic instance actual parameter.

Function type
STRING

Syntax

stm_r_param_binding_hyper (prm_id,

ins, status)

Arguments
Argument Input/Output Type Description
prm_id In Statemate element | The element ID
ins In Statemate element The element ID.
status Out INTEGER The function status code

Status Codes

¢ stm success

¢ stm_id_out of _range

¢  stm _id_not_ found

¢  stm unresolved

Rational Statemate

233



Single-Element Functions

stm_r_param_binding_id
Retrieves the Generic Instance actual parameter ID.
Function type
STRING
Syntax

stm_r_param_binding_id (prm_id, ins, status)

Arguments

Argument Input/Output Type Description
prm_id In Statemate element The element ID
ins In Statemate element The element ID.
status Out INTEGER The function status code

Status Codes

¢ stm success
¢ stm_id_out of _range
¢  stm _id_not_ found

¢  stm unresolved

234 Documentor Reference Guide



List of Functions

stm_r_sb_return_type
Retrieves the subroutine’s return type.

Function type
INTEGER (predefined constant)

For elements

‘ subroutine ‘ sb

Syntax

stm_r_sb_return_type (sb_id, status)

Arguments

Argument Input/Output Type Description
sb_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm_id_out_of _range

¢ stm_id_not_found

Return Values

Although the return value of this function is of type INTEGER, the Documentor enables you to
reference this value by name. The name is defined internally as a predefined constant in DGL.

Rational Statemate

235



Single-Element Functions

stm_r_sb_return_user_type

Provide user status.

Function type

DATA_TYPE

For elements

Syntax

subroutine

‘sb

stm_r_sb_return_user_type (sb_id, status)

Arguments
Argument Input/Output Type Description
sb_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_out_of _range

¢ stm_id_not_found

¢ stm_missing_user_type

236

Documentor Reference Guide



List of Functions

stm_r_sb_return_user_type name

Retrieves the subroutine’s return user type and name type.

Function type

INTEGER (predefined constant)

For elements

Syntax

subroutine

‘sb

stm_r_sb_return_user_type_name_type (sb_id, status)

Arguments
Argument Input/Output Type Description
sb_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_out_of _range

¢ stm_id_not_found

¢ stm_missing_user_type

Return Values

Although the return value of this function is of type INTEGER, the Documentor enables you to
reference this value by name. The name is defined internally as a predefined constant in DGL.

The possible values are as follows:

¢ stm_ntc_name

¢ stm_ntc_synonym

¢ stm_ntc_unknown

Rational Statemate

237



Single-Element Functions

stm_r_tt_row

Returns a list of strings that represents a row in the truth table. Each string in the list includes
the text in the truth table cell. The row’s index range is [0. .num_of_rows-1]. Row 0 returns
the list of table header strings.

Function type
LIST OF STRING

For elements

‘ truth table ‘ tt

Syntax

stm_r_tt_row (el, row_num, status)

Arguments
Argument Input/Output Type Description
el In Statemate element | The element ID
row_num In INTEGER The row number to retrieve
status Out INTEGER The function status code

Status Codes

¢ stm_truth_table_invalid_row
¢ stm_missing_truth_table

¢ stm_success

238 Documentor Reference Guide



List of Functions

stm_r_uc_scen

Retrieves the scenario, based on the specified index number.

Function type

LIST OF STRING

For elements

Syntax

stm_r_uc_scen

‘ use case

‘UC

(uc, scen_index, status)

Arguments
Argument Input/Output Type Description
uc In USER_CASE The use case diagram
scen_index In INTEGER The index for the scenario
status Out INTEGER The function status code

Status Codes

¢ stm success

Rational Statemate

239



Single-Element Functions

stm_r_uc_scen_attr_name

Returns the names of attributes associated with the specified use case scenario. Attributes are
associated with elements via element forms.

Function type
LIST OF STRING

For elements

‘ use case uc ‘

Syntax

stm_r_uc_scen_attr_name (uc, scen_index, status)

Arguments
Argument Input/Output Type Description

uc In USE_CASE The use case.

scen_index In INTEGER The index for the scenario.

status Out INTEGER The function status code.
If no attributes exist for the specified
element, status receives the value
stm_attribute_name_not_found.

Status Codes

¢ stm_success

¢ stm_attribute_name_not_found
¢ stm_id_not_found

¢ stm_id_out of _range

¢ stm_unresolved

240 Documentor Reference Guide



List of Functions

stm_r_uc_scen_attr_val

Retrieves attribute values associated with a particular attribute name for the specified use case
scenario.

Function type
LIST OF STRING

For elements

‘ use case uc ‘

Syntax

stm_r_uc_scen_attr_val (uc, scen_index, attr_name, status)

Arguments
Argument (I)rl]ft)g;/t Type Description

uc In USE_CASE The use case.

scen_index In INTEGER The index of the scenario.

attr_name In STRING The attribute name.
The attribute name is not case-sensitive.

status Out INTEGER The function status code.
If attr_name does not exist for the specified
element, status receives the value
stm_attribute_name_not_found.

Note the following:

¢ Attribute values might exist for attributes with no name. Therefore, if you supply

contiguous apostrophes (>>) for attr_name, you retrieve all values for unnamed
attributes.

¢ In most cases, attributes have only one value. However, there are some cases where more
than one attribute value is simultaneously meaningful. For example, a module has an
attribute implementation. The attributes software and hardware might both be
meaningful for some modules. Therefore, Statemate provides the capability of assigning
multiple values to attributes, and the function returns a list of these values. When there is
a single value, the list consists of one component.

Rational Statemate 241



Single-Element Functions

Status Codes

¢ stm_success

¢ stm_attribute_name_not_found
¢ stm_id_not_found

¢ stm_id_out_of_range

¢ stm_illegal_name

¢ stm_unresolved

242 Documentor Reference Guide



List of Functions

stm_r_sd_scope
Retrieves the scope of the specified sequence diagram.
Function type
CHART

For elements

‘ sequence diagram sd

Syntax

stm_r_sd_scope (sd, status)

Arguments

Argument Input/Output Type Description
sd In CHART The sequence diagram
status Out INTEGER The function status code

Rational Statemate 243



Single-Element Functions

stm_r_xx_select_implementation

Retrieves the implementation type of the specified element.

Function type

INTEGER

For elements

Syntax

action an
activity ac
subroutine sb

stm_r_xx_select_implementation (xx_id, status)

Arguments

Argument Input/Output Type Description
xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_out_of range

¢ stm_id_not_found

Return Values

Although the return value of this function is of type INTEGER, the Documentor enables you to
reference this value by name. The name is defined internally as a predefined constant in DGL.
The possible values are as follows:

*

*

stm_sb_action_lang
stm_sb_procedural_sch
stm_sb_kr_c_code
stm_sb_ansi_c_code
stm_sb_ada_code
stm_sb_vhdl_code

stm_sb_verilog_code

244

Documentor Reference Guide



List of Functions

¢ stm_sb_truth_table_code
¢ stm_sb_best_match

¢ stm_sb_none

stm_r_st_static_reactions

Returns the static reactions defined for the specified state element.

Function type
STRING

For elements

state \ st

Syntax

stm_r_st_static_reactions (st_id, status)

Arguments

Argument Input/Output Type Description
st _id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_not_found

¢ stm_id_out_of _range
¢ stm_unresolved

¢ stm_missing_label

Rational Statemate

245



Single-Element Functions

stm_r_st_static_reactions_hyper

Returns a string with the static reactions, including hyperlinks to referenced elements.

Function type

STRING

For elements

Syntax

state

‘st

stm_r_st_static_reactions_hyper (elem, format, status)

Arguments

Argument Input/Output Type Description
elem In Statemate element | The element ID
format In * STRING Either FrameMaker or Word
status Out ¢ INTEGER The function status code

Status Codes

¢ stm success

stm_id_out_of_range

stm_id_not_found

stm_unresolved

246

Documentor Reference Guide



List of Functions

stm_r_xx_string_length

Retrieves the string length of the specified element.

You can call this function without indicating the specific element type, as follows:

stm_r_string_length (id, status)

Function type
STRING

For elements

Syntax

data-item di
field fd
local data Id

subroutine parameter | sp

user-defined type dt

stm_r_xx_string_length (xx_id, status)

Arguments
Argument Input/Output Type Description
Xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢  stm_missing_field

¢  stm_illegal_parameter

¢ stm_file_not_found

¢ stm_error_in_file

Rational Statemate

247



Single-Element Functions

stm_r_xx_structure_type

Returns the structure or type of the specified textual element. The structure or type can be
single, array, or queue.

You can call this function without specifying an element type, as follows:

stm_r_structure_type (id, status)

Function type
INTEGER

For elements

Syntax

condition co
data-item di
event ev
field fd
local data Id
subroutine parameter | sp
user-defined type dt

stm_r_xx_structure_type (xx_id, status)

Arguments
Argument Input/Output Type Description
xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_out _of range

¢ stm_id_not_found

248

Documentor Reference Guide



List of Functions

Return Values

Although the return value of this function is of type INTEGER, the Documentor enables you to
reference this value by name. The name is defined internally as a predefined constant in DGL.
The following are all possible values allowed for each Statemate element subtype:

Element Type

Element Subtype

condition

stm_co_array

stm_co_missing

stm_co_single

data-item

stm_di_array

stm_di_queue

stm_di_single

event

stm_ev_array

stm_ev_missing

stm_ev_single

field

stm_fd_array

stm_fd_queue

stm_fd_single

local data

stm_Id_array

stm_Id_queue

stm_Id_single

subroutine parameter

stm_sp_array

stm_sp_queue

stm_sp_single

user-defined type

stm_dt_array

stm_dt_queue

stm_dt_single

Rational Statemate

249



Single-Element Functions

stm_r_ac_subroutine_bind

Returns the subroutine binding connected to the specified activity.

Function type

LIST OF STRING

For elements

‘ activity ‘ ac

Syntax

stm_r_ac_subroutine_bind (ac_id, status)

Arguments

Argument Input/Output Type Description
ac_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

*

stm_success
stm_id_out_of_range
stm_unresolved
stm_id_not_found

stm_missing_subroutine_binding

250

Documentor Reference Guide



List of Functions

stm_r_ac_subroutine_bind_enable

Determines whether the subroutine bound to the specified activity is enabled or disabled.
Function type
INTEGER

For elements

activity ‘ ac ‘

Syntax

stm_r_ac_subroutine_bind_enable (ac_id, status)

Arguments
Argument Input/Output Type Description
ac_id In Statemate element | The element ID
status Out INTEGER The function status
code

Status Codes

¢ stm_success
¢ stm_id_out_of _range
¢ stm_unresolved

¢ stm_id_not_found
Return Values

Although the return value of this function is of type INTEGER, the Documentor enables you to
reference this value by name. The name is defined internally as a predefined constant in DGL.
The possible values are as follows:

¢ stm ac_cbk enable

¢ stm ac_cbk disable

¢ stm_ac_cbk _bind_missing

Rational Statemate 251



Single-Element Functions

stm_r_ac_subroutine_bind_expr
Returns the subroutine binding expression that is connected to the specified activity.
Function type
STRING

For elements

activity ‘ ac ‘

Syntax

stm_r_ac_subroutine_bind_expr (ac_id, status)

Arguments
Argument Input/Output Type Description
ac_id In Statemate element The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_out_of _range
¢ stm_id_not_found

¢ stm_unresolved

¢ stm_missing_subroutine_binding

252 Documentor Reference Guide



List of Functions

stm_r_xx_synonym

Retrieves the synonym of the specified element. The synonym is defined in the element’s
form.

You can call this function without indicating the specific element type, as follows:
stm_r_synonym (id, status)
Function type
STRING

For elements

action an
activity ac
actor actor
boundary box bb
chart ch
condition co
data-item di
data-store ds
event ev
field fd
information-flow if
lifeline Il
module md
router router
state st
subroutine sb
use case uc
user-defined type dt

Syntax

stm_r_xx_synonym (xx_id, status)

Rational Statemate 253



Single-Element Functions

Arguments
Argument Input/Output Type Description
xx_id In Statemate element The element ID.
status Out INTEGER The function status code.

If no synonym is defined in
the element’s form, status
receives the value
stm_missing_synonym.

Status Codes

¢ stm_success

¢ stm_unresolved

¢ stm_missing_subroutine_params
¢ stm_id_out_of_range

¢ stm_id_not_found

¢ stm_missing_synonym

Example

To write out the synonym of activity A1, use the following statements:

VARIABLE
ACTIVITY act_id;
INTEGER status;
act_id := stm_r_ac(’Ai’, status);

WRITE (\n Synonym:~”, stm_r_ac_synonym
(act_id, status));

254 Documentor Reference Guide



List of Functions

stm_r_ac_termination

Returns the activity termination type specified in the activity form.

Function type
INTEGER (predefined constant)

For elements

‘ activity ‘ ac

Syntax

stm_r_ac_termination (act_id, status)

Arguments
Argument Input/Output Type Description
act_id In ACTIVITY or The activity whose
ELEMENT termination type you
want to retrieve
status Out INTEGER Function status code

Status Codes

¢ stm_success
¢ stm_id_out_of _range
¢ stm_id_not_found

¢ stm_unresolved

Return Values

Although the return value of this function is of type INTEGER, the Documentor enables you to
reference this value by name. The name is defined internally as a predefined constant in DGL.

The possible values are:

¢ stm_ac_self termination
¢ stm_ac_controlled_termination
¢ stm_ac_missing

Rational Statemate




Single-Element Functions

Example

To determine the termination type of the activity A1 and if the activity is self-terminated write
the activity’s name, use the following statements:

VARIABLE
ACTIVITY act_id;
INTEGER act_term_type;
INTEGER status;

act_id := stm_r_ac (’Al’, status);

act_term_type:=stm_r_ac_termination (act_id, status);

IF act_term_type = stm_ac_self_termination THEN
WRITE (C\n Self-terminated activity:”, ’Al”);

END IF;

256 Documentor Reference Guide



List of Functions

stm_r_xx_truth_table

Returns the elements that are implemented as truth tables.
Function type
LIST OF STRING

For elements

action an
activity ac
subroutine sb

Syntax

stm_r_xx_truth_table (xx_id, status)

Arguments

Argument Input/Output Type Description
xx_id In Statemate element The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_error_in_file

¢ stm_id_out_of _range

¢ stm_illegal_parameter
¢ stm_id_not_found

¢ stm_file_not_found

¢  stm_missing_name

¢ stm_missing_field

Rational Statemate 257



Single-Element Functions

stm_r_xx_truth_table expression

Returns the truth table expression for all named elements.
Function type
STRING

For elements

action an
activity ac
subroutine sb

Syntax

stm_r_xx_truth_table_expression (xx_id, status)

Arguments

Argument Input/Output Type Description
Xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_error_in_file

¢ stm_id_out_of _range

¢ stm_illegal_parameter
¢ stm_id_not_found

¢ stm_file_not_found

¢  stm_missing_name

¢  stm_missing_field

258

Documentor Reference Guide



List of Functions

stm_r_sb_truth _table local data

Returns the list of local data elements defined in the truth table related to the input subroutine.
Function type
LIST OF LOCAL_DATA

For elements

action an
activity ac
subroutine sb

Syntax

stm_r_xx_truth_table_local_data (sb_id, status)

Arguments

Argument Input/Output Type Description
sb_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_error_in_file

¢ stm_id_out_of _range

¢ stm_illegal_parameter
¢ stm_id_not_found

¢ stm_file_not_found

¢  stm_missing_name

¢  stm_missing_field

Rational Statemate 259



Single-Element Functions

stm_r_xx_type

Retrieves element subtypes for the specified element. Most Statemate elements are divided
into classes, referred to as subtypes. For example, a state might belong to one of a number of
subtypes, such as and, or, basic, diagram, instance, or reference.

You can call this function without indicating the specific element type, as follows:

Function type

stm_r_type (id, status)

INTEGER (predefined constant)

For elements

Syntax

a-flow-line (basic) ba
a-flow-line (compound) af
action an
activity ac
actor actor
boundary box bb
chart ch
condition co
connector cn
data-item di
data-store ds
event ev
field fd
function fn
information-flow if
lifeline I
module md
module-occurrence om
router router
state st
use case uc
user-defined type dt

stm_r_xx_type (xx_id, status)

260

Documentor Reference Guide



List of Functions

Arguments

Argument Input/Output Type Description
xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm success

¢ stm_id_out _of _range

¢  stm _id_not found

Return Values

Although the return value of this function is of type INTEGER, the Documentor enables you to
refrence this value by name. The name is internally defined as a predefined constant in DGL.
The following table lists the possible values:

Element Type

Function Type

Element Subtype

a-Flow-line

stm_a_flow_line_type

stm_af_control

stm_af_data

action

stm_action_type

stm_an_compound

stm_an_reference

activity

stm_activity_type

stm_ac_control

stm_ac_control_instance

stm_ac_diagram

stm_ac_external

stm_ac_instance

stm_ac_internal

stm_ac_reference

chart

stm_chart_type

stm_ch_activity

stm_ch_module

stm_ch_reference

_activity

stm_ch_reference_module

stm_ch_reference_state

stm_ch_state

condition

stm_condition_type

stm_co_compound

stm_co_primitive

stm_co_reference

Rational Statemate

261



Single-Element Functions

Element Type

Function Type

Element Subtype

connector

stm_connector_type

stm_cn_composition

stm_cn_condition

stm_cn_control

stm_cn_deep_history

stm_cn_default

stm_cn_diagram

stm_cn_history

stm_cn_joint

stm_cn_junction

stm_cn_selection

stm_cn_termination

data-item

stm_data_item_type

stm_di_compound

stm_di_alias

stm_di_constant

stm_di_primitive

stm_di_reference

data-store

stm_data_store_type

stm_ds_internal

stm_ds_reference

event stm_event_type stm_ev_compound
stm_ev_primitive
stm_ev_reference
field stm_field_type stm_fd_primitive
information- stm_information_flow stm_if_explicit
Tlow —type stm_if_reference
module stm_module_type stm_md_diagram
stm_md_subsystem
stm_md_environment
stm_md_reference
stm_md_instance
stm_md_storage_module
router stm_router_type stm_router_external

stm_router_internal

262

Documentor Reference Guide




List of Functions

Element Type Function Type Element Subtype
state stm_state_type stm_st_diagram
stm_st_and
stm_st_or
stm_st_instance
stm_st_reference
stm_st_basic
subroutine stm_subroutine_type stm_sb_reference
user-defined stm_dt_primitive
type stm_dt_reference
Example

To retrieve the type of state READY and execute some statements if the state is an or state, use

the following statements:

VARIABLE
STATE
INTEGER
INTEGER

st _id;

st_type;

status;

st _id := stm _r_st (’ﬁEADY’, status);
st_type := stm_st_type (st_id, status);
IF st_type = stm_st_or THEN

If READY is an or-state, the statements following THEN are executed.

Rational Statemate

263



Single-Element Functions

stm_r_xx_type_expression

Returns the type expression for the specified element. The expression is the same as used in

the properties, reports, and Info.

You can call this function without indicating the specific type, as follows:

stm_r_type_expression (id, status)

Function type

STRING

For elements

Syntax

condition co
data-item di
event ev
field fd
local data Id
subroutine parameter | sp
user-defined type dt

stm_r_xx_type_expression (xx_id, status)

Arguments

Argument Input/Output Type Description
xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_out _of range

¢ stm_id_not_found

¢ stm_unresolved

264

Documentor Reference Guide



List of Functions

stm_r_xx_uniguename

Returns the unique path name for the specified element. The name returned by the function
contains the minimum number of levels necessary to uniquely identify an element in its chart.
It is especially relevant to boxes.

You can call this function without indicating the specific element type, as follows:
stm_r_uniquename (id, status)
Function type

STRING

For elements

action an
activity ac
actor actor
boundary box bb
condition co
data-item di
data-store ds
event ev
field fd
function fn
information-flow if
lifeline I
local data Id
module md
router router
state st
subroutine sb
subroutine parameter | sp
use case uc
user-defined type dt

Syntax

stm_r_xx_uniquename (xXx_id, status)

Rational Statemate 265



Single-Element Functions

Arguments
Argument Input/Output Type Description
xx_id In Statemate element The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_out_of_range

¢ stm_id_not_found

¢ stm_missing_synonym

266

Documentor Reference Guide



List of Functions

Example

Consider the following statechart:

P s
S1

~=-
1S3
Cam

S3

To retrieve the unique name of the highlighted element, use the following statements:

VARIABLE
STATE state_id;

INTEGER status;

state_id := stm_r_st i’Sl.SS’, status);
WRITE (°\n Unique Name:?, (stm_r_st _uniquename (
state_id, status));

The state name printed is S1.S3 (not S.S1.S3 or S3). In this example, a unique state name is
provided, and this value is used to retrieve the same unique state name from the database. This
example demonstrates the value returned by this function, in contrast to the value returned by
the function stm_r_xx_name.

Rational Statemate 267



Single-Element Functions

stm_r_ch_usage_type
Returns the usage type for a chart.
Function type: INTEGER (predefined constant)

For elements

‘ chart ‘ ch

Syntax

stm_r_ch_usage_type (ch_id, status)

Arguments
Input/ _
Argument Output Type Description
ch_id In Statemate element The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm_id_out_of _range

¢ stm_id_not_found
Return Value

Although the return value of this function is of type INTEGER, the Documentor enables you to
reference this value by name. The name is defined internally as a predefined constant in DGL.
The possible values are as follows:

¢ stm_ch_usage_generic

¢ stm_ch_usage_normal

¢ stm_ch_usage_ref _generic

¢ stm_ch_usage_ref _offpage

¢ stm_ch_usage_ref _describing

stm_r_xx_user_type

Returns the user-defined type ID referenced by the element.

268 Documentor Reference Guide



List of Functions

You can call this function without indicating the specific element type, as follows:

stm_r_user_type (id, status)

Function type: DATA_TYPE

For elements

data-item di
field fd
local data Id

subroutine parameter | sp

user-defined type dt

Syntax

stm_r_xx_user_type (xx_id, status)

Arguments
Argument Input/Output Type Description
xx_id In Statemate The element ID
element
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm_id_out_of_range
¢ stm_id_not_found

¢ stm _missing_user_type

Rational Statemate 269



Single-Element Functions

stm_r_xx_user_type_name_type

Returns the name type of the user-defined type referenced by the element.

You can call this function without indicating the specific element type, as follows:

stm_r_user_type_name_type (id, status)

Function type: INTEGER

For elements

data-item di
field fd
local data Id
subroutine parameter | sp
user-defined type dt
Syntax
stm_r_xx_user_type_name_type (xx_id, status)
Arguments
Argument Input/Output Type Description
Xx_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm success

¢ stm _ntc_name

¢ stm_ntc_synonym

¢  stm _ntc_unknown

270

Documentor Reference Guide



List of Functions

stm_r_ch_version
Returns the version of the specified chart.
Function type: STRING

For elements

‘ chart ‘ ch

Syntax

stm_r_ch_version (ch, status)

Arguments
Argument Input/Output Type Description
ch In CHART The chart whose version you want to
retrieve
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm_id_not_found
¢ stm_id_out_of_range

¢ stm_unresolved

Rational Statemate 271



Single-Element Functions

stm_r_gds_visibility_mode
Returns the visibility mode for the specified global definition set (GDS).
Function type: INTEGER

For elements

element ID ‘ ‘

Syntax

stm_r_gds_visibility_mode (gds_id, status)

Arguments
Argument Input/Output Type Description
gds_id In CHART The GDS whose visibility you
want to retrieve
status Out INTEGER The function status code

Status Codes
¢ stm_id_out _of _range
¢ stm success

Return Values

Although the return value of this function is of type INTEGER, the Documentor enables you
to reference this value by name. The name is internally defined as a predefined constant in
DGL. The possible values are as follows:

¢ stm_explicit_usage

¢ stm_public_usage

272 Documentor Reference Guide



List of Functions

stm_r_msg_where_tc_begins
Returns the message where the timing constraint begins.
Function type: MESSAGE

For elements

message ‘ msg

Syntax

stm_r_msg_where_tc_begins (tc_id, status)

Arguments
Argument Input/ Type Description

g Output yp P
tc_id In TIMING CONSTRAINT The timing constraint
status Out INTEGER The function status code

Status Codes
¢ stm_success
¢ stm_id_out_of_range

¢ stm_not_timing_constraint

Rational Statemate

273



Single-Element Functions

stm_r_msg_where_tc_ends

Returns the message where the timing constraint ends.

Function type: MESSAGE

For elements

Syntax

‘ chart

‘ch

stm_r_msg_where_tc_ends (tc_id, status)

Arguments

Argument | Input/Output Type Description
tc_id In TIMING CONTRAINT The timing constraint
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_id_out_of_range

¢ stm_not_timing_constraint

274

Documentor Reference Guide



List of Functions

stm_r_sb_connected_statechart

Returns the 1D of the procedural Statechart connected to the specified subroutine.

Function type: stm_list

For elements

Syntax

STM_R_SB_CONNECTED_STATECHART(IN sb: SUBROUTINE, OUT st: INTEGER):

Arguments

subroutine

‘sb

CHART;

Argument

Input/Output

Type

Description

sb_id

In

stm_id

The element ID.

status

Out

int

The function status code.

Status Codes

¢ stm_success

¢ stm_id_not_found

¢ stm_id_out of _range

¢ stm_no_connected_chart

Rational Statemate

275



Single-Element Functions

stm_r_sb_connected_flowchart

Returns the ID of the Flowchart connected to the specified subroutine.

Function type:

stm_list

For elements

Syntax

subroutine

STM_R_SB_CONNECTED_FLOWCHART(IN sb: SUBROUTINE, OUT st: INTEGER): CHART;

Arguments
Argument Input/Output Type Description
sb_id In stm_id The element ID.
status Out int The function status code.

Status Codes

¢ stm_success

¢ stm_id_not_found

¢ stm_id_out_of _range

¢ stm_no_connected_chart

276

Documentor Reference Guide



List of Functions

stm_r_sb_proc_fch_local data

Retrieves the local data of the procedural flowchart implemented by the specified subroutine.

Function type: LIST OF LOCAL_DATA

For elements

Syntax

subroutine

stm_r_sb_proc_fch_local_data (sb_id, status)

Arguments

Argument Input/Output Type Description
sb_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm _missing_local_data

¢ stm_no_connected_chart

Rational Statemate

277



Single-Element Functions

stm_r_xx_des_attr_val

Retrieves design-attribute values associated with a particular design-attribute name for the
specified element.

You can call this function without indicating the specific element type, as follows:

stm_r_des_attr_val (id, attr_name, status)

Function type: LIST OF STRING

For elements

activity ac
action an
chart ch
condition co
data-item di
data-type dt
event ev
field fd
information-flow if

local data Id
state st
subroutine sb
subroutine parameter | sp
transitions tr

Syntax

stm_r_xx_des_attr_val(xx_id, des_attr_name, status)

278 Documentor Reference Guide



List of Functions

Arguments
Argument Input/ Type Description
9 Output yp P

xx_id In Statemate element The element ID.

attr_name In STRING The design-attribute name.
The design-attribute name is not case-sensitive.

status Out INTEGER The function status code.
If attr_name does not exist for the specified
element, status receives the value
stm_attribute_name_not_found.

Status Codes

¢ stm_success

¢ stm_des_attribute_name_not_found
¢ stm_id_not_found

¢ stm_id_out_of _range

¢  stm_illegal_name

¢  stm_unresolved

Rational Statemate 279



Single-Element Functions

stm_r_xx_des_attr_name

Returns the names of design-attributes associated with the specified element. Design-attributes
are associated with elements via element forms.

You can call this function without indicating the specific type, as follows:

stm_r_des_attr_name(id, status)

Function type: LIST OF STRING

For elements

activity ac
action an
chart ch
condition co
data-item di

data-type dt
event ev
field fd
information-flow if

local data Id
state st
subroutine sb
subroutine parameter | sp
transitions tr

Syntax

stm_r_xx_des_attr_name(xx_id, status)

280 Documentor Reference Guide



List of Functions

Arguments
Argument Input/ Type Description
9 Output yp P

xx_id In Statemate element The element ID.

attr_name In STRING The design-attribute name.
The design-attribute name is not case-sensitive.

status Out INTEGER The function status code.
If attr_name does not exist for the specified
element, status receives the value
stm_attribute_name_not_found.

Status Codes

¢ stm_success

¢ stm_des_attribute_name_not_found
¢ stm_id_not_found

¢ stm_id_out_of _range

¢ stm_illegal_name

¢ stm_unresolved

Rational Statemate 281



Single-Element Functions

stm_r_tt_cell _hyper

Retrieves the contents of the specified cell in the given truth table, including hyperlinks to
referenced elements.

Function type: STRING

For elements

action an
activity ac
subroutine sb

Syntax

STM_R_TT_CELL_HYPER(IN el: ELEMENT ,IN row_num:

INTEGER, IN col_num:

INTEGER ,IN format: STRING, OUT status:INTEGER): STRING;

Arguments

Argument Input/Output Type Description
el In Statemate element | The element ID
row_num In INTEGER The row number of the cell
col_num INTEGER The column number of the cell
formtat In STRING Either FrameMaker or Word
status Out INTEGER The function status code

Status Codes

*

stm_success
stm_id_out_of_range
stm_id_not_found
stm_unresolved

stm_missing_truth_table

stm_truth_table_invalid_row

stm_truth_table_invalid_column

282

Documentor Reference Guide



List of Functions

stm_r_tt row_hyper

Returns a list of strings that represents a row in the truth table, including hyperlinks to
referenced elements. Each string in the list includes the text in the truth table cell. The row's
index range is [0..num_of_rows-1]. Row O returns the list of table header strings.

Function type: LIST OF STRING

For elements

action an
activity ac
subroutine sb

Syntax
STM_R_TT_ROW_HYPER(IN el: ELEMENT ,IN row_num: INTEGER ,IN format: STRING,
OUT status: INTEGER): LIST OF STRING;
Arguments
Argument Input/Output Type Description
el In Statemate element | The element ID
row_num In INTEGER The row number of the cell
formtat In STRING Either FrameMaker or Word
status Out INTEGER The function status code
Status Codes
¢ stm_success
¢ stm_id_out _of range
¢ stm_id_not_found
¢ stm_unresolved
¢ stm_missing_truth_table
¢ stm_truth_table_invalid_row
¢ stm_truth_table_invalid_column
Rational Statemate 283



Single-Element Functions

stm_r_xx_default_val

Returns the default-value associated with the specified element.

Function type: STRING

For elements

condition co
data-item di
data-type dt
local data Id
field fd

Syntax

stm_r_xx_default_val(id, status)

Arguments
Argument Input/Output Type Description
id In Statemate element | The element ID
status Out INTEGER The function status code
Status Codes

¢ stm_success
¢ stm_id_out _of range

¢ stm_id_not_found

284

Documentor Reference Guide



List of Functions

stm_r_component_param_binding

Returns the value bound to the formal parameter of the specified component’s instance.

Function type: STRING

For elements

Syntax

activity ac
condition co
data-item di
event ev

STM_R_COMPONENT_PARAM_BINDING(IN ins: ELEMENT, IN formal :STRING, OUT status:
INTEGER) : STRING;

Arguments

Argument

Type

Description

inst_boxid

Statemate element

The element ID.

formal_param_name

STRING

The formal parameter name.

If this is a data-element (from the information
stub matrix in the DDE), the function returns the
corresponding data-element. If this argument is
the stub’s name, the function returns the
information flowing on the arrow connected to
that stub.

status

Out

int

The function status code.

Status Codes

¢ stm_success

¢ stm_id_out_of_range

¢ stm_name_not_found

Rational Statemate

285



Single-Element Functions

stm_r_component_param_mode

Returns the mode of the formal parameter of the specified component’s instance.

Function type: INTEGER

For elements

Syntax

activity ac
condition co
data-item di
event ev

STM_R_COMPONENT_PARAM_MODE(IN ins: ELEMENT, IN formal :STRING, OUT status:
INTEGER) : STRING;

Arguments

Argument

Type

Description

inst_boxid

In Statemate element

The element ID.

formal_param_name

In STRING

The formal parameter name.

If this is a data-element (from the information
stub matrix in the DDE), the function returns
the corresponding data-element. If this
argument is the stub’s name, the function
returns the information flowing on the arrow
connected to that stub.

status

Out int

The function status code.

Status Codes

¢ stm_success

¢ stm_id_out of _range

¢ stm_name_not_found

286

Documentor Reference Guide



List of Functions

stm_r_stubs_names

Returns a list of stub names of the specified component instance.

Function type: LIST OF STRING

For elements

Syntax

STM_R_STUBS_NAMES(IN ins: ELEMENT, OUT status: INTEGER):LIST OF STRING;

activity

ac

Arguments
Argument Input/ Type Description
9 Output yp P
inst_boxid In Statemate element The element ID
status Out INTEGER The function status code

Status Codes

¢ stm success

¢ stm_id_out _of _range

¢ stm name_not_found

Rational Statemate

287



Single-Element Functions

stm_r_information_stub_names

Returns a list of stub names flowing through an info-flow of the specified component instance.

Function type: LIST OF STRING

For elements

activity

ac

Syntax

STM_R_INFORMATION_STUB_NAMES((IN ins: ELEMENT, IN formal: STRING, OUT status:

INTEGER) :LIST OF STRING;

Arguments
Argument Input/ Type Description
Output
inst_boxid In Statemate element The element ID
formal_param_name | In STRING The formal parameter name
status Out INTEGER The function status code

Status Codes
¢ stm_success
¢ stm_id_out of _range

¢ stm_name_not_found

288

Documentor Reference Guide



List of Functions

stm_r_sb_connected_statechart

Returns the 1D of the procedural statechart connected to the specified subroutine.
Function type
CHART

For elements

subroutine ‘ sb ‘

Syntax

stm_r_sb_connected_statechart (sb_id, status)

Arguments
Argument Input/Output Type Description
sb_id In Statemate element | The element ID
status Out INTEGER The function status code
Status Codes

¢ stm_success
¢ stm_id_not_found
¢ stm_id_out of _range

¢ stm_no_connected_chart

Rational Statemate 289



Single-Element Functions

stm_r_sb_connected_flowchart

Function type: CHART

For elements

Description:

subroutine

sb

Returns the ID of the procedural flowchart connected to the specified subroutine.

Syntax

stm_r_sb_connected_flowchart (sb_id, status)

Arguments

Argument Input/Output Type Description
sb_id In Statemate element | The element ID
status Out INTEGER The function status code

Status Codes

¢ stm success

¢  stm _id_not_ found

¢ stm_id_out of _range

¢ stm no_connected _chart

290

Documentor Reference Guide



DGL Statement Reference

Document Templates provides general information about the Document Generator Language
(DGL), including its overall use, conventions, and a detailed description of the types of statements
used in programming document templates. This section provides a comprehensive reference for
the DGL statements.

This section presents the statements in alphabetical order by name or keyword. For each DGL
statement, the following information is provided:

+ Name - The keywords used to write the statement.
+ Description - A detailed description of the statement and what it does.

+ Syntax - A general syntax description of the statement’s structure, including parameters,
qualifiers, and options.

The syntax section uses the following conventions:
+ Except for literal strings, DGL statements are not case-sensitive, and your input can be in

either upper- or lowercase. However, upper- and lowercase letter are used in the syntax
section to indicate the following:

+ Keywords are shown using uppercase letters.

+ Words written entirely in lowercase indicate variable qualifiers or parameters.
+ ltems are optional when written inside square brackets [].
+ The pipeline symbol (|) denotes “or” between items.

+ Ellipses (...) indicate multiple item occurrences. Ellipses can appear horizontally or
vertically.

Consider the following examples:

ALPHA beta [gamma]
ALPHA is a statement that takes a required qualifier beta, and might take an optional
qualifier, gamma.

JUNK filename [,filename...]

JUNK is a statement that takes a file name as a parameter. You can specify multiple
file names, separating them with commas.

Rational Statemate 291



DGL Statement Reference

Note

Each DGL statement must be concluded by a semicolon. This is shown in the statement
syntax. Flow control and structure statements can contain a number of statements. Multiple
statements can be contained on a single line, or a single statement can span several lines.

+ Notes - Special points of interest regarding the use of the statement.
¢ Examples - Examples that illustrate how to use the statement.

+ See Also - This refers you to the section of this manual where the particular statement is
explained.

The remainder of this section presents the DGL statements in alphabetical order.

¢ ASSIGNMENT

¢ BEGIN
¢ CLOSE
¢ COMMENT

¢ CONSTANT

¢ END

¢ EXECUTE
¢ EXIT

¢ FEORI/LOOP

¢ IF/THEN/ELSE
¢ INCLUDE

¢ OPEN

¢ PARAMETER

¢ PROCEDURE

¢ READ
¢ REPORT
¢ SEGMENT

292 Documentor Reference Guide



¢ SELECT/WHEN
¢ STOP

¢ IABLE

¢ TEMPLATE

¢ VARIABLE

¢  VERBATIM

¢  WHILE/L OOP
¢ WRITE

Rational Statemate 293



DGL Statement Reference

ASSIGNMENT

Description

Assigns the value of an expression to a variable. An assignment statement should be
interpreted as follows:

The variable on the left-hand side of the statement is assigned the value of the expression on
the right-hand side.

The expression and the variable must be of the same or compatible type. If the expression is of
type STATE, ACTIVITY, and so on, the variable is of the same type, or of type ELEMENT.

Syntax

variable:= expression;

Notes

The expression and the variable must be of the same or compatible type. If the expression is of
type STATE, ACTIVITY, and so on, the variable is of the same type or of type ELEMENT.

Example

VARIABLE
LIST OF STATE st_list;
LIST OF ACTIVITY act_list;
LIST OF ELEMENT el_list;
BEGIN

el_list .= st_list + act_list;

END:

See Also

¢ CONSTANT

¢ PARAMETER

¢ VARIABLE

¢ TEMPLATE Statement

294 Documentor Reference Guide



BEGIN

BEGIN

Description

Delineates the boundaries of a template section. Any number of other DGL statements can be
between the BEGIN and END. The statements are optional; a section having no statements
between the BEGIN and the END is legal.

Syntax

BEGIN

[statement;]

END;
Parameters

Parameter Description
statement A comment, or DGL statement other than structure or
declaration type statements

Notes

BEGIN and END always appear as a pair. Note that there is no end-of-statement symbol (;) after
BEGIN.

Example

SEGMENT SEG1;
VARIABLE
STRING name;
STATE state-chart;
INTEGER status;
BEGIN
name:= stm_r_st_name (state_chart, status);
IF status = stm_success AND name <> >~ THEN
WRITE (’.sh 17> , name, “”\n”);
WRITE (°\n”);
ELSE
WRITE (Cempty name or error status\n’);
END IF;
END ;

Rational Statemate 295



DGL Statement Reference

See Also

¢ COMMENT

¢ END

¢ PROCEDURE
¢ SEGMENT

¢ TEMPLATE

¢ Structure Statements

296 Documentor Reference Guide



CLOSE

CLOSE

Description

Closes files after they have been opened with the OPEN statement. After opening a file and
passing information to and from it, use the CLOSE statement to prevent further information
from being passed to or from it.

Syntax

CLOSE (fI);

Parameters
Parameter Description
Tl An identifier of type FILE, previously assigned by the OPEN
statement
See Also
¢ OPEN
¢ READ

¢  VARIABLE Statement

Rational Statemate 297



DGL Statement Reference

COMMENT

Description

Prefaces a comment in a template.

Comments are used in templates for documentation purposes. When processing a template, the
Documentor compiler ignores these comments. A comment can contain any printable ASCII
character. The comment symbol (double-dash) can appear anywhere a space can, except
within a literal string.

Comments are preceded by two dashes. The comment symbol can start anywhere in a line,
except within a literal string. The Documentor ignores all the characters after the comment
symbol until the end of the line.

For example:

-- This line contains program comments.

Syntax

-- free-text

Parameters

Parameter

Description

free-text

Any printable string

Example

-- This

See Also

*

o

EGIN

m
v}

END
PROCEDURE
SEGMENT
TEMPLATE

Structure Statements

is a valid comment line.
a:=a+l; -- This is another comment.

298

Documentor Reference Guide



CONSTANT

CONSTANT

Description

Declares constants (identifiers whose values do not change throughout the template or during
execution).

The keyword CONSTANT appears only once in the declaration section, before the data-type
assignments for constants. Each data-type statement can be followed by as many identifiers of the
same type as you want to define. For example:

CONSTANT integer a:=1, b:=2, c:=3;
Similarly, as many type statements as you want to define can follow the CONSTANT keyword.
For example:

CONSTANT
STRING activity name := ’Print’;
FLOAT a:=3.243;
INTEGER c:=6;

Note: The constant type cannot be a Statemate element or a LIST OF type.

The identifiers in the CONSTANT statement must have their values assigned in the statement.
The value can be any expression that does not contain variables or parameters.

Syntax
CONSTANT
type identifier := value [, identifier := value, ...];
[ type identifier := value, |
Parameters
Parameter Description
type The type of constant (integer, float, string, or Boolean)
identifier The name of the constant
value An expression that specifies the value of the constant

Rational Statemate 299



DGL Statement Reference

Example

CONSTANT
STRING out_file :=”/usr/group/docl2.stm” ;

STRING in_file = ”/usr/group/insertl2._doc”’;

INTEGER page_length := 66, page_width:=72;
See Also

¢ ASSIGNMENT

¢ PARAMETER

¢ VARIABLE

¢ TEMPLATE Statement

300

Documentor Reference Guide



END

END

Description
Used as part of the BEGIN/END construct in the delineating of template sections.

See the BEGIN statement for more information.

Syntax

BEGIN
[statement;]

END;

See Also

¢ BEGIN

¢ COMMENT
¢ PROCEDURE
¢  SEGMENT
¢ TEMPLATE

¢ Structure Statements

Rational Statemate 301



DGL Statement Reference

EXECUTE

Description

Invokes a program external to the Statement system. This statement invokes a program that is
external to Statemate. The Documentor searches for the program name using the regular
system search path, invokes the program, and sends its standard output to the document’s
output segment file.

The EXECUTE statement function operates as a function that returns either stm_success or
stm_error.

Syntax

[status := ] EXECUTE (calling_sequence);

Parameters

Parameter Description

calling_sequence A string expression (or string literal) that specifies the name and
parameters of an external program.

The cal ling_sequence is written in the same manner as when
invoking the program from the shell command line. Therefore,
the calling sequence can include arguments to be passed to the
program. However, no evaluation of these arguments is done in
the template—the calling sequence is passed as a pure string.

Example

This following statement calls the operating system function DATE and writes the date to the

output file:
EXECUTE (“date’);

See Also

¢ INCLUDE

¢ REPORT

¢ TABLE

¢  VERBATIM

¢  WRITE

¢ READ Statement

302 Documentor Reference Guide



EXIT

EXIT

Description

Exits from the current loop to the statement after the loop construct or to the construct that
contains the current loop.

Typically, a condition would be tested in a loop, and the exit would be based upon the
evaluation of that condition.

Syntax
EXIT;

Note
EXIT can be used only inside a FOR and WHILE loop.

Example

This example continues the execution of the statements between the LOOP and END LOOP,
depending on the value of the conditiona > b.

The iterations go on as long as the status st is equal to 0. When st is not equal to
stm_success, it causes the iterations to stop. The IF statement here is used to force an
abnormal EXIT from within the WHILE loop.

The execution resumes at the next statement after the END LOOP.

WHILE a > b LOOP
md_id = stm_r_md (name, st);
IF st <> stm_success THEN
WRITE (“1llegal Status’);
EXIT;
END IF;

END LOOP:
See Also

¢ FOR/LOOP

¢ |E/THEN/ELSE
¢ SELECT/WHEN
¢ STOP

¢  WHILE/LOOP

¢ Control Flow Statements

Rational Statemate 303



DGL Statement Reference

FOR/LOOP

Description
Provides iterative execution of template statements.

The FOR/LOOP construct is used to execute iterative DGL statements. This statement executes
the statements between LOOP and END LOOP for each item in the specified list. The identifier is
a variable whose value is set sequentially to the items in the list. This variable can be used
within the body of the loop, but its value cannot be reassigned.

Alternatively, a range of integers can be specified in place of the list, as in the following
example:

FOR i IN {1..100} LOOP
statement;

END LOOP;
Syntax

FOR identifier IN list
LOOP [statement;]

END LOOP;
Parameters
Parameter Description

identifier A variable whose value is set sequentially to the items in the
list. The type of the identifier must match the type of the
1ist. This variable can be used within the body of the loop.

list A list expression.

statement A DGL statement.

304 Documentor Reference Guide



FOR/LOOP

Notes

The type of the variable identifier must match the type of the list. The list can be a range of
integers written as follows, where X is an integer variable:

FOR x IN {1..100} LOOP ...

Example
This example writes to the output file the names of all the states in the list statelist:

FOR id IN statelist LOOP
WRITE (°\n”, stm_r_st _name (id, status));
END LOOP;

See Also

¢ EXIT

¢ |E/THEN/ELSE
¢ SELECT/WHEN
¢ STOP

¢  WHILE/LOOP

¢ Control Flow Statements

Rational Statemate 305



DGL Statement Reference

IF/THEN/ELSE

Description

Provides conditional execution of template statements.

The 1IF/THEN/ELSE construct is used for conditional execution of DGL statements. The
statements following the THEN (and before any ELSE) are executed if boolean evaluates to
TRUE. If it evaluates to FALSE, the statements following ELSE are executed, when present.

Description

A Boolean expression

Syntax
IF boolean THEN
[statement;]
[ELSE
[statement;]
1
END IF;
Parameters
Parameter
boolean
statement

A DGL statement

306

Documentor Reference Guide



IF/THEN/ELSE

Example

IF a >= b THEN
EXECUTE (’DATE”);
INCLUDE ("sample.txt’);
ELSE
WRITE (Ca is less than b”);
END IF;

See Also

¢ EXIT

¢ EOR/LOOP

¢ SELECT/WHEN
¢ STOP

¢  WHILE/LOOP

¢ Control Flow Statements

Rational Statemate 307



DGL Statement Reference

INCLUDE

Description

Copies the text of the specified file to an output segment file. The text is passed to the file
verbatim and can contain formatting commands for the format processor used to produce the
formatted document.

The file can be an include file within Statemate or a file outside Statemate in the general file
system of the host computer.

Syntax

INCLUDE (file_description [, status])

Parameters

Parameter Description

file_description A file name or an identifier of type FILE. When it is a file
name, it can be any string expression, such as a literal
string inside quotes (for example, “ABC?) or an evaluated
expression that produces a file name (for example, a
variable that contains a file name).

The file name can include the directory path name of the
file, using the file name conventions of the host
operating system. If you do not specify the path name,
the Documentor searches the workarea for the file.

When the file_descriptionis afile identifier, the file
from which you are copying text must first be opened
with an OPEN statement in OUTPUT mode (see OPEN).

status The function status code. It returns one of the following
values:

e stm_success—Successful execution of the
statement.

e stm_error—Failure.

308 Documentor Reference Guide



INCLUDE

Example
In this example, a UNIX file external to Statemate is included in the output segment:

INCLUDE(”/Zusr/group/gx_Tile”);

See Also
¢ EXECUTE
¢ REPORT
¢ TABLE
¢  VERBATIM
¢ WRITE

¢ READ Statement

Rational Statemate 309



DGL Statement Reference

OPEN

Description
Opens files or the dialog area so text can be written to or read from them.

This statement is used with mode=0UTPUT to open a file or the dialog area so that a subsequent
WRITE statement can pass text to it, and with mode=INPUT for a subsequent READ statements.

When writing to the dialog area, the syntax is as follows:
OPEN (fl, ’DIALOG”, OUTPUT);

Syntax

OPEN (fl, file_name, mode [, status]);

Parameters
Parameter Description
1 An identifier of type FILE, assigned by the OPEN statement.
file_name The name of the file to (or from) which to pass the text, or the

dialog area. If the file opened for output does not exist, this
statement creates a new file. If the file exists, the OPEN statement
overwrites the existing contents of the file.

To open the dialog area, use the string “DIALOG” (with
apostrophes) for this parameter. Open the dialog area so you
can pass run-time messages to it.

mode If mode=0OUTPUT, the OPEN statement opens a file or the dialog
area so a subsequent WRITE statement can pass text to it.

If mode=INPUT, the OPEN statement opens a file or the dialog
area so a subsequent READ statement can pass text to it.

status The function status code. It returns one of the following values:
» stm_success—Successful execution of the statement.
e stm_error—~Failure.

310 Documentor Reference Guide



OPEN

Notes

The name of the file is specified in accordance with the conventions of the operating system. If
the directory is not specified as part of the file name, the workarea is searched for the file. If
the file opened for output does not exist, this statement creates a new file. If the file exists, it is
initialized by the OPEN statement (the written information overwrites the existing contents of

the file).

See Also

¢  VARIABLE Statement

Rational Statemate 311



DGL Statement Reference

PARAMETER

Description
Declares variables and values within a template.

There are template parameters for the entire template and procedure parameters for
procedures. Template parameters are variables whose value can be changed interactively when
the template is executed.

You can declare template parameters only in the initiation section. The keyword PARAMETER
appears only once in the declaration section, before the data-type assignments for parameters. Each
data-type statement can be followed by as many identifiers of the same type as you want to define.
For example:

PARAMETER STRING activity_name, state_name, event_name;
As many type statements as desired can follow the PARAMETER keyword. For example:

PARAMETER
STRING activity_name;
FLOAT a:=3.243;
Template parameters cannot hold a Statemate element, although it is legal for a procedure
parameter to be of this type. Procedure parameters are In/Out parameters.

Value assignments for parameter statements are optional and are allowed only for template
parameters. If it is assigned, it represents the default value of the parameter at the first generation
of a particular document. The value can only be a literal constant, not a constant identifier or an
expression.

Note: Avoid changing template parameters within the template. In addition to being
confusing, there might be inconsistent results when parameters are changed
within segments.

Syntax
PARAMETER

type identifier [:= value][, identifier [:= value],.-..];
[type identifier [:= value],...]

312 Documentor Reference Guide



PARAMETER

Parameters
Parameter Description
type The parameter type (integer, float, string, or Boolean—or a
list of these types).
identifier The name of the parameter. The maximum length of the
identifier is 16 characters. If you specify more than 16
characters, the name is truncated.
value value
Example
PARAMETER

STRING statechart _name;
INTEGER page_width := 80;

See Also

¢ ASSIGNMENT

¢  CONSTANT

¢ VARIABLE

¢ TEMPLATE Statement

Rational Statemate 313



DGL Statement Reference

PROCEDURE

Description

Begins a procedure section. It assigns an identifying name to the procedure and defines the return
type, if the function returns a value.

The definition of a procedure is as follows:

PROC <procname> [return <type>];
[PARAMETER
<type> <parml>;

) éi)-/pe> <parmN>;

[VARIABLE
var section;

1
BEGIN
<statements>;

return <expression>;
END;

Syntax

PROCEDURE procedure_name [RETURN type];

Parameters
Parameter Description
procedure_name The name of the procedure. The maximum length is 16
characters.
RETURN type Assigns the value that is returned by the function and
returns from the procedure.
Notes

The scoping rules for procedures are as follows:
+ For simplification reasons, procedures are not lexically nested within other
procedures, nor are they nested within segments.
¢ Like segments, procedures can see template global variables.

* Procedures can be referenced by any template segment and can be defined
anywhere within the template (but not within segments).

¢ Parameters are always In/Out.

314 Documentor Reference Guide



PROCEDURE

Example

TEMPLATE sss;
PARAMETER
string plot_dir
string appendix
VARIABLE
string module_name;
string key_bg , key en;

BEGIN
open (da, ’DIALOG”, OUTPUT);

PROCEDURE get_generic_info;
PARAMETER

activity cap; -- Input
activity capdef;

boolean is_generic;
element chrt; -- Outputs
VARIABLE

integer st, stl, st2, st3;
activity acttmp;
BEGIN

capdef := cap;

is_generic := Talse;

IF (stm_r_mx_generic_instance_mx ({cap}, st) <> {})

THEN

chrt:=stm_list_first_element

(stm_r_ch_defining_ac({cap},st),st2);

IF (st = stm_success AND st2 = stm_success) THEN
acttmp := stm_list_first_element
(stm_r_ac_root_in_ch({chrt},st),st2);

IF (st = stm_success AND st2 = stm_success) THEN
acttmp := stm_list_first_element
(stm_r_ac_internal_ac(
stm_r_ac_logical_sub_of ac ({acttmp}, st)
,St2),st3);

IF (st = stm_success AND st2 = stm_success AND
st3 = st2) THEN capdef := acttmp;
is_generic := true;

END IF;

END IF;

END IF;

END IF;
END;

PROCEDURE put_plot_lines;
PARAMETER
float acty; -- Whatever it means
string title;
VARIABLE
integer lines;
BEGIN
acty = (acty/INCH_PER_LINE) + 0.5;
lines := 0;
WHILE (acty > 0) LOOP
acty = acty-1;

Rational Statemate 315



DGL Statement Reference

lines = lines + 1;
END LOOP;
write (C\n<HardReturn>7);
write (’\n First line of plot 7, title,”
(Delete between lines)--->>>7);
WHILE (lines > 0) LOOP

write (C\n<HardReturn>\nReserved for plot ---> ~,fl);
lines := lines - 1;
END LOOP;

write (C\n<HardReturn>7);
write (’\n Last line of plot 7, title,”’
(Delete between lines)--->>>7);

END;

PROCEDURE put_bindings ;
PARAMETER
element cap;
VARIABLE
element par;
list of element formals;
integer st, etype;
string title, stype, actual;
BEGIN
-- Specify the bindings
formals := stm_r_mx_parameter_of_ch
(stm_r_ch_defining_ac ({cap}, st), st):

PROCEDURE put_mini_spec;
PARAMETER
activity act;
VARIABLE
integer stl,st;
string mini_spec;
BEGIN
mini_spec := stm_r_ac_mini_spec (act, stl);
IF (stl = stm_success) THEN
write (’\n<Bold>\n?);
write (CMini-Spec :7);
write (’\n<NoBold>\n”);
write (’\n\n”);
lwrite (mini_spec);
write (C\n\n”);
END IF;
IF (st <> stm_success and stl <> stm_success) THEN
write (CTBD.”);
END IF;
END ; -- put_mini_spec

SEGMENT body;
cap:=....
put_bindings (cap);
put_mini_spec (cap);

316 Documentor Reference Guide



PROCEDURE

See Also
¢ BEGIN
¢ COMMENT
¢ END
¢ SEGMENT
¢ TABLE

¢ Structure Statements

Rational Statemate 317



DGL Statement Reference

READ

Description

Reads a line of information from an external file into variables in the template. The numeric
elements in the input line are separated by blanks or tabs. Reading to a string variable reads the rest

of the line.

The READ statement can operate as a function that returns either stm_success,
stm_cannot_read_file, or stm_end_of file.

Syntax

READ (Fl, variablel, variable2, ...);

Parameters
Parameter Description
fl An identifier of type FILE, that points to a file previously opened
by the OPEN statement in INPUT mode
variablel, Identifiers of type integer, float, or string
variable2. ..
Example

In this example, i is an integer and str is a string. This statement, when applied to an input line 12
May 2003, resultsin i=12, str="May 2003”.

READ(fd, i, str)

See Also
¢ CLOSE
¢  OPEN

¢ VARIABLE Statement

318 Documentor Reference Guide



REPORT

REPORT

Description
Invokes the Reports tool to generate a predefined report as part of a document.

For example:

stm_rpt_tree(list,5);

This call produces a tree report for the items in a list represented by the variable list to a depth
of 5 in the hierarchy. The report is included in the output file.

The output from the Reports tool contains formatting commands applicable to the format
processor attached to the template. If no formatter is specified, the Reports tool cannot be
invoked and the Documentor generates an error message.

Each of the predefined reports is invoked for a list of elements. The input parameter that
represents this list is denoted by a variable name that must be of type list of one of the
Statemate element types. This variable, along with all other identifier names used in the calling
sequence, must be declared in an appropriate declaration section. For example:

VARIABLE
LIST OF ACTIVITY ac_list;

The identifier ac_list can be assigned a list of activities and then be included in a statement that
generates a property report, as follows:

stm_rpt_dictionary (ac_list,...);

The report is generated for each item in the list represented by the ac_list variable.

A number of arguments are used to define the parameters for each report. Some are called
“single-character string arguments,” which are used to indicate restricted parameter choices.
Consider the following interface report statement

stm_rpt_interface (elist, ’A”, ._..);

The value of the second argument, A, indicates that the interface report should be of type
activities; specifying an M for this parameter would indicate that the report should be generated
for modules.

The single-character string arguments can be more than one character, but only the first
character of the string is actually passed to the Reports tool. If a non-valid character is passed
to the Reports tool, the report is not generated and an error status code is returned.

Rational Statemate 319



DGL Statement Reference

Some of the arguments are Boolean and are evaluated as TRUE or FALSE to indicate whether
some parameter is set. For example, consider the following property report statement:

stm_rpt_dictionary (elist, true, ...);

The Boolean constant true indicates that the long description will be included in the report.
Syntax

stm_rpt_<report_name> (report_parameters);

Parameters
Parameter Description
report_name The type of report to be generated
report_parameters The report parameters

Supported Statemate Reports

The supported report types are as follows:

¢ Attribute Report
¢ Property Report
¢ Interface Report
¢ List Report

¢ N2 Chart Report
¢ Protocol Report

¢ Resolution Report

¢ Structure Report
¢ Tree Report

320 Documentor Reference Guide



REPORT

Attribute Report

Syntax

stm_rpt_attribute (elist, attrs, attr_title);

Parameters

Parameter

Description

elist

A list expression of Statemate elements for which the report
is produced.

attrs

A list of strings that contains the specific attribute names for
which the report should be generated. If this list is empty, the
report retrieves all the attributes for each element.

attr_title

A string indicating that the attribute value will precede its
element name in the report.

Property Report

Syntax

stm_rpt_dictionary (elist, ldes, attr, attr_title);

Parameters
Parameter Description

elist A list expression of Statemate elements for which the report is
produced

Ides A Boolean expression indicating whether to include the long
description of each element in the report

attr A Boolean expression indicating whether to include the attributes of
an element in the report

attr_title A string indicating the attribute names whose value will precede the
element name in the report

Rational Statemate

321



DGL Statement Reference

Interface Report

Syntax
stm_rpt_interface (elist, rtype, chart, lact Imod, ftype,
dis, names);
Parameters
Parameter Description
elist A list expression that must be of the type list of modules, for which the report is
produced.
rtype A single-character string argument indicating the report type, as follows:
« A—Activity interface report
« M—Module interface report
« |—Information interface report
chart A single-character string argument indicating which arrows are taken into
account when the report is generated. The possible values are as follows:
* A—Activity-chart arrows
¢ M—Module-chart arrows
lact An argument of type list of activities indicating which activities are taken

into account when the report is generated. If lact is an empty list, the default is
all activities implemented by the center module.

If chart is ‘M’, the lact parameter has no use, but still must be specified. For
simplicity, use the null list (null).

Imod An argument of type list of modules indicating the side modules that
interface with the central module for which the report is to be generated.
If Imod is empty, the default behavior is to use all modules except the
center module’s own ancestors and descendants.

ftype A single-character string argument indicating the kind of information flow to
appear in the report. The possible values are as follows:

« D—Data-flows
« C—Control-flows
« B—Both data-flows and control-flows

dis A single-character string argument indicating the kind of information to appear in
the report. The possible values are as follows:

¢ |—Flow labels
« P—Parent information items
« B—Basic information items

names A single-character string argument specifying how names appear in the report.
The possible values are as follows:

« N—The name appears for elements that flow between the boxes.
* S—The synonym appears for elements that flow between the boxes.

322 Documentor Reference Guide



REPORT

List Report

Syntax
stm_rpt_list (elist);

Parameters

Parameter Description

elist A list expression of Statemate elements for which the report is
produced

N2 Chart Report

Syntax

stm_rpt_n2chart(elist, names, level, env, chart, dis, ftype);

Parameters

Parameter Description

elist A list expression that must be of the type list of modules or list of
activities, which specifies the elements in the diagonal.

names A single-character string argument specifying how names appear
in the report. The possible values are as follows:

< N—Names of the elements appear on the diagonal of the
matrix.

¢ S—Synonyms of the elements appear on the diagonal of the
matrix.

level A single-character string argument indicating what appears on the
diagonal when both parent box and sub-box are in the list. The
possible values are as follows

* B—The sub-box is placed on the diagonal of the matrix.
* P—The parent box is placed on the diagonal of the matrix.

env A Boolean expression. If this is TRUE, the environment is added
to the matrix.

chart A single-character string argument indicating which arrows are
taken into account when the report is generated. The possible
values are as follows:

« A—Activity-chart arrows
« M—Module-chart arrows

Rational Statemate 323



DGL Statement Reference

Parameter Description

dis A single-character string argument indicating the kind of
information to appear in the report. The possible values are as
follows:

¢ |—Flow labels
« P—Parent information items
¢ B—Basic information items

ftype A single-character string argument indicating the kind of
information flow to appear in the report. The possible values are
as follows:

« D—Data-flows
« C—Control-flows
« B—Both data-flows and control-flows

Protocol Report

Syntax

stm_rpt_protocol (elist, attr_title);

Parameters
Parameter Description
elist A list expression of Statemate elements for which the report
is produced.
attr_title A string indicating the attribute name whose value will
precede the element name in the report.

324 Documentor Reference Guide



REPORT

Resolution Report

Syntax
stm_rpt_resolution (clist, type)

Parameters

Parameter Description

clist A list of charts. It determines the scope of the report.

The stm_type of elements to include in the report. The possible
types are as follows:

e stm_textual

« stm_graphical
e stm_mixed

e stm_state

e stm_module

e stm_activity

e stm_data_store

Structure Report

Syntax
stm_rpt_structure (elist, width);
Parameters
Parameter Description
elist A list expression of Statemate elements for which the report is
produced.
width An integer argument indicating the page width (in characters) to
be used for the report.

Rational Statemate 325



DGL Statement Reference

Tree Report

Syntax

stm_rpt_tree (elist, depth);

Parameters
Parameter Description
elist A list expression of Statemate elements for which the report is
produced.
depth An integer argument indicating the to what hierarchical level the
report should be generated. For all levels, use the value “99".
See Also
¢ EXECUTE
¢ INCLUDE
¢ TABLE
¢  VERBATIM
¢ WRITE

¢ READ Statement

326

Documentor Reference Guide



SEGMENT

SEGMENT

Description

Starts a new segment section. It is the first statement of a segment and assigns an identifying name to
it. The segment name is used by the Documentor in its operation forms to identify the output

segments see Creating a Document).
Syntax

SEGMENT segment_name;

Parameters

Parameter

Description

segment_name

A name used to identify the segment. This identifier is
limited to a maximum length of 16 characters. Characters
in excess of this amount are truncated and do not appear
when the segment names are displayed in the operations
forms.

Example

SEGMENT chapter_2B;
See Also

¢ BEGIN

¢ PROCEDURE
¢ TEMPLATE

¢ Structure Statements

Rational Statemate

327



DGL Statement Reference

SELECT/WHEN

Description

Performs conditional execution of DGL statements. This statement is more powerful than the
IF/THEN/ELSE statement in that it allows you to systematically list multiple conditions for
statement execution.

Note that WHEN statements are composed of two parts: the trigger to the left of the arrow, and
statements on the right side of the arrow. The trigger is any valid Boolean expression. The
statements following a trigger are performed only when the trigger is TRUE. Whether or not
these statements are actually executed also depends on the value of the selection_mode. In
addition:

+ The WHEN ANY statements are executed when one or more of the preceding WHEN
statements have been executed.

+ The OTHERWISE statements are executed only if no WHEN statement within the
SELECT construct is triggered.

Regardless of the mode, when all of the triggers are false, the tool will execute the OTHERWISE
clause, if it exists.

Syntax

SELECT [selection_mode]

WHEN trigger => statements
[ WHEN trigger => statements ]

[ WHEN ANY => statements 1

[ WHEN trigger => statements ]
[ WHEN ANY => statements 1

L OTHERWISE => statements 1
END SELECT ;

328 Documentor Reference Guide



SELECT/WHEN

Parameters
Parameter Description
trigger A Boolean expression.
selection_mode Specifies the selection mode, which determines the way the
statements are checked for possible execution. The possible values
are as follows:
¢ FIRST—Only the first true trigger in the entire SELECT construct is
executed; the rest are ignored, regardless of whether their
triggers are TRUE. This is the default value.
« ANY—ITf the selection mode is ANY, the statements are
executed whenever their corresponding trigger is TRUE.
statement The DGL statements to invoke.
Notes

Both the WHEN ANY and the OTHERWISE statements are optional.
The Documentor permits the nesting of SELECT/WHEN constructs.
Example

Consider the following example, where a, b, and c are numeric variables:

SELECT ANY
WHEN a = 5 => b = 10 ;
WHEN a > b => b = 10 ;
WHEN a = 0 => b = 0 ;
WHEN ANY => write ("a may influence b”) ;
WHEN ¢ = 5 => b =5 ;
WHEN ¢ > b => b :=

5
WHEN 0=>b :=0 ;
WHEN ANY => write
OTHERWISE => write (
END SELECT;

c may influence b”) ;
b has not been changed”) ;

The execution is determined by the following:

+ Each wWHEN statement is triggered if its corresponding expression is evaluated to
TRUE.

+ The first WHEN ANY statement is triggered if a is equal to 5, greater than b, or equal
to zero. The second WHEN ANY statement is triggered if at least one of the previous
conditions is true with respect to the variable ¢ instead of a.

* The OTHERWISE statement is triggered only if the value of b has not been changed
within the SELECT statement’s evaluation.

When processing a WHEN ANY statement, the Documentor only “looks back” to the
previous WHEN ANY construct (if one exists). Therefore, in this example, ifa = 0 and

Rational Statemate 329



DGL Statement Reference

none of the tests of ¢ were true, the WRITE statement’s message “c may influence b”
is not issued.

Using the same example, what would happen if the selection mode is FIRST instead
of ANY, and the conditions a > b and c = 5 are both true?

In this case, the assignment b:= 10 and the first write message (the corresponding
WHEN ANY statement) are executed. The assignment of b to 5, along with its
corresponding WHEN ANY statement are not done because ¢ = 5 is not the first true
trigger.

The statements following the => symbol in the WHEN constructs can be any valid
DGL statements. You can even enter a SELECT construct at this point. This allows
you to nest SELECT constructs. There is no limit to the depth of nested SELECT

blocks.
See Also
¢ EXIT
¢  FOR/LOOP

¢ |E/THEN/ELSE
¢ STOP
¢  WHILE/LOOP

¢ Control Flow Statements

330 Documentor Reference Guide



STOP

STOP

Description
Stops execution of the template.

Typically, a specific condition is tested and the template is stopped if this condition has a value
for which further processing is meaningless.

Syntax
stop;
Example

The following example checks whether the specified system_name is valid. If not (if an error
has been detected), a message is issued to the dialog area and the template is stopped.

md := stm_r_md (system_name, status);
IF (status <> stm_success) THEN

WRITE (dialog_area, “Execution Stopped due
to error’);

STOP;
END IF;
See Also
¢ EXIT
¢ FOR/LOOP

¢ IF/THEN/ELSE
¢ SELECT/WHEN
¢  WHILE/L OOP

¢ Control Flow Statements

Rational Statemate 331



DGL Statement Reference

TABLE

Description

Creates a simple table to be included in your document. You specify the number of columns
and their widths, and the information to be included in the table in the statement parameters.

Syntax

stm_table_simple (title,
anchor]);

Parameters

columns, contents, page_width, page_height [,

Parameter

Description

title

The title of the table. The title is centered over the table.

columns

A list of integers that specifies the width of each column, in
number of characters. For example, {163} & {16} & {20}
specifies a table having three columns, the first two columns
being 16 characters wide and the last column being 20
characters wide.

contents

A list of strings that contain the information to be entered into each cell
of the table. The Documentor fills the table horizontally, row by row,
depending on how many columns were specified.

For example, if there are three columns, and you specified the
following contents:

{'Project Name’} & {'Date’} & {'Location’} & {'Alpha’} &{'April 20047} &
{'Boston’}

The resultant table would be:

Project

Date Location
Name

Alpha April Boston
2008

page_width

Specifies the width of the page, in inches. This parameter is relevant
for Interleaf only—for other systems, specify 0.0 for this parameter.

332

Documentor Reference Guide




TABLE

page_height

Specifies the height of the page, in inches. This parameter is relevant for Interleaf
only—for other systems, specify 0.0 for this parameter.

anchor
This parameter is relevant for Interleaf only. For formatters other than Interleaf,
precede the table with your system’s “no fill” and “no adjust formatting” commands.
For Interleaf, this parameter is a character string that indicates where to place the
table. The possible values are as follows:
A—At the anchor.
F—Following the anchor. This is the default value.
Example 1

This example produces a table named “Table-1", where the page is 6 inches wide and 9.5
inches long. The column widths are determined by the list held in the integer list variable
col_list, and the cell contents are held in the string list variable cell_list.

stm_table_simple ("Table-1", col_list, cell_list,
6.0, 9.5);

Example 2

The following example shows how to generate a table using function calls. Note that in the
example, new values are repeatedly assigned to the List_str variable to build the table.

The first statement uses the nroff commands for no fill (.nf) and no adjust (.na). These
commands cause the word processor to take the text “as-is.” Some word processors see this
mode as verbatim or literal. The last statement uses the nroff commands . fi and .ad to return
to fill and adjust modes.

WRITE (C\n.nf \n.na \n”);

BEGIN
List_str:= {ACTIVITY NAME*} & {’ID’} & {’LANGUAGE’};*
act_list:=stm_r_ac_logical_desc_of_ac({act_chart},st);
FOR act IN act_list LOOP
List_str:=List_str & {stm_r_ac_name (act, st)};

attr_list:=stm_r_ac_attr_val (act, *I1D_NUMBER”, st);

IF (st = stm_success) THEN
attr_val:=stm_list_first_element (attr_list, st);
List_str:=List_str & {attr_val};

ELSE

List_str:=List_str & { *N/A’};

END IF;

attr_list:=stm_r_ac_attr_val(act, *LANGUAGE”, st);
IF (st = stm_success) THEN
attr_val:=stm_list_Ffirst_element (attr_list, st);

Rational Statemate 333



DGL Statement Reference

List_str:=List_str & {attr_val};

ELSE

List_str:=List_str & {°N/A’};

END 1F;
END LOOP;

WRITE (C\n.nf\n_na\n”);
title := "Table CC1. Simple Table Example~”;

Col_list := {16} & {10} & {40};

stm_table_simple(title, Col_list, List_str, pg w, pg_h,

WRITE “¢*\n_fi\n.ad\n");

END;

The formatted output is as follows:

ACTIVITY NAME ID LANGUAGE
FUNCTION1 AC1-Al.1 FORTRAN
FUNCTION2 AC1-Al1.2 N/A
FUNCTIONS3 AC1-Al5 ADA
FUNCTION4 AC1-Al.4 N/A

See Also

¢ EXECUTE

¢ INCLUDE

¢ REPORT

¢ VERBATIM

¢ WRITE

¢ READ Statement

334

Documentor Reference Guide



TEMPLATE

TEMPLATE

Description
Begins a template.

The TEMPLATE statement is the first statement in the template. It assigns an identifying name to the
template. This name is used for internal documentation purposes only and does not have to
correspond to the name you use to designate the template in the Create Template form.

Syntax

TEMPLATE template_name;

Parameters
Parameter Description
template_name The name of the template. This name is for
internal documentation purposes only.
Example

TEMPLATE document_574B;

See Also
¢ BEGIN
¢  COMMENT
¢ END

¢ PROCEDURE
¢ SEGMENT

¢ Structure Statements

Rational Statemate 335



DGL Statement Reference

VARIABLE

Description

Declares variables, which are identifiers whose values can be changed in other DGL
statements.

Variable values can be global when included in the initiation section, or local to a segment.

The keyword VARIABLE appears only once in the declaration section, before the data-type
assignments for variables. Each data-type statement can be followed by as many identifiers of the
same type as you want to define. For example:

VARIABLE STRING act_name, act_syn, act_desc;

Similarly, as many type statements as you want to define can follow the VARIABLE keyword.
For example:

VARIABLE
string activity_name;
float a := 3.243;
activity act_id;
Value assignments are optional. If they are assigned, they represent the default value of the
variable at the first generation of a particular document. The value can be any expression that

does not contain other variables or parameters.

Variables that are declared as Statemate elements and list of items cannot be assigned initial
values.

Syntax

VARIABLE
type identifier [:= value] [, identifier [:= value],...;
[type identifier [:= valuel,...;]

Parameters
Parameter Description
type The parameter type
identifier The name of the variable
variable The initial value of the variable

336

Documentor Reference Guide



VARIABLE

Notes

The assignment of initial values is optional. An initial value is an expression that cannot
contain other variables. Initial values are allowed only for integer, float, and string.

Example
VARIABLE

INTEGER status := O;
STATE statechart;
LIST OF STATE sub_list;
STATE sub_state, parent;
STRING name;

See Also

¢ ASSIGNMENT

¢ CONSTANT

¢ PARAMETER

¢ TEMPLATE Statement

Rational Statemate 337



DGL Statement Reference

VERBATIM

Description
Passes text literally to an output file.

When the verbatim symbols /@ and @/ frame text in the template file, the text is passed literally
(without interpretation) to the output segment file. Comments inside the frame, rather than being
ignored, are also passed literally. The end-of-statement character, “;”, is not required following the
concluding verbatim symbol.

Verbatim statements can be used to pass the following to the output file:

+ Formatting commands applicable to a specific formatter.

¢ Short text passages such as titles, opening remarks, and so on. Despite the absence
of any length restriction on verbatim text, longer text passages are usually passed
using the INCLUDE file statement.

Syntax

/@ verbatim_text @/

Parameters

Parameter Description

verbatim_text One or more lines of printable text characters

338 Documentor Reference Guide



VERBATIM

Example

Consider the following verbatim section:

SEGMENT sectionl;

BEGIN /@
-title ACTIVITY-SPEC
-skip 2

.center; AN ACTIVITY SPECIFICATION
-- This section will describe the
-- purpose of the activities.

/

-- this line will not appear in the output
END;

When the template is executed, the resulting output is as follows:

title ACTIVITY-SPEC

-skip 2

.center; AN ACTIVITY SPECIFICATION
-— This section will describe the
-- purpose of the activities.

See Also
¢ EXECUTE
¢ INCLUDE
¢ REPORT
¢ TABLE
¢  WRITE

¢ READ Statement

Rational Statemate

339



DGL Statement Reference

WHILE/LOOP

Description

Provides iterative execution of DGL statements. The execution of statements is determined by
evaluation of the boolean_expression.

The statements are executed until the expression evaluates to false. For example:

WHILE a > b LOOP
b :£ b + k;

END LOOP:

The statements between the keywords LOOP and END LOOP are executed as long as a is greater
than b.

Assume that b changes its value inside the loop and in one of the iterations the expression a >
b becomes false. In the next iteration, the expression is examined and, because a > b is now
FALSE, the execution of template statements continues with the first statement after the END
LOOP.

Syntax
WHILE boolean_expression LOOP
statements
END LOOP;
Parameters
Parameter Description
boolean_expression The Boolean expression used to test the conditions
statements One or more DGL statements
Notes

The value of boolean_expression must be altered within the loop, or an EXIT statement must
be executed in order to terminate the loop.

340

Documentor Reference Guide



WHILE/LOOP

Example

WHILE count < 25 LOOP
num_control := alpha / 5;
WRITE (count, num_control, *\n”;
alpha := synch +7;
count := count + 1;
END LOOP;

See Also

¢ EXIT

¢ EOR/LOOP

¢ |F[THEN/ELSE
¢ SELECT/WHEN
¢ STOP

¢ Control Flow Statements

Rational Statemate 341



DGL Statement Reference

WRITE

Description

Writes expression values to any of the following:

*

*

*

The document output segment
Another file
The dialog area of the tool window

You can write a numeric or string expression that is evaluated in the template, or a literal piece
of text. In addition, the WRITE statement can be used to write information retrieved from the
database, such as element names.

The WRITE statement is commonly used to write lines that include text (string literals) together
with expression values. For example:

*

WRITE (NAME:”, di_name);

This results in KUKU being written in the output segment file NAME, where
KUKU is a value of di_name.
Note the following:

— There can be more than one write expression. When there are multiple
expressions, they are separated by commas.

— For lines of pure text, it is better to use the verbatim statement.
— Literal strings can include the formatting characters

\n New line
\t Tab

For example, the following call writes the value of alpha at the beginning of the
next line in the output segment file:

WRITE (’\n”, alpha);
Optionally, you can specify the minimum number of characters to be written in the
output file using the following syntax:

expression - num
In this syntax, expression can be either a numeric or a string expression, and num is

an integer constant or integer expression that represents the minimum number of

characters that expression will occupy. expression and num can involve operands,
operations, and function calls.

342

Documentor Reference Guide



WRITE

¢ For example:
WRITE (act_name: 10, ”,” , act_synonym);

¢ This call results in the string value for act_name being written in the output file to a
length of at least 10 characters; if the name has less than this number, blanks are added
to achieve the specified string length. For example:

COMP , SET

+ In this example, spaces have been added to “COMP” to give it a length of 10
characters.

¢ The use of num determines the minimum number of characters to be written in the
output file, as follows:

+ Forastring, the length of the string is the minimum number of output characters.
When specified, and where num is greater than the string length, blanks are
padded to the right of the string to achieve a total string length of num.

+ Foran integer, when num is specified, and where num is greater than the number of
digits in the integer, blanks are padded to the left of the number to achieve a total
output length of num.

+ For areal number, when num is not specified, the value is output to no more than 8
decimal places. Thereafter, the number is automatically rounded. When specified,
and where num is greater than the digits output according to the default, blanks are
padded to the left of the number to achieve a total output length of num. Where
num is less than the digits output according to the default, the decimal portion of
the number might be rounded to arrive at a specified output length of num.
However, in no case will the integer portion of the real number be truncated.

Syntax
WRITE ([fl,] write_expression,...);
Parameters
Parameter Description
1 An identifier of type FILE, previously assigned by the OPEN
statement, to which to write the specified string.
Using the WRITE statement to write to a file or to the dialog area
is particularly useful if you want to write messages (error
messages, run-time messages, and so on). When writing to a file
or to the dialog area, you must include the I identifier. In such
cases, you must also precede the WR1TE statement with an OPEN
statement.
write_expression The expression value to write to the document segment, file, or
dialog area.

Rational Statemate 343



DGL Statement Reference

Example

WRITE (°"Name:”:8, name,’\n”,”Value:~:8, v);

Assume that name contains “Xfactor” and v is an integer that equals 5105. This call
writes the following lines to the output file:

Name: Xfactor
Value: 5105

Note: The wrRITE command cannot access a list variable directly; if you attempt to
write a variable that refers to a list, the Documentor displays an error message.
To output a list, use a control flow construct such as a loop, writing one list
item at a time.

Using WRITE to Produce Messages

You can use a WRITE statement to write information to a file or to the dialog area, instead of to the
document itself. For this, you must first open a file in ouTPUT mode using the OPEN statement (refere
to OPEN).

To write a string message to a file, use the following syntax:

WRITE (Fl, write_expression);
In the syntax, 1 is a pointer to the file to which you want to write the messages.

See Also
¢ EXECUTE
¢ |INCLUDE
¢ REPORT
¢ TABLE

¢  VERBATIM

¢ READ Statement

344 Documentor Reference Guide



Query Functions

This section documents each query function, its purpose, and other notes. The functions are
organized into sections by “element types returned by functions.” Within each section, functions
are organized by “type of element in the input list.” Each function description includes the query
from the Query Model tool of Statemate that matches it, if applicable.

The topics are as follows:

¢ Calling Query Functions
¢ Query Function Input Arguments

¢ Examples of Query Functions
Query functions extract lists of elements from the database that conform to a specific criterion.

The search enables you to query the Statemate database. This tool uses a comprehensive set of
predefined queries to obtain information. All these queries operate on a list of Statemate elements,
called the input list. Each query generates an output list of elements that meet a criterion designated by
the specific query. Generally, elements in the output list are related to elements in the input list in one of
two ways:

¢ The output list is a subset of input list elements that have a specific characteristic. For
example, the output list consists of all And-states in the input list.

¢ Elements in the output list fulfill a specific relationship to elements in the input list. For
example, the output list consists of all states that are descendants of states in the input list.

Most query functions correspond to queries from the search. These functions give you the same
information that the corresponding queries do. Most functions require you to provide an input list
as an input argument. This input list generally consists of elements of a particular type. The
function returns a list of elements of the same or different type (as the input list).

The retrieval process is as follows:

1. Generate the input list.

2. Specify the query and input list. Receive the input list. Note that other procedures may be
performed before you use the retrieved information.

3. Use the output list.

Rational Statemate 345



Query Functions

Calling Query Functions

Most of the query functions use the following calling sequence:

stm_r_yy relation_xx (xx_list, status)

In this syntax:

+ stm_r_—Designates the function as a Statemate database retrieval function.
+ yy—The two-character type abbreviation for elements in the output list.

+ relation—The relationship between the input and output lists (describes the query to be
applied to the input list).

+ xx—The two-character type abbreviation for elements in the input list.
* xx_list—The input list to the function.

+ status—The return function status code. There are three possible status codes:
stm_success, stm_nil_list, and stm_missing_element_in_list.

For example:

stm_r_st_and_st (state_list, status)

This function returns the states from the input list state_list that are and-states.

The following function returns the activities performed throughout the states in state_list:

stm_r_st_ac_throughout_st (state_list, status)

The following sections document the query functions that use a different calling sequence.

By Attributes

The by_attributes function returns all elements in the input list that have an attribute
attr_name, whose value is attr_val.

The syntax is as follows:

stm_r_xx_by attributes xx (xx_list, attr_name, attr_val, status)

In this syntax:

+ stm_r_—Designates the function as a Statemate database retrieval function.

¢ xx—The two-character type abbreviation for elements in the input and output lists.
¢ by attributes—The criterion to be met by elements in the input list.

¢ xx_list—The input list to the function.

¢ attr_name—A pattern for the attribute name.

346 Documentor Reference Guide



Calling Query Functions

¢ attr_val—A pattern for the attribute value to be matched.

+ status—The return function status code. There are three possible status codes:
stm_success, stm_nil_list, and stm_missing_element_in_list.

For example:

stm_r_md_by attributes md (module_list, ’LANGUAGE~,
PASCAL”, status)

This function returns all modules in module_list that have an attribute LANGUAGE, whose value is
PASCAL.

By Structure Type

The by_structure_type function returns all elements in the input list that have a structure type
XX_structure_type.

The syntax of the by_structure_type function is as follows:

stm_r_xx_by structure_type xx (xx_list, xx_structure_type, status)

In this syntax:

+ stm_r_—Designates the function as a Statemate database retrieval function

¢ xx—The two-character type abbreviation for elements in the input and output list
¢ by structure_type—The structure type referenced

¢ xx_list—The input list to the function

¢ xx_structure_type—The structure type referenced (array, single, or queue in the
element’s form)

¢ status—The return function status code
For example:

stm_r_di_by structure_type di (di_list, stm_di_array, status)
This function returns all data items in di_list that have an array structure type.

Rational Statemate 347



Query Functions

Name and Synonym Patterns

The name_of and synonym_of functions search the entire database for elements whose name (or
synonym) matches the pattern specified in the argument pattern.

The syntax is as follows:

stm_r_xx_name_of xx (pattern, status)
stm_r_xx_synonym_of xx (pattern, status)

In this syntax:

+ stm_r_—Designates the function as a Statemate database retrieval function
+ xx—The two-character type abbreviation of elements in the output list

+ name_of or synonym_of—The criterion to be met (specifies that the query “Element
whose name matches a pattern” or “Element whose synonym matches a pattern” is to be
applied)

* pattern—A character string you supply as an input argument
+ status—The return function status code
For example:

stm_r_ev_name_of_ev (CEV*”, status)

This function returns all events from the database whose names begin with the string Ev.

348 Documentor Reference Guide



Query Function Input Arguments

Query Function Input Arguments

Most query functions operate on an input list that you specify. The following table lists the
arguments for query functions.

Argument

Description

DGL Data Type

xx_list

The input list of elements upon which to perform the query.

List of Statemate element

type (for example, LIST
OF STATE, LIST OF
ELEMENT, and so on).

attribute name

The pattern for the name of an attribute defined in the attribute
field of a Statemate element form.

Two special characters can be used as wildcards; the
question mark (?) and the asterisk (*). A question mark
indicates that any single character can occupy that position.
An asterisk indicates that any number of characters (including
0) can occupy that position.

String

(or synonym). The pattern can include wildcards (? and *).

attribute value The pattern for the value of an attribute defined in the attribute | String
field of a Statemate element form. The pattern can include
wildcards (? and *).

pattern An alphanumeric string to match a Statemate element name String

Rational Statemate

349



Query Functions

Examples of Query Functions

This section shows how to use query function calls to perform common tasks.

Query Function Example 1

The following example shows how to build an input list for the query functions:

VARIABLE
ACTIVITY act_id;
LIST OF ACTIVITY act_list;
INTEGER status;

act_id := stm_r_ac (CA1l’, status);

act_list = stm_r_ac_physical_sub_of _ac ({act_id},
status);

The variable act_id contains the 1D of the activity Al. You built the input list by enclosing act_id
in curly braces ({}). In this case, the input list consists of one element. If you want to build an input

list of multiple elements, enclose them all in curly braces, separated by commas.

Note
The input list is built from element IDs, not element names.

Query Function Example 2

The following example shows how you use query functions in succession. Assume that you want
to know all the basic states that are descendants of the state S1.

VARIABLE
STATE st_id;

INTEGER status;
LIST OF STATE descen_states, basic_states;

st_id = stm_r_st (°S1’, status);

descen_states := stm_r_st_physical_desc_of st (
{st_id}, status);

basic_states := stm_r_st _basic_st (descen_states,

status);

Note that descen_states is not enclosed in braces because its value comprises a list of states.

350 Documentor Reference Guide



List of Query Functions

Query Function Example 3

The following example shows how to use query function calls in a place where lists can appear
(for example, in FOR statements):

VARIABLES
EVENT e;

INTEGER status:

FOR e IN stm_r_év_name_of_ev (CEV*”, status)

LOOP
WRITE (’\n”, stm_r_ev_name (e, status));
END LOOP;
This example writes out the name of all the events in the database whose name begins with the

string EV.

List of Query Functions

The query functions are grouped alphabetically first by output list type, then by input list type. The
output types are as follows:

¢ Activities (ac)

¢ A-Flow-Lines (af, ba, laf)
¢ Actions (an)

¢ Charts (ch)

¢ Connectors (cn)

¢ Conditions (co)

¢ Data-ltems (di)

¢ Data-Stores (ds)

¢ User-Defined Types (dt)
¢ Events (ev)

¢ Fields (fd)

¢ Functions (fn)

¢ Information-Flows (if)

¢  M-Flow-Lines (bf, bm, Imf, mf)
¢ Modules (md)

¢ Mixed (mx)

¢ Routers (router)

Rational Statemate 351



Query Functions

¢ Subroutines (sb)

¢ States (st

¢ Timing Constraint (tc)

¢ Transitions (tr)

Activities (ac)

This section documents the query functions that return a list of activities.

Input List Type: ac

stm_r_ac_associates_uc

Query: Activities by use cases

Purpose: This API returns the activities that associate with use-cases in
the input list

Syntax:

stm_r_ac_associates_uc(IN uc_Ist: LIST OF USE_CASE,
OUT status: INTEGER)

stm_r_ac_basic_ac

Query: Basic activities
Purpose: Returns the activities in the input list that have no
descendants

Syntax:

stm_r_ac_basic_ac (IN ac_list: LIST OF ACTIVITY, OUT
status: INTEGER)

stm_r_ac_by_attributes_ac

Query: Activities by attributes

Purpose: Returns the activities in the input list that match the specified
attribute name and value

Syntax:

stm_r_ac_by attributes ac (IN ac_list: LIST OF
ACTIVITY, IN attr_name: STRING, IN attr_value:
STRING, OUT status: INTEGER)

stm_r_ac_callback_binding_ac

Query: Activities with callback bindings

Purpose: Returns the activities in the input list that have callback
bindings

Syntax:

stm_r_ac_callback_binding_ac (IN el_list: LIST OF
ACTIVITY, OUT status: INTEGER)

352

Documentor Reference Guide



List of Query Functions

stm_r_ac_component_instance_ac | Query: Activities that are instances of components

Purpose: Returns the activities in the input list that have instances of
components

Syntax:

stm_r_ac_component_instance_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_continuous_instance_ac | Query: Activities with continuous instances

Purpose: Returns the activities in the input list that have continuous
instances

Syntax:

stm_r_ac_continuous_instance_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_control_ac Query: Control activities

Purpose: Returns the activities in the input list that are control activities

Syntax:

stm_r_ac_control_ac (IN ac_list: LIST OF ACTIVITY,
OUT status: INTEGER)

stm_r_ac_control_terminated_ac Query: Controlled-terminated activities

Purpose: Returns the activities in the input list that are control-
terminated activities

Syntax:

stm_r_ac_control_terminated_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_data_store_ac Query: Data-stores

Purpose: Returns the activities in the input list that are data-stores
Syntax:

stm_r_ac_data_store_ac (IN el_list: LIST OF ACTIVITY,
OUT status: INTEGER)

stm_r_ac_def_of_instance_ac Query: Definition activities of a given activity

Purpose: Returns the definition activities (top-level in the definition
chart) for instances in the input list

Syntax:

stm_r_ac_def_of_instance_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_defined_environment_ac | Query: Environment activities

Purpose: Returns the activities in the input list that were defined as
environment activities

Syntax:

stm_r_ac_defined_environment_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

Rational Statemate 353



Query Functions

stm_r_ac_explicit_defined_ac

Query: Activities explicitly defined

Purpose: Returns from the input list those activities that were explicitly
defined

Syntax:

stm_r_ac_explicit_defined_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_external_ac

Query: External activities
Purpose: Returns the activities in the input list that are external

Syntax:

stm_r_ac_external_ac (IN ac_list: LIST OF ACTIVITY,
OUT status: INTEGER)

stm_r_ac_generic_instance_ac

Query: Generic instance activities

Purpose: Returns the activities in the input list that are instances of
generic charts

Syntax:

stm_r_ac_generic_instance_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_imp_best_match_ac

Query: Activities whose selected implementation is Best Match

Purpose: Returns the activities in the input list that are implemented as
the Best Match using Select Implementation in the properties
Syntax:

stm_r_ac_imp_best_match_ac (IN el_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_imp_mini_spec_ac

Query: Activities implemented in a mini-spec

Purpose: Returns the activities in the input list that are implemented in
a mini-spec

Syntax:

stm_r_ac_imp_mini_spec_ac (IN el_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_imp_none_ac

Query: Activities whose selected implementation is None
Purpose: Returns the activities in the input list that are not implemented
Syntax:

stm_r_ac_imp_none_ac (IN el_list: LIST OF ACTIVITY,
OUT status: INTEGER)

stm_r_ac_imp_sb_bind_ac

Query: Activities implemented with subroutine bindings

Purpose: Returns the activities in the input list that are implemented as
Subroutine Binding using Select Implementation in the properties
Syntax:

stm_r_ac_imp_sb_bind_ac (IN el_list: LIST OF
ACTIVITY, OUT status: INTEGER)

354

Documentor Reference Guide



List of Query Functions

stm_r_ac_imp_truth_table_ac Query: Activities implemented in a truth table

Purpose: Returns the activities in the input list that were implemented in
a truth table

Syntax:

stm_r_ac_imp_truth_table_ac (IN el_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_instance_ac Query: Instance activities

Purpose: Returns those activities in the input list that are instances

Syntax:

stm_r_ac_instance_ac (IN ac_list: LIST OF ACTIVITY,
OUT status: INTEGER)

stm_r_ac_instance_of_def_ac Query: Instance activities of a given definition activity

Purpose: Returns the instance activities for definition activities (top-
level activities in a definition chart) in the input list

Syntax:

stm_r_ac_instance_of_def_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_internal_ac Query: Internal activities

Purpose: Returns the activities in the input list that are internal activities
(not external or control)

Syntax:

stm_r_ac_internal_ac (IN ac_list: LIST OF ACTIVITY,
OUT status: INTEGER)

stm_r_ac_is_occurrence_of_ac Query: Activity occurrences of a given activity

Purpose: Returns the activities for which the activities in the input list
appear in the Is activity field of their form
Syntax:

stm_r_ac_is_occurrence_of_ac (IN ac_list: LIST OF ACTIVITY, OUT
status: INTEGER)

stm_r_ac_is_principal_of_ac Query: Principal activities of a given activity

Purpose: Returns the activities appearing in the Is activity field of the
activities in the input list

Syntax:

stm_r_ac_is_principal_of_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)
stm_r_ac_logical_desc_of_ac Query: Logical descendants of a given activity

Purpose: Returns the logical descendants of the activities in the input
list, taking into account the translation of instances to their definition
charts

Syntax:

stm_r_ac_logical_desc_of_ ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

Rational Statemate 355



Query Functions

stm_r_ac_logical_parent_of_ac

Query: Logical parent activities of a given activity

Purpose: Returns the logical parent activities of the activities in the
input list, taking into account the translation of instances to their
definition charts

Syntax:

stm_r_ac_logical_parent_of _ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_logical_sub_of_ac

Query: Logical subactivities of a given activity

Purpose: Returns the logical subactivities of the activities in the input
list, taking into account the translation of instances to their definition
charts

Syntax:

stm_r_ac_logical_sub_of _ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_mini_spec_ac

Query: Activities having mini-specs
Purpose: Returns the activities in the input list that have a mini-spec
Syntax:

stm_r_ac_mini_spec_ac (IN ac_list: LIST OF ACTIVITY,
OUT status: INTEGER)

stm_r_ac_name_of_ac

Query: Activities whose names match a given pattern
Purpose: Returns all the activities whose names match a given pattern
Syntax:

stm_r_ac_name_of_ac (IN pattern: STRING, OUT status:
INTEGER)

stm_r_ac_offpage_instance_ac

Query. Offpage instance activities

Purpose: Returns the activities in the input list that are instances of
offpage charts

Syntax:

stm_r_ac_offpage_instance_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_physical_desc_of_ac

Query: Physical descendants of a given activity

Purpose: Returns the physical descendants (those within the same
chart) for the activities in the input list

Syntax:

stm_r_ac_physical_desc_of _ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_physical_parent_of_ac

Query: Physical parent activities of a given activity

Purpose: Returns the physical parent activities (those within the same
chart) for the activities in the input list

Syntax:

stm_r_ac_physical_parent_of_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

356

Documentor Reference Guide



List of Query Functions

stm_r_ac_physical_sub_of_ac

Query: Physical subactivities of a given activity

Purpose: Returns the physical subactivities (those within the same
chart) for the activities in the input list

Syntax:

stm_r_ac_physical_sub_of _ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_procedure_like_ac

Query: Procedure-like activities

Purpose: Returns the activities in the input list that are procedure-like
activities

Syntax:

stm_r_ac_procedure_like_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_resolved_to_ext_ac

Query: Activities resolved to a given external activity

Purpose: Returns the activities (internal, external, or environment) to
which the external activities in the input list are resolved

Syntax:

stm_r_ac_resolved_to_ext_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_self_terminated_ac

Query: Self-terminated activities
Purpose: Returns the activities in the input list that are self-terminated
Syntax:

stm_r_ac_self_terminated_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_subroutine_binding_ac

Query: Activities with subroutine bindings

Purpose: Returns the activities in the input list that have subroutine
bindings (regardless of the implementation setting in the properties)

Syntax:

stm_r_ac_subroutine_binding_ac (IN el _list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_synonym_of_ac

Query: Activities whose synonyms match a given pattern

Purpose: Returns all the activities whose synonyms match the specified
pattern

Syntax:

stm_r_ac_synonym_of_ac (IN pattern: STRING, OUT
status: integer)

stm_r_ac_unresolved_ac

Query: Unresolved activities
Purpose: Returns the unresolved activities in the input list

Syntax:

stm_r_ac_unresolved_ac (IN ac_list: LIST OF ACTIVITY,
OUT status: INTEGER)

Rational Statemate

357



Query Functions

stm_r_ac_ext_ll_ac Query: External life-line activities

Purpose: Returns the External life-line activities in the input list
Syntax:

stm_r_ac_ext_1l_ac (IN ac_list: LIST OF ACTIVITY, OUT
status: INTEGER)

stm_r_ac_lifeline_ac Query: Life-line activities

Purpose: Returns the life-line activities in the input list

Syntax:

stm_r_ac_lifeline_ac (IN ac_list: LIST OF ACTIVITY,
OUT status: INTEGER)

stm_r_ac_boundary_box_ac Query: Boundary-box actvities

Purpose: Returns the Boundary-box actvitites in the input list
Syntax:

stm_r_ac_boundary_box_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ac_use_case_ac Query: Use-case activities

Purpose: Returns the Use-case activities in the input list

Syntax:

stm_r_ac_use_case_ac (IN ac_list: LIST OF ACTIVITY,
OUT status: INTEGER)

stm_r_ac_actor_ac Query: Actor activities
Purpose: Returns the Actor activities in the input list
Syntax:

stm_r_ac_actor_ac (IN ac_list: LIST OF ACTIVITY, OUT
status: INTEGER)

stm_r_ac_router_ac Query: Router sctivities

Purpose: Returns the Router activiites in the input list

Syntax:

stm_r_ac_router_ac (IN ac_list: LIST OF ACTIVITY, OUT
status: INTEGER)

stm_r_ac_external_router_ac Query: External router activities

Purpose: Returns the Router activiites in the input list

Syntax:

stm_r_ac_external_router_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

358 Documentor Reference Guide



List of Query Functions

Input List Type: af

stm_r_ba_defined_in_ch

Query: Activities that are sources for a given a-flow-line
Purpose: Returns the A-Flow-lines defined in the input list of charts.

Syntax:

STM_R_BA_DEFINED_IN_CH(IN ch_list: LIST OF CHART,
ouT

status: INTEGER):LIST OF A_FLOW_LINE;

stm_r_ba enter_ds

Query: Activities that are sources for a given a-flow-line

Purpose: Returns the A-Flow-lines entering the Data-Stores in the
input list.

Syntax:

STM_R_BA_ENTER DS(IN in_list: LIST OF DATA STORE,
OUT status: INTEGER):LIST OF A_FLOW_LINE;

stm_r_ba_exit_from_ds

Query: Activities that are sources for a given a-flow-line

Purpose: Returns the activities that are sources of a-flow-lines in the
input list

Syntax:

STM_R_BA EXIT_FROM_DS (IN in_list: LIST OF
DATA_STORE, OUT status: INTEGER):LIST OF
A_FLOW_LINE;

stm_r_ba_enter_an

Query: Activities that are sources for a given a-flow-line

Purpose: Returns the activities that are sources of a-flow-lines in the
input list

Syntax:

STM_R_BA_ENTER_AN(CIN in_list: LIST OF ACTIVITY, OUT
status: INTEGER):LIST OF A FLOW_LINE;

stm_r_ba_exit_from_ac

Query: Activities that are sources for a given a-flow-line

Purpose: Returns the activities that are sources of a-flow-lines in the
input list

Syntax:

STM_R_BA_EXIT_FROM_AC(IN in_list: LIST OF ACTIVITY,
OUT status: INTEGER):LIST OF A_FLOW_LINE;

stm_r_ba enter_cn

Query: Activities that are sources for a given a-flow-line

Purpose: Returns the activities that are sources of a-flow-lines in the
input list

Syntax:

STM_R_BA_ENTER_CN(IN in_list: LIST OF CONNECTOR,
OUT status: INTEGER):LIST OF A_FLOW_LINE;

Rational Statemate

359



Query Functions

stm_r_ba_exit_from_cn Query: Activities that are sources for a given a-flow-line

Purpose: Returns the activities that are sources of a-flow-lines in the
input list

Syntax:

STM_R_BA_EXIT_FROM_CN(IN in_list: LIST OF
CONNECTOR, OUT status: INTEGER):LIST OF
A_FLOW_LINE;

stm_r_laf_containing_ba Query: Activities that are sources for a given a-flow-line

Purpose: Returns the activities that are sources of a-flow-lines in the
input list

Syntax:

STM_R_LAF_CONTAINING_BA(IN ba_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER):LIST OF
A_FLOW_LINE

stm_r_ba_contained_in_af Query: Activities that are sources for a given a-flow-line

Purpose: Returns the activities that are sources of a-flow-lines in the
input list

Syntax:

STM_R_BA_CONTAINED_IN_AF(IN af_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER):LIST OF
A_FLOW_LINES

stm_r_ac_source_of_af Query: Activities that are sources for a given a-flow-line

Purpose: Returns the activities that are sources of a-flow-lines in the
input list
Syntax:

stm_r_ac_source_of_af (IN af_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER)

stm_r_ac_target_of_af Query: Activities that are targets of a given a-flow-line

Purpose: Returns the activities that are targets for a-flow-lines in the
input list

Syntax:

stm_r_ac_target_of_af (IN af_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER)

360 Documentor Reference Guide



List of Query Functions

Input List Type: ch

stm_r_ac_def_or_unres_in_ch Query: Activities defined or unresolved in a given chart

Purpose: Returns activities that are explicitly defined or unresolved
in the charts of the input list

Syntax:

stm_r_ac_def_or_unres_in_ ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

stm_r_ac_defined_in_ch Query: Activities defined in a given chart

Purpose: Returns the activities that are explicitly defined in the
charts of the input list

Syntax:

stm_r_ac_defined_in_ch (IN ch_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_ac_described_by_ch Query: Control activities described by a given statechart

Purpose: Returns the control activities described by statecharts in
the input list

Syntax:

stm_r_ac_described_by ch (IN ch_list: LIST OF
CHART, OUT status: INTEGER)

stm_r_ac_instance_of_ch Query: Activities instance of a given chart

Purpose: Returns the instance activities defined by the charts in the
input list
Syntax:

stm_r_ac_instance_of_ch (IN ch_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_ac_root_in_ch Query: Root activities of a given chart

Purpose: Returns the internally defined activities (of type diagram)
attached to the charts in the input list
Syntax:

stm_r_ac_root_in_ch (IN ch_list: LIST OF CHART, OUT
status: INTEGER)

stm_r_ac_top_level_in_ch Query: Top-level activities of a given chart

Purpose: Returns the top-level activities (not contained in any box)
of the charts in the input list
Syntax:

stm_r_ac_top_level_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

Rational Statemate 361



Query Functions

stm_r_ac_unresolved_in_ch Query: Activities unresolved in a given chart

Purpose: Returns activities that are unresolved in the charts of the
input list
Syntax:

stm_r_ac_unresolved_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

Input List Type: ds

stm_r_ac_parent_of_ds Query: Parent activities of a given data-store

Purpose: Returns the activities that encapsulate the specified data-
stores from the input list
Syntax:

stm_r_ac_parent_of _ds (IN ds_list: LIST OF
DATA_STORE, OUT status: INTEGER)

Input List Type: md

stm_r_ac_carried_out_by_md Query: Activities carried out by a given module.

Purpose: Returns the activities carried out by modules in the input
list. The module appears in the Implemented by Module field of the
activity’s form.

Syntax:

stm_r_ac_carried_out_by md (IN md_list: LIST OF
MODULE, OUT status: INTEGER)

362 Documentor Reference Guide



List of Query Functions

Input List Type: mx

stm_r_ac_affecting_mx

Query: Activities in which a given element is affected.

Purpose: Returns the activities that affect (modify, generate, or
activate) the elements (for example, events, data-items, or activities) in
the input list.

Syntax:

stm_r_ac_affecting_mx (IN mx_list: LIST OF ELEMENT,OUT status:
INTEGER)

stm_r_ac_meaningly_affecting_mx

Query: Activities in which a given element is affected.

Purpose: Identical to stm_r_ac_affecting_mx, but when the input list
includes an ID of a record/union, stm_r_ac_meaningly_affecting_mx
will also return elements that affect a field of the record/union, and not
necessarily the whole record/union element.

Syntax:

stm_r_ac_meaningly_affecting_mx (stm_list in_list,
int *status);

stm_r_ac_using_mx

Query: Activities in which a given element is used.

Purpose: Returns the activities that use (evaluate) the elements (basic
events, conditions, data-items, states, and activities) in the input list.
Syntax:

stm_r_ac_using_mx (IN mx_list: LIST OF ELEMENT,OUT
status: INTEGER)

stm_r_ac_meaningly_using_mx

Query: Activities in which a given element is used.

Purpose: Identical to stm_r_ac_using_mx, but when the input list
includes an ID of a record/union, stm_r_ac_meaningly_using_mx will
also return elements that use a field of the record/union, and not
necessarily the whole record/union element

Syntax:

stm_r_ac_meaningly using_mx (stm_list in_list, int
*status);

Input List Type: router

stm_r_ac_parent_of_router

Query: Parent activities of a given router

Purpose: Returns the activities that encapsulate the specified routers
from the input list

Syntax:

stm_r_ac_parent_of _router (IN router_list: LIST OF
ROUTER, OUT status: INTEGER)

Rational Statemate

363



Query Functions

Input List Type: st

stm_r_ac_throughout_st Query: Activities performed throughout a given state

Purpose: Returns the activities performed throughout states in the
input list (as defined in the Activities Within/Throughout field of
the state’s form)

Syntax:

stm_r_ac_throughout_st (IN st_list: LIST OF STATE,
OUT status: INTEGER)

stm_r_ac_within_st Query: Activities performed within a given state

Purpose: Returns the activities performed within states in the input list
(as defined in the Activities Within/Throughout field of the state’s
form)

Syntax:

stm_r_ac_within_st (IN st_list: LIST OF STATE, OUT
status: INTEGER)

364 Documentor Reference Guide



List of Query Functions

A-Flow-Lines (af, ba, laf)
This section lists the query functions that return a list of a-flow-lines.
Two abbreviations are used in these functions:

¢ af—Global (compound) a-flow-lines
¢ ba—ABasic a-flow-lines
¢ 1af—Local a-flow-lines

Output List Type: af

Input List Type: ac

stm_r_af_from_source_ac Query: A-flow-lines whose source is a given activity

Purpose: Returns global compound a-flow-lines that originate at activities in
the input list
Syntax:

stm_r_af_from_source_ac (IN ac_list: LIST OF ACTIVITY, OUT
status: INTEGER)

stm_r_af_input_to_ac Query: A-flow-lines input to a given activity within chart

Purpose: Returns all local compound a-flow-lines that originate outside and
terminate at (or inside) activities in the input list

Syntax:

stm_r_af_input_to_ac (IN ac_list: LIST OF ACTIVITY, OUT
status: INTEGER)

stm_r_af_output_from_ac Query: A-flow-lines output from a given activity

Purpose: Returns all global compound a-flow-lines that originate at (or inside)
and terminate outside activities in the input list

Syntax:

stm_r_af _output_from_ac (IN ac_list: LIST OF ACTIVITY, OUT
status: INTEGER)

stm_r_af_to_target_ac Query: A-flow-lines whose target is a given activity
Purpose: Returns global a-flow-lines that terminate at activities in the input list
Syntax:

stm_r_af _to_target_ac (IN ac_list: LIST OF ACTIVITY, OUT
status: INTEGER)

Rational Statemate 365



Query Functions

Input List Type: ba

stm_r_af_containing_ba

Query: A-flow lines from an input list.

Purpose: Returns the a-flow-lines that contain the basic a-flow-lines in
the input list.
Syntax:

STM_R_AF_CONTAINING_BA(IN ba_list: LIST OF
A_FLOW_LINE, OUT status:INTEGER):LIST OF A_FLOW_LINE

Input List Type: co

stm_r_af_within_flows_co

Query: A-flow-lines through which a given condition flows

Purpose: Returns the a-flow-lines through which conditions in the
input list actually flow
Syntax:

stm_r_af _within_flows_co (IN co_list: LIST OF
CONDITION, OUT status: INTEGER)

stm_r_af within_labels_co

Query: A-flow-lines labeled with a given condition

Purpose: Returns the a-flow-lines labeled with conditions in the input
list

Syntax:

stm_r_af within_labels_co (IN co_list: LIST OF
CONDITION, OUT status: INTEGER)

Input List Type: di

stm_r_af within_flows_di

Query: A-flow-lines through which a given data-item flows

Purpose: Returns the a-flow-lines through which data-items in the
input list actually flow

Syntax:

stm_r_af within_flows_di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

stm_r_af_within_labels_di

Query: A-flow-lines labeled by a given data-item

Purpose: Returns the a-flow-lines labeled with data-items in the input
list

Syntax:

stm_r_af _within_labels_di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

366

Documentor Reference Guide




List of Query Functions

Input List Type: ds

stm_r_af_from_source_ds Query: A-flow-lines whose source is a given data-store

Purpose: Returns global compound a-flow-lines that originate at data-
stores in the input list
Syntax:

stm_r_af_from_source_ds (IN ds_list: LIST OF
DATA_STORE, OUT status: INTEGER)

stm_r_af_to_target_ds Query: A-flow-lines whose target is a given data-store

Purpose: Returns global compound a-flow-lines that terminate at
data-stores in the input list
Syntax:

stm_r_af _to_target_ds (IN ds_list: LIST OF
DATA_STORE, OUT status: INTEGER)

Input List Type: ev

stm_r_af_within_flows_ev Query: A-flow-lines through which a given event flows
Purpose: Returns the a-flow-lines through which events in the input list
actually flow
Syntax:

stm_r_af_within_flows_ev (IN ev_list: LIST OF EVENT,
OUT status: INTEGER)

stm_r_af_within_labels_ev Query: A-flow-lines through which a given event flows

Purpose: Returns the a-flow-lines labeled with events in the input list
Syntax:

stm_r_af_within_labels_ev (IN ev_list: LIST OF
EVENT, OUT status: INTEGER)

Rational Statemate 367



Query Functions

Input List Type: if

stm_r_af_within_flows_if Query: A-flow-lines through which a given information-flow flows

Purpose: Returns the a-flow-lines through which information-flows in
the input list actually flow

Syntax:
stm_r_af_within_flows_if (IN if_list: LIST OF
INFORMATION_FLOW, OUT status: INTEGER)

stm_r_af_within_labels_if Query: A-flow-lines labeled with a given information-flow

Purpose: Returns the a-flow-lines labeled with information-flows in
the input list

Syntax:

stm_r_af _within_labels_if (IN if_list: LIST OF
INFORMATION_FLOW, OUT status: INTEGER)

Input List Type: laf

stm_r_af_containing_laf Query: None

Purpose: Returns the global a-flow-lines (which might spread over
several charts) that contain the local a-flow-lines (those within charts)
in the input list

Syntax:

stm_r_af _containing_laf (IN af_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER)

368 Documentor Reference Guide



List of Query Functions

Input List Type: mx

stm_r_af_from_source_mx Query: A-flow-lines whose source is a given element

Purpose: Returns global compound a-flow-lines whose source is an
element from the input list

Syntax:

stm_r_af_from_source_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_af_to_target_mx Query: A-flow-lines whose target is given element

Purpose: Returns global compound a-flow-lines whose target is an
element from the input list

Syntax:

stm_r_af_to_target_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_af_within_flows_mx Query: A-flow-lines through which a given element flows

Purpose: Returns the a-flow-lines through which elements in the input
list actually flow

Syntax:

stm_r_af within_flows_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_af_within_labels_mx Query: A-flow-lines labeled by a given element

Purpose: Returns the a-flow-lines labeled with elements in the input
list

Syntax:

stm_r_af _within_labels_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

Input List Type: router

stm_r_af_from_source_router Query: A-flow-lines whose source is a given router

Purpose: Returns global compound a-flow-lines whose source is a
router from the input list

Syntax:

stm_r_af_from_source_router (IN router_list: LIST
OF ROUTER, OUT status: INTEGER)

stm_r_af_to_target_router Query: A-flow-lines whose target is given router

Purpose: Returns global compound a-flow-lines whose target is a
router from the input list

Syntax:

stm_r_af _to_target_router (IN router_list: LIST OF
ROUTER, OUT status: INTEGER)

Rational Statemate 369



Query Functions

Output List Type: laf

Input List Type: ac

stm_r_laf_from_source_ac Query: A-flow-lines whose source is a given activity

Purpose: Returns local compound a-flow-lines that originate at
activities in the input list

Syntax:

stm_r_laf_from_source_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_laf_input_to_ac Query: A-flow-lines input to a given activity
Purpose: Returns all the local a-flow-lines

Syntax:

stm_r_laf_input_to_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_laf_output_from_ac Query: A-flow-lines output from a given activity within chart

Purpose: Returns all local compound a-flow-lines that originate at (or
inside) and terminate outside activities in the input list
Syntax:

stm_r_laf _output_from_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_laf_to_target_ac Query: A-flow-lines whose target is a given activity within chart

Purpose: Returns local a-flow-lines (those within charts) that
terminate at activities in the input list
Syntax:

stm_r_laf_to_target_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

Input List Type: af

stm_r_laf_contained_in_af Query: None

Purpose: Returns the local a-flow-lines that contain the global a-flow-
lines in the input list

Syntax:

stm_r_laf_contained_in_af (IN af_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER)

370 Documentor Reference Guide



List of Query Functions

Input List Type: ds

stm_r_laf_from_source_ds Query: A-flow-lines whose source is a given data-store within chart

Purpose: Returns local compound a-flow-lines that originate at data-
stores in the input list
Syntax:

stm_r_laf_from_source_ds (IN ds_list: LIST OF
DATA_STORE, OUT status: INTEGER)

stm_r_laf_to_target_ds Query: A-flow-lines whose target is a given data-store within chart

Purpose: Returns local compound a-flow-lines that terminate at data-
stores in the input list
Syntax:

stm_r_laf_to_target _ds (IN ds_list: LIST OF
DATA_STORE, OUT status: INTEGER)

Input List Type: mx

stm_r_laf_from_source_mx Query: A-flow-lines whose source is a given element within chart

Purpose: Returns local compound a-flow-lines whose source is an
element from the input list

Syntax:

stm_r_laf_from_source_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_laf_to_target_mx Query: A-flow-lines whose target is given element within chart

Purpose: Returns local compound a-flow-lines whose target is an
element from the input list
Syntax:

stm_r_laf_to_target_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

Rational Statemate 371



Query Functions

Input List Type: router

stm_r_laf_from_source_router

Query: A-flow-lines whose source is a given router within chart

Purpose: Returns local compound a-flow-lines whose source is a
router from the input list

Syntax:

stm_r_laf_from_source_router (IN router_list: LIST
OF ROUTER, OUT status: INTEGER)

stm_r_laf_to_target_router

Query: A-flow-lines whose target is given router within chart

Purpose: Returns local compound a-flow-lines whose target is a
router from the input list
Syntax:

stm_r_laf_to_target_router (IN router_list: LIST OF
ROUTER, OUT status: INTEGER)

Actions (an)

This section documents the query functions that return a list of actions.

Input List Type: an

stm_r_an_by_attributes_an

Query: Actions by attribute

Purpose: Returns the actions in the input list that match a given
attribute and value

Syntax:

stm_r_an_by attributes_an (IN an_list: LIST OF
ACTION, IN attr_name : STRING, IN attr_value :
STRING, OUT status: INTEGER)

stm_r_an_explicit_defined_an

Query: Actions explicitly defined

Purpose: Returns the actions of the input list that were explicitly
defined
Syntax:

stm_r_an_explicit_defined_an (IN an_list: LIST OF
ACTION, OUT status: INTEGER)

stm_r_an_imp_best_match_an

Query: Actions whose selected implementation is Best Match
Purpose: Returns the actions in the input list implemented as the
Best Match using Select Implementation in the properties
Syntax:

stm_r_an_imp_best_match_an (IN el_list: LIST OF
ACTION, OUT status: INTEGER)

372

Documentor Reference Guide



List of Query Functions

stm_r_an_imp_definition_an Query: Actions with a defined implementation

Purpose: Returns the actions in the input list that have a defined
implementation in the properties
Syntax:

stm_r_an_imp_definition_an (IN el_list: LIST OF
ACTION, OUT status: INTEGER)

stm_r_an_imp_none_an Query: Actions whose selected implementation is None

Purpose: Returns the actions in the input list that are not
implemented using Select Implementation

Syntax:

stm_r_an_imp_none_an (IN el_list: LIST OF ACTION,
OUT status: INTEGER)

stm_r_an_imp_truth_table_an Query: Actions implemented in a truth table

Purpose: Returns the actions in the input list that are implemented
with a truth table in the properties
Syntax:

stm_r_an_imp_truth_table_an (IN el_list: LIST OF
ACTION, OUT status: INTEGER)

stm_r_an_name_of_an Query: Actions whose names match a given pattern

Purpose: Returns all the actions whose names match a specified
pattern
Syntax:

stm_r_an_name_of_an (IN pattern: STRING, OUT
status: INTEGER)

stm_r_an_synonym_of_an Query: Actions whose synonyms match a given pattern

Purpose: Returns all the actions whose synonyms match a specified
pattern

Syntax:

stm_r_an_synonym_of_an (IN pattern: STRING, OUT
status: INTEGER)

stm_r_an_unresolved_an Query: Unresolved actions

Purpose: Returns the unresolved actions in the input list

Syntax:

stm_r_an_unresolved_an (IN an_list: LIST OF ACTION,
OUT status: INTEGER)

Rational Statemate 373



Query Functions

Input List Type: ch

stm_r_an_def_or_unres_in_ch Query: Actions defined or unresolved in a given chart

Purpose: Returns the actions that are explicitly defined or
unresolved in the charts of the input list

Syntax:

stm_r_an_def_or_unres_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

stm_r_an_defined_in_ch Query: Actions defined in a given chart

Purpose: Returns the actions that are explicitly defined in the charts
of the input list

Syntax:

stm_r_an_defined_in_ch (IN ch_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_an_unresolved_in_ch Query: Actions unresolved in a given chart

Purpose: Returns the actions that are unresolved in the charts of the
input list
Syntax:

stm_r_an_unresolved_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

374 Documentor Reference Guide



List of Query Functions

Charts (ch)

This section documents the query functions that return a list of charts.

Input List Type: ac

stm_r_ch_define_ac Query: Charts in which a given activity is defined

Purpose: Returns the charts in which the activities in the input list are
explicitly defined or unresolved

Syntax:

stm_r_ch_define_ac (IN ac_list: LIST OF ACTIVITY,
OUT status: INTEGER)

stm_r_ch_defining_ac Query: Activity-charts defining a given activity

Purpose: Returns the activity-charts that define the instance activities
in the input list

Syntax:

stm_r_ch_defining_ac (IN ac_list: LIST OF ACTIVITY,
OUT status: INTEGER)

stm_r_ch_describing_ac Query: Statecharts describing a given control activity

Purpose: Returns the statecharts that describe the control activities in
the input list
Syntax:

stm_r_ch_describing_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

Input List Type: an

stm_r_ch_define_an Query: Charts in which a given action is defined

Purpose: Returns the charts in which the actions in the input list are
explicitly defined or unresolved
Syntax:

stm_r_ch_define_an (IN an_list: LIST OF ACTION, OUT
status: INTEGER)

Rational Statemate 375



Query Functions

Input List Type: ch

stm_r_ch_activitychart_ch

Query: Activity-charts
Purpose: Returns the activity-charts in the input list

Syntax:

stm_r_ch_activitychart_ch (IN ch_list: LIST OF
CHART, OUT status: INTEGER)

stm_r_ch_ancestors_of ch

Query: Ancestors of a given chart

Purpose: Returns the ancestors (in the static structure) of the charts
in the input list
Syntax:

stm_r_ch_ancestors_of_ch (IN ch_list: LIST OF
CHART, OUT status: INTEGER)

stm_r_ch_by_attributes_ch

Query: Chart by attribute

Purpose: Returns the charts in the input list that match the specified
attribute name and value

Syntax:

stm_r_ch_by attributes_ch (IN ch_list: LIST OF
CHART, IN attr_name : STRING, IN attr_value :
STRING, OUT status: INTEGER)

stm_r_ch_descendants_of_ch

Query: Descendants of a given chart

Purpose: Returns the descendants (in the static structure) of the
charts in the input list
Syntax:

stm_r_ch_descendants_of _ch (IN ch_list: LIST OF
CHART, OUT status: INTEGER)

stm_r_ch_dictionary_ch

Query: Global definition sets (GDSs)
Purpose: Returns the GDSs in the input list

Syntax:

stm_r_ch_dictionary_ch (IN el_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_ch_explicit_defined_ch

Query: Charts explicitly defined

Purpose: Returns the charts of the input list that were explicitly
defined
Syntax:

stm_r_ch_explicit_defined_ch (IN ch_list: LIST OF
CHART, OUT status: INTEGER)

stm_r_ch_generic_ch

Query: Generic charts
Purpose: Returns the generic charts in the input list

Syntax:

stm_r_ch_generic_ch (IN ch_list: LIST OF CHART,OUT
status: INTEGER)

376

Documentor Reference Guide



List of Query Functions

stm_r_ch_modulechart_ch Query: Module-charts
Purpose: Returns the charts in the input list that are module-charts

Syntax:

stm_r_ch_modulechart_ch (IN ch_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_ch_name_of_ch Query: Charts whose names match a given pattern

Purpose: Returns all the charts whose names match the specified
pattern

Syntax:

stm_r_ch_name_of_ch (IN pattern: STRING, OUT
status: INTEGER)

stm_r_ch_offpage_ch Query: Offpage charts

Purpose: Returns the offpage charts in the input list

Syntax:

stm_r_ch_offpage_ch (IN ch_list: LIST OF CHART,OUT
status: INTEGER)

stm_r_ch_parent_ch Query: Returns the parent charts of a given chart

Purpose: Returns the parents (in the static structure) of the charts in
the input list

Syntax:

stm_r_ch_parent_ch (IN ch_list: LIST OF CHART, OUT
status: INTEGER)

stm_r_ch_procedural_sch_ch Query: Procedural statecharts

Purpose: Returns the charts in the input list that are procedural
statecharts

Syntax:

stm_r_ch_procedural_sch_ch (IN el_list : LIST OF
CHART, OUT status: INTEGER)

stm_r_ch_referenced_all_by_ch Query: Charts referenced in all levels by a given chart

Purpose: Returns all charts referenced (instantiated) by all levels of
charts in the input list

Syntax:

stm_r_ch_referenced_all_by ch (IN el_list: LIST OF
CHART, OUT status: INTEGER)

stm_r_ch_referenced_by_ch Query: Charts referenced by a given chart

Purpose: Returns all charts referenced (instantiated) by the charts in
the input list

Syntax:

stm_r_ch_referenced_by ch (IN el _list: LIST OF
CHART, OUT status: INTEGER)

Rational Statemate 377



Query Functions

stm_r_ch_root_ch Query: Root charts

Purpose: Returns the root-level charts (that have no parent) in the
input list

Syntax:

stm_r_ch_root_ch (IN ch_list: LIST OF CHART,OUT
status: INTEGER)

stm_r_ch_statechart_ch Query: Statecharts

Purpose: Returns the charts in the input list that are statecharts

Syntax:

stm_r_ch_statechart_ch (IN ch_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_ch_subchart_ch Query: Subchart of the specified chart

Purpose: Returns the subcharts (in the static structure) of the charts
in the input list

Syntax:

stm_r_ch_subchart_ch (IN ch_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_ch_unresolved_ch Query: Unresolved charts

Purpose: Returns the unresolved charts (used but not defined) in the
input list

Syntax:

stm_r_ch_unresolved_ch (IN ch_list: LIST OF CHART,
OUT status: INTEGER)

Input List Type: co

stm_r_ch_define_co Query: Charts in which a given condition is defined

Purpose: Returns the charts in which the conditions in the input list are
explicitly defined or unresolved
Syntax:

stm_r_ch_define_co (IN co_list: LIST OF CONDITION,
OUT status: INTEGER)

378 Documentor Reference Guide



List of Query Functions

Input List Type: di

stm_r_ch_define_di Query: Charts in which a given data-item is defined

Purpose: Returns the charts in which the data-items in the input list
are explicitly defined or unresolved
Syntax:

stm_r_ch_define_di (IN di_list: LIST OF DATA_ITEM,
OUT status: INTEGER)

Input List Type: ds

stm_r_ch_define_ds Query: Charts in which a given data-store is defined

Purpose: Returns the charts in which the data-stores in the input list
are explicitly defined or unresolved
Syntax:

stm_r_ch_define_ds (IN ds_list: LIST OF DATA_STORE,
OUT status: INTEGER)

Input List Type: dt

stm_r_ch_define_dt Query: Charts and GDSs in which a given user-defined type is
defined

Purpose: Returns the charts in which the user-defined types in the
input list are explicitly defined or unresolved
Syntax:

stm_r_ch_define_dt (IN el_list: LIST OF DATA TYPE,
OUT status: INTEGER)

Rational Statemate 379



Query Functions

Input List Type: ev

stm_r_ch_define_ev Query: Charts in which a given event is defined

Purpose: Returns the charts in which the events in the input list are
explicitly defined or unresolved
Syntax:

stm_r_ch_define_ev (IN ev_list: LIST OF EVENT, OUT
status: INTEGER)

Input List Type: fd

stm_r_ch_define_fd Query: Charts and GDSs in which a given field is defined

Purpose: Returns the charts in which the fields in the input list are
defined (in a structured data-item or user-defined type)
Syntax:

stm_r_ch_define_fd (IN el_list: LIST OF FIELD, OUT
status: INTEGER)

Input List Type: if

stm_r_ch_define_if Query: Charts in which a given information-flow is defined

Purpose: Returns the charts in which the information-flows in the
input list are explicitly defined or unresolved
Syntax:

stm_r_ch_define_if (IN if_list: LIST OF
INFORMATION_FLOW, OUT status: INTEGER)

380 Documentor Reference Guide



List of Query Functions

Input List Type: md

stm_r_ch_define_md Query: Charts in which a given module is defined

Purpose: Returns charts in which the modules in the input list are
explicitly defined or unresolved

Syntax:

stm_r_ch_define_md (IN md_list: LIST OF MODULE, OUT
status: INTEGER)

stm_r_ch_defining_md Query: Module-charts defining a given module

Purpose: Returns the module-charts that define the instance
modules in the input list

Syntax:

stm_r_ch_defining_md (IN md_list: LIST OF MODULE,
OUT status: INTEGER)

stm_r_ch_describing_md Query: Activity-charts describing a given module

Purpose: Returns the activity-charts that describe the modules in the
input list

Syntax:

stm_r_ch_describing_md (IN md_list: LIST OF MODULE,
OUT status: INTEGER)

Rational Statemate 381



Query Functions

Input List Type: mx

stm_r_ch_define_mx Query: Charts in which a given element is defined

Purpose: Returns the charts in which the elements in the input list
are explicitly defined

Syntax:

stm_r_ch_define_mx (IN mx_list: LIST OF ELEMENT,
OUT status: INTEGER)

stm_r_ch_defining_mx Query: Charts defining a given element

Purpose: Returns the charts that define the elements in the input list

Syntax:

stm_r_ch_defining_mx (IN mx_list: LIST OF ELEMENT,
OUT status: INTEGER)

stm_r_ch_describing_mx Query: Statecharts describing a given control activity

Purpose: Returns the charts that describe the elements in the input
list

Syntax:

stm_r_ch_describing_mx (IN el_list: LIST OF
ELEMENT, OUT status: INTEGER)

Input List Type: router

stm_r_ch_define_router Query: Charts in which a given router is defined

Purpose: Returns the charts in which the routers in the input list are
explicitly defined or unresolved

Syntax:

stm_r_ch_define_router (IN router_list: LIST OF
ROUTER, OUT status: INTEGER)

382 Documentor Reference Guide



List of Query Functions

Input List Type: sb

stm_r_ch_connected_to_sb Query: Charts connected to a given subroutine

Purpose: Returns the procedural Statecharts that are connected to
the subroutines in the input list

Syntax:

stm_r_ch_connected_to_sb (IN el_list: LIST OF
SUBROUTINE, OUT status: INTEGER)

stm_r_ch_define_sb Query: Charts in which a given subroutine is defined

Purpose: Returns the charts in which the subroutines in the input list
are explicitly defined or unresolved
Syntax:

stm_r_ch_define_sb (IN el_list: LIST OF SUBROUTINE,
OUT status: INTEGER)

Input List Type: st

stm_r_ch_define_st Query: Charts in which a given state is defined

Purpose: Returns the charts in which the states in
the input list are explicitly defined or unresolved

Syntax:

stm_r_ch_define_st (IN st_list: LIST OF STATE, OUT
status: INTEGER)

stm_r_ch_defining_st Query: Statecharts defining a given state

Purpose: Returns the statecharts that define the
instance states in the input list

Syntax:

stm_r_ch_defining_st (IN st_list: LIST OF STATE, OUT
status: INTEGER)

Rational Statemate 383



Query Functions

Connectors (cn)

This section documents the queries that return a list of connectors.

Input List Type: cn

stm_r_cn_deep_history_cn

Query: Deep history connectors
Purpose: Returns all the deep history connectors in the input list

Syntax:

stm_r_cn_deep_history_cn (IN cn_list: LIST OF
CONNECTOR,OUT status: INTEGER)

stm_r_cn_history_cn

Query: History connectors
Purpose: Returns all the history connectors in the input list
Syntax:

stm_r_cn_history_cn (IN cn_list: LIST OF
CONNECTOR,OUT status: INTEGER)

stm_r_cn_termination_cn

Query: Termination connectors
Purpose: Returns all the termination connectors in the input list

Syntax:

stm_r_cn_termination_cn (IN cn_list: LIST OF
CONNECTOR,OUT status: INTEGER)

stm_r_cn_source_of_bm

Query: Source connectors
Purpose: Returns all the source connectors in the input list

Syntax:

stm_list stm_r_cn_source_of_bm(stm_list in_list, int
*status);

stm_r_cn_target_of bm

Query: Target connectors
Purpose: Returns all the target connectors in the input list

Syntax:

stm_list stm_r_cn_target_of_bm(stm_list in_list, int
*status);

stm_r_cn_source_of_bt

Query: Source connectors
Purpose: Returns all the source connectors in the input list

Syntax:

STM_R_CN_SOURCE_OF_BT(IN bt_list: LIST OF
TRANSITION,OUT status: INTEGER): LIST OF CONNECTOR;

384

Documentor Reference Guide




List of Query Functions

stm_r_cn_target_of_bt Query: Target connectors
Purpose: Returns all the target connectors in the input list

Syntax:

STM_R_CN_TARGET_OF_BT(IN bt_list: LIST OF
TRANSITION,OUT status: INTEGER): LIST OF CONNECTOR;

stm_r_cn_source_of_ba Query: source connectors
Purpose: Returns all the source connectors in the input list

Syntax:

stm_r_cn_termination_cn (IN cn_list: LIST OF
CONNECTOR,OUT status: INTEGER)

stm_r_cn_target_of_ba Query: Termination connectors
Purpose: Returns all the history connectors in the input list
Syntax:

STM_R_CN_TARGET_OF_BA(IN ba_list: LIST OF
A_FLOW_LINE,OUT status: INTEGER): LIST OF CONNECTOR;

Input List Type: st

stm_r_cn_history_or_term_in_st Query: Termination or history connectors in a given state

Purpose: Returns the termination and history connectors contained in
the states in the input list

Syntax:

stm_r_cn_history_or_term_in_st (IN st_list: LIST OF
STATE,OUT status: INTEGER)

Input List Type:bm

stm_r_mf_containing_bm Query: M-Flow-lines

Purpose: Returns the M-flow-lines containing the basic m-flow-lines in
the input list

Syntax:

STM_R_MF_CONTAINING_BM(IN bm_list: LIST OF
M_FLOW_LINE, OUT status: INTEGER):LIST OF
M_FLOW_LINE

Rational Statemate 385



Query Functions

Input List Type: tr

stm_r_cn_source_of_tr

Query: History connectors sources of a given transition

Purpose: Returns the history connectors that are sources of
transitions in the input list

Syntax:

stm_r_cn_source_of_tr (stm_list in_list, int
*status);

stm_r_cn_target_of_tr

Query: Termination or history connectors targets of a given transition

Purpose: Returns the termination and history connectors that are
targets of transitions in the input list
Syntax:

stm_r_cn_target_of _tr (IN tr_list: LIST OF
TRANSITION,OUT status: INTEGER)

Conditions (co)

This section documents the query functions that return a list of conditions.

Input List Type: af

stm_r_co_flowing_through_af

Query: Conditions flowing through a given a-flow-line

Purpose: Returns the conditions actually flowing through a-flow-lines
in the input list
Syntax:

stm_r_co_Tflowing_through_ af (IN af_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER)

stm_r_co_labeling_af

Query: Conditions labeling a given a-flow-line

Purpose: Returns the conditions which label the a-flow-lines in the
input list

Syntax:

stm_r_co_labeling_af (IN af_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER)

386

Documentor Reference Guide



List of Query Functions

Input List Type: ch

stm_r_co_def_or_unres_in_ch Query: Conditions defined or unresolved in a given chart

Purpose: Returns conditions that are explicitly defined or unresolved
in the charts of the input list

Syntax:

stm_r_co_def _or_unres_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

stm_r_co_defined_in_ch Query: Conditions defined in a given chart

Purpose: Returns the conditions that are explicitly defined in the
charts of the input list

Syntax:

stm_r_co_defined_in_ch (IN ch_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_co_unresolved_in_ch Query: Conditions unresolved in a given chart

Purpose: Returns conditions that are unresolved in the charts of the
input list
Syntax:

stm_r_co_unresolved_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

Input List Type: co

stm_r_co_array_co Query: Conditions by subtype

Purpose: Returns the conditions in the input list that are defined as
array
Syntax:

stm_r_co_array_co (IN co_list: LIST OF CONDITION,
OUT status INTEGER)

stm_r_co_by_attributes_co Query: Conditions by attributes

Purpose: Returns the conditions in the input list that match the
specified attribute name and value

Syntax:

stm_r_co_by attributes co (IN co_list: LIST OF
CONDITION, IN attr_name : STRING, IN attr_value :
STRING, OUT status: INTEGER)

Rational Statemate 387



Query Functions

stm_r_co_by_structure_type_co Query: None

Purpose: Returns the conditions in the input list that have the
specified structure type (for example, single or array)

Syntax:

stm_r_co_by structure_type co (IN co_list: LIST OF
CONDITION, IN dtype: INTEGER, OUT status: INTEGER)

stm_r_co_callback_binding_co Query: Conditions with callback bindings

Purpose: Returns the conditions of the input list that have callback
bindings
Syntax:

stm_r_co_callback_binding_co (IN el_list: LIST OF
CONDITION, OUT status: INTEGER)

stm_r_co_explicit_defined_co Query: Conditions explicitly defined

Purpose: Returns the conditions of the input list that were explicitly
defined

Syntax:

stm_r_co_explicit_defined_co (IN co_list: LIST OF
CONDITION, OUT status: INTEGER)

stm_r_co_name_of_co Query: Conditions whose names match a given pattern

Purpose: Returns all the conditions whose names match the
specified pattern

Syntax:

stm_r_co_name_of_co (IN pattern: STRING, OUT
status: INTEGER)

stm_r_co_single_co Query: Conditions by subtype

Purpose: Returns the conditions in the input list that are defined as
single

Syntax:

stm_r_co_single_co (IN co_list: LIST OF CONDITION,
OUT status: INTEGER)

stm_r_co_synonym_of_co Query: Conditions whose synonyms match a given pattern

Purpose: Returns all the conditions whose synonyms match the
specified pattern

Syntax:

stm_r_co_synonym_of_co (IN pattern: STRING, OUT
status: INTEGER)

stm_r_co_unresolved_co Query: Unresolved conditions

Purpose: Returns the unresolved conditions in the input list

Syntax:

stm_r_co_unresolved_co (IN co_list: LIST OF
CONDITION, OUT status: INTEGER)

388 Documentor Reference Guide



List of Query Functions

Input List Type: di

stm_r_co_contained_in_di Query: Conditions contained in a given data-item

Purpose: Returns the conditions contained in data-items from the
input list (conditions appearing in the Consists of field of a data-item)
Syntax:

stm_r_co_contained_in_di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

Input List Type: if

stm_r_co_contained_in_if Query: Conditions contained in a given information-flow

Purpose: Returns the conditions contained in information-flows from
the input list (conditions appearing in the Consists of field of an
information-flow)

Syntax:

stm_r_co_contained_in_if (IN if_list: LIST OF
INFORMATION_FLOW, OUT status: INTEGER)

Input List Type: mf

stm_r_co_flowing_through_mf Query: Conditions flowing through a given m-flow-line

Purpose: Returns the conditions actually flowing through m-flow-lines
in the input list

Syntax:

stm_r_co_Tflowing_through_

mf (IN mf_list: LIST OF M_FLOW_LINE, OUT status:
INTEGER)

stm_r_co_labeling_mf Query: Conditions labeling a given m-flow-line

Purpose: Returns the conditions that label the m-flow-lines in the input
list

Syntax:

stm_r_co_labeling_mf (IN mf_list: LIST OF
M_FLOW_LINE, OUT status: INTEGER)

Rational Statemate 389



Query Functions

Data-ltems (di)

This section documents the query functions that return a list of data-items.

Input List Type: af

stm_r_di_flowing_through_af

Query: Data-items flowing through a given a-flow-line

Purpose: Returns the data-items actually flowing through a-flow-lines
in the input list

Syntax:

stm_r_di_flowing_through_

af (IN af_list: LIST OF A_FLOW_LINE, OUT status:
INTEGER)

stm_r_di_labeling_af

Query: Data-items labeling a given a-flow-line

Purpose: Returns the data-items which label the a-flow-lines in the
input list

Syntax:

stm_r_di_labeling_af (IN af_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER)

Input List Type: ch

stm_r_di_def_or_unres_in_ch

Query. Data-items defined or unresolved in a given chart

Purpose: Returns the data-items explicitly defined or unresolved in
the charts of the input list
Syntax:

stm_r_di_def_or_unres_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

stm_r_di_defined_in_ch

Query: Data-items defined in a given chart

Purpose: Returns the data-items explicitly defined in the charts of the
input list

Syntax:

stm_r_di_defined_in_ch (IN ch_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_di_unresolved_in_ch

Query: Data-items unresolved in a given chart

Purpose: Returns the data-items that are unresolved in the charts of
the input list
Syntax:

stm_r_di_unresolved_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

390

Documentor Reference Guide



List of Query Functions

Input List Type: co

stm_r_di_containing_co Query: Data-item containing a given condition

Purpose: Returns the data-items containing the conditions in the
input list (as defined in the Consists of field of the data-item’s form)
Syntax:

stm_r_di_containing_co (IN co_list: LIST OF
CONDITION, OUT status: INTEGER)

Input List Type: di

stm_r_di_array_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are defined as
array

Syntax:

stm_r_di_array_di (IN di_list: LIST OF DATA_ITEM,
OUT status: INTEGER)

stm_r_di_array_missing_di Query: Array of data-items by subtype

Purpose: Returns the arrays of data-items in the input list for which no
type is defined

Syntax:

stm_r_di_array_missing_di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

stm_r_di_basic_di Query: Basic data-items

Purpose: Returns the data-items in the input list that are basic (not
defined using other data-items)

Syntax:

stm_r_di_basic_di (IN di_list: LIST OF DATA_ITEM,
OUT status: INTEGER)

stm_r_di_bit_di Query: Basic data-items

Purpose: Returns the data-items in the input list that are defined as
Bit in the Structure/Type field of the data-item form

Syntax:

stm_r_di_bit_di (IN di_list: LIST OF DATA_ITEM, OUT
status: INTEGER)

Rational Statemate 391



Query Functions

stm_r_di_bit_queue_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are defined as
gueue of bits

Syntax:

stm_r_di_bit queue_di (IN el_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

stm_r_di_bits_array_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are defined as
array of bit array

Syntax:

stm_r_di_bits_array_di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

stm_r_di_bits_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are defined as
bit-array in the Structure/Type field of the data-item form

Syntax:

stm_r_di_bits_di (IN di_list: LIST OF DATA_ITEM, OUT
status: INTEGER)

stm_r_di_bits_queue_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are defined as
gueue of bit array

Syntax:

stm_r_di_bits_queue_di (IN el_list: LIST OF
DATA_ITEM, OUT status: INTEGER)
stm_r_di_by_attributes_di Query: Data-items by attributes

Purpose: Returns the data-items in the input list that match the
specified attribute name and value
Syntax:

stm_r_di_by attributes_di (IN di_list: LIST OF
DATA_ITEM, IN attr_name : STRING, IN attr_value :
STRING, OUT status: INTEGER)

stm_r_di_by_structure_type_di Query: None

Purpose: Returns the data-items in the input list that have a particular
structure type (for example, single, array, or queue)

Syntax:

stm_r_di_by structure_type_di (IN di_list: LIST OF
DATA_ITEM, IN dtype: INTEGER, OUT status: INTEGER)
stm_r_di_callback_binding_di Query: Data-items with callback bindings

Purpose: Returns the data-items of the input list that have callback
bindings

Syntax:

stm_r_di_callback_binding_di (IN el_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

392 Documentor Reference Guide



List of Query Functions

stm_r_di_explicit_defined_di Query: Data-items explicitly defined

Purpose: Returns the data-items of the input list that were explicitly
defined

Syntax:

stm_r_di_explicit_defined_di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

stm_r_di_integer_di Query: Integer subtype

Purpose: Returns the data-items in the input list that are defined as
integer in the Structure/Type field of the data-item’s form

Syntax:

stm_r_di_integer_di (IN di_list: LIST OF DATA_ITEM,
OUT status: INTEGER)

stm_r_di_integer_array_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are defined as
array of integer

Syntax:

stm_r_di_integer_array_di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)
stm_r_di_integer_queue_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are defined as
gueue of integer

Syntax:

stm_r_di_integer_queue_di (IN el_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

stm_r_di_missing_di Query: Data-item by subtype

Purpose: Returns the data-items in the input list for which no type is
defined

Syntax:

stm_r_di_missing_di (IN el_list: LIST OF DATA_ITEM,
OUT status: INTEGER)

stm_r_di_name_of_di Query: Data-items whose hames match a given pattern

Purpose: Returns all the data-items whose names match the
specified pattern

Syntax:

stm_r_di_name_of_di (IN pattern: STRING, OUT status:
INTEGER)

stm_r_di_parent_of_di Query: Parent data-items of a given data-item

Purpose: Returns the data-items containing the data-items from the
input list (as defined in the Consists of field of the data-item’s form)
Syntax:

stm_r_di_parent_of _di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

Rational Statemate 393



Query Functions

stm_r_di_queue_di

Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are defined as
queue
Syntax:

stm_r_di_queue_di (IN el_list: LIST OF DATA_ITEM,
OUT status: INTEGER)

stm_r_di_queue_missing_di

Query: Queues of data-items by subtype

Purpose: Returns the queues of data-items in the input list for which
no type is defined

Syntax:

stm_r_di_queue_missing_di (IN el_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

stm_r_di_real_di

Query: Real subtype

Purpose: Returns the data-items from the input list that are defined as
Real (Float) in the Structure/Type field of the data-item’s form
Syntax:

stm_r_di_real_di (IN di_list: LIST OF DATA_ITEM, OUT
status: INTEGER)

stm_r_di_real_array_di

Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are defined as
real
Syntax:

stm_r_di_real_array di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

stm_r_di_real_queue_di

Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are defined as
gueue of real
Syntax:

stm_r_di_real_queue_di (IN el_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

stm_r_di_record_array_di

Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are defined as
array of record
Syntax:

stm_r_di_record_array_di (IN el_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

stm_r_di_record_di

Query: Record subtype

Purpose: Returns the data-items from the input list that are defined as
Record in the Structure/Type field of the data-item’s form
Syntax:

stm_r_di_record_di (IN di_list: LIST OF DATA_ITEM,
OUT status: INTEGER)

394

Documentor Reference Guide



List of Query Functions

stm_r_di_single_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are defined as
single

Syntax:

stm_r_di_single_di (IN di_list: LIST OF DATA_ITEM,
OUT status: INTEGER)

stm_r_di_string_array_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are defined as
array of string

Syntax:

stm_r_di_string_array_di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

stm_r_di_string_di Query: String subtype

Purpose: Returns the data-items from the input list that are defined as
String in the Structure/Type field of the data-item’s form

Syntax:

stm_r_di_string_di (IN di_list: LIST OF DATA_ITEM,
OUT status: INTEGER)

stm_r_di_string_queue_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are defined as
queue of string

Syntax:

stm_r_di_string_queue_di (IN el_list: LIST OF
DATA_ITEM, OUT status: INTEGER)
stm_r_di_subdata_item_of_di Query: Subdata-item of a given data-item

Purpose: Returns the data-items that are components of data-items in
the input list (as defined in the Consists of field of the data-item’s
form)

Syntax:

stm_r_di_subdata_item_of _di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

stm_r_di_synonym_of_di Query: Data-items whose synonyms match a given pattern

Purpose: Returns all the data-items whose synonyms match the
specified pattern

Syntax:

stm_r_di_synonym of _di (IN pattern: STRING, OUT
status: INTEGER)

stm_r_di_union_array_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are defined as
array

Syntax:

stm_r_di_union_array_di (IN el_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

Rational Statemate 395



Query Functions

stm_r_di_union_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are defined as
union

Syntax:

stm_r_di_union_di (IN el_list: LIST OF DATA_ITEM,
OUT status: INTEGER)

stm_r_di_unresolved_di Query: Unresolved data-items

Purpose: Returns the unresolved data-items in the input list

Syntax:

stm_r_di_unresolved_di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

stm_r_di_user_type_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are defined as
user-defined type

Syntax:

stm_r_di_user_type_di (IN el_list: LIST OF
DATA_ITEM, OUT status: INTEGER)
stm_r_di_user_type_array_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are defined as
array of user-defined type

Syntax:

stm_r_di_user_type_array_di (IN el_list: LIST OF
DATA_ITEM, OUT status: INTEGER)
stm_r_di_user_type_queue_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are defined as
gueue of user-defined type

Syntax:

stm_r_di_user_type_queue_di (IN el_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

Input List Type: fd

stm_r_di_containing_fd Query: Data-items containing a given field

Purpose: Returns the data-items (records or unions) in which the
fields in the input list are defined

Syntax:

stm_r_di_containing_fd (IN el_list: LIST OF FIELD,
OUT status: INTEGER)

396 Documentor Reference Guide



List of Query Functions

Input List Type: if

stm_r_di_contained_in_if Query: Data-items contained in a given information-flow

Purpose: Returns the data-items contained in information-flow from
the input list (as defined in the Consists of field of the information-
flow’s form)

Syntax:
stm_r_di_contained_in_if (IN if_list: LIST OF

INFORMATION_FLOW, OUT status: INTEGER)

Input List Type: mf

stm_r_di_flowing_through_mf Query: Data-items flowing through a given m-flow-line

Purpose: Returns the data-items actually flowing through m-flow-
lines in the input list

Syntax:

stm_r_di_flowing_through_mf (IN mf_list: LIST OF
M_FLOW_LINE, OUT status: INTEGER)

stm_r_di_labeling_mf Query: Data-items labeling a given m-flow-line

Purpose: Returns the data-items which label the m-flow-lines in the
input list

Syntax:

stm_r_di_labeling_mf (IN mf_list: LIST OF
M_FLOW_LINE, OUT status: INTEGER)

Rational Statemate 397



Query Functions

Data-Stores (ds)

This section documents the query functions that return a list of data-stores.

Input List Type: ac

stm_r_ds_contained_in_ac Query: Data-stores contained in a given activity

Purpose: Returns the data-stores contained directly in activities from
the input list

Syntax:

stm_r_ds_contained_in_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_ds_in_ac Query: Data-stores in a given activity

Purpose: Returns the data-stores contained in the activities from the
input list

Syntax:

stm_r_ds_in_ac (IN el_list: LIST OF DATA_STORE, OUT
status: INTEGER)

Input List Type: af

stm_r_ds_source_of_af Query: Data-stores that are sources of a given a-flow-line

Purpose: Returns the data-stores that are sources of a-flow-lines in
the input list
Syntax:

stm_r_ds_source_of _af (IN af_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER)

stm_r_ds_target_of_af Query: Data-stores that are targets of a given a-flow-line

Purpose: Returns the data-stores that are targets of a-flow-lines in
the input list

Syntax:

stm_r_ds_target_of _af (IN af_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER)

398 Documentor Reference Guide



List of Query Functions

Input List Type: ch

stm_r_ds_def_or_unres_in_ch Query: Data-stores defined or unresolved in a given chart

Purpose: Returns the data-stores that are explicitly defined or
unresolved in the charts of the input list

Syntax:

stm_r_ds_def_or_unres_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

stm_r_ds_defined_in_ch Query: Data-stores defined in a given chart

Purpose: Returns the data-stores that are explicitly defined in the
charts of the input list

Syntax:

stm_r_ds_defined_in_ch (IN ch_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_ds_unresolved_in_ch Query: Data-stores unresolved in a given chart

Purpose: Returns the data-stores that are unresolved in the charts of
the input list
Syntax:

stm_r_ds_unresolved_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

Input List Type: ds

stm_r_ds_by_attributes_ds Query: Data-stores by attributes

Purpose: Returns the data-stores in the input list that match a given
attribute name and value

Syntax:

stm_r_ds_by attributes _ds (IN ds_list: LIST OF
DATA_STORE, IN attr_name: STRING, IN attr_value:
STRING, OUT status: INTEGER)
stm_r_ds_explicit_defined_ds Query: Data-stores explicitly defined

Purpose: Returns the data-stores of the input list that were explicitly
defined

Syntax:

stm_r_ds_explicit_defined_ds (IN ds_list: LIST OF
DATA_STORE, OUT status: INTEGER)

Rational Statemate 399



Query Functions

stm_r_ds_is_occurrence_of_ds Query: Data-store occurrences of a given data-store

Purpose: Returns the data-stores for which the data-stores in the
input list appear in the Is Data-store field of their form

Syntax:

stm_r_ds_is_occurrence_of _ds (IN ds_list: LIST OF
DATA_STORE, OUT status: INTEGER)

stm_r_ds_is_principal_of_ds Query: Principal data-stores of a given data-store

Purpose: Returns the data-stores for which the data-stores in the
input list appear in the Is Data-store field of their form
Syntax:

stm_r_ds_is_principal_of _ds (IN ds_list: LIST OF
DATA_STORE, OUT status: INTEGER)

stm_r_ds_name_of_ds Query: Data-store whose names match a given pattern

Purpose: Returns all the data-stores whose names match the
specified pattern
Syntax:

stm_r_ds_name_of_ds (IN pattern: STRING, OUT
status: INTEGER)

stm_r_ds_synonym_of_ds Query: Data-store whose synonyms match a given pattern

Purpose: Returns all the data-stores whose synonyms match the
specified pattern

Syntax:

stm_r_ds_synonym_of_ds (IN pattern: STRING, OUT
status: INTEGER)

stm_r_ds_unresolved_ds Query: Unresolved data-stores

Purpose: Returns the unresolved data-stores in the input list

Syntax:

stm_r_ds_unresolved_ds (IN ds_list: LIST OF
DATA_STORE, OUT status: INTEGER)

Input List Type: md

stm_r_ds_resides_in_md Query: Data-stores residing in a given module.

Purpose: Returns the data-stores residing in modules from the input
list. The module appears in the Resides in Module field of the data-
store’s form.

Syntax:

stm_r_ds_resides_in_md (IN md_list: LIST OF MODULE,
OUT status: INTEGER)

400 Documentor Reference Guide



List of Query Functions

User-Defined Types (dt)

This section documents the query functions that return a list of data-types.

Input List Type: ch

stm_r_dt_def_or_unres_in_ch Query: User-defined types defined or unresolved in a given chart

Purpose: Returns the user-defined types that are explicitly defined or
unresolved in the charts in the input list

Syntax:

stm_r_dt_def _or_unres_in_ch (IN el_list: LIST OF
CHART, OUT status: INTEGER)

stm_r_dt_defined_in_ch Query: User-defined types defined in a given chart

Purpose: Returns the user-defined types that are explicitly defined in
the charts in the input list

Syntax:

stm_r_dt_defined_in_ch (IN el_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_dt_unresolved_in_ch Query: User-defined types unresolved in a given chart

Purpose: Returns the user-defined types that are unresolved in the
charts in the input list

Syntax:

stm_r_dt_unresolved_in_ch (IN el_list: LIST OF
CHART, OUT status: INTEGER)

Rational Statemate 401



Query Functions

Input List Type: dt

stm_r_dt_array_dt

Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as array
Syntax:

stm_r_dt_array_dt (IN el_list: LIST OF DATA_TYPE,
OUT status: INTEGER)

stm_r_dt_array_missing_dt

Query: Arrays of user-defined type by subtype

Purpose: Returns the arrays of user-defined types in the input list for
which no type is defined
Syntax:

stm_r_dt_array_missing_dt (IN el _list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_dt_bit_dt

Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as bit
Syntax:

stm_r_dt_bit_dt (IN el_list: LIST OF DATA_TYPE, OUT
status: INTEGER)

stm_r_dt_bit_queue_dt

Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as queue of bit
Syntax:

stm_r_dt_bit_queue_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_dt_bits_array_dt

Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as array of bit array
Syntax:

stm_r_dt_bits_array_dt (IN el _list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_dt_bits_dt

Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as bit array
Syntax:

stm_r_dt_bits_dt (IN el_list: LIST OF DATA TYPE, OUT
status: INTEGER)

402

Documentor Reference Guide




List of Query Functions

stm_r_dt_bits_queue_dt

Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as queue of bit array
Syntax:

stm_r_dt_bits_queue_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_dt_by_attributes_dt

Query: User-defined types by attribute

Purpose: Returns the user-defined types in the input list that match a
given attribute and value

Syntax:

stm_r_dt_by attributes_dt (IN dt_list: LIST OF
DATA TYPE, IN attr_name: STRING, IN attr_value:
STRING, OUT status: INTEGER)

stm_r_dt_by_structure_type_dt

Query: None

Purpose: Returns the user-defined types in the input list that have a
given structure type (for example, single, array or queue)
Syntax:

stm_r_dt_by structure_type_dt (IN el_list: LIST OF
DATA_TYPE, IN dtype: INTEGER, OUT status: INTEGER)

stm_r_dt_condition_array_dt

Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as array of condition
Syntax:

stm_r_dt_condition_array_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_dt_condition_dt

Query: User-defined types by subtype

Purpose: Returns the user-defend types in the input list that are
defined as condition
Syntax:

stm_r_dt_condition_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_dt_condition_queue_dt

Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as queue of condition
Syntax:

stm_r_dt_condition_queue_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_dt_enums_dt

Query: User-defined types defined as enumerated types

Purpose: Returns the user-defined types in the input list that are
defined as enumerated types
Syntax:

stm_r_dt_enums_dt (IN el_list: LIST OF DATA TYPE,
OUT status: INTEGER)

Rational Statemate

403



Query Functions

stm_r_dt_explicit_defined_dt Query: User-defined types explicitly defined

Purpose: Returns the user-defined types in the input list that are
explicitly defined

Syntax:

stm_r_dt_explicit_defined_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_dt_integer_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as integer

Syntax:

stm_r_dt_integer_dt (IN el_list: LIST OF DATA_TYPE,
OUT status: INTEGER)

stm_r_dt_integer_array_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as array of integer

Syntax:

stm_r_dt_integer_array_dt (IN el _list: LIST OF
DATA_TYPE, OUT status: INTEGER)
stm_r_dt_integer_queue_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as queue of integer

Syntax:

stm_r_dt_integer_queue_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_dt_missing_dt Query: User-defined type by subtype

Purpose: Returns the user-defined types in the input list for which no
type is defined

Syntax:

stm_r_dt_missing_dt (IN el_list: LIST OF DATA_TYPE,
OUT status: INTEGER)

stm_r_dt_name_of_dt Query: User-defined types whose names match a given pattern

Purpose: Returns all user-defined types whose names match the
specified pattern
Syntax:

stm_r_dt_name_of_dt (IN pattern: STRING, OUT status:
INTEGER)

stm_r_dt_queue_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as queue
Syntax:

stm_r_dt_queue_dt (IN el_list: LIST OF DATA_TYPE,
OUT status: INTEGER)

404 Documentor Reference Guide



List of Query Functions

stm_r_dt_queue_missing_dt Query: Queues of user-defined type by subtype

Purpose: Returns the queues of user-defined types in the input list for
which no type is defined

Syntax:

stm_r_dt_queue_missing_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_dt_real_array_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as real

Syntax:

stm_r_dt_real_array_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_dt_real_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as real

Syntax:

stm_r_dt_real_dt (IN el_list: LIST OF DATA_TYPE, OUT
status: INTEGER)

stm_r_dt_real_queue_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as queue of real

Syntax:

stm_r_dt_real_queue_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_dt_record_array_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as array of record

Syntax:

stm_r_dt_record_array_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_dt_record_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as record

Syntax:

stm_r_dt_record_dt (IN el_list: LIST OF DATA TYPE,
OUT status: INTEGER)

stm_r_dt_single_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as single

Syntax:

stm_r_dt_single_dt (IN el_list: LIST OF DATA TYPE,
OUT status: INTEGER)

Rational Statemate 405



Query Functions

stm_r_dt_string_array_dt

Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as array of string
Syntax:

stm_r_dt_string_array_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_dt_string_dt

Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as string
Syntax:

stm_r_dt_string_dt (IN el_list: LIST OF DATA_TYPE,
OUT status: INTEGER)

stm_r_dt_string_queue_dt

Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as queue of string
Syntax:

stm_r_dt_string_queue_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_dt_synonym_of_dt

Query: User-defined types whose synonyms match a given pattern
Purpose: Returns all user-defined types whose synonyms match the
specified pattern

Syntax: stm_r_dt_synonym_of _dt (IN pattern: STRING,
OUT status: INTEGER)

stm_r_dt_union_dt

Query: User-defined type by subtype

Purpose: Returns the user-defined types in the input list that are
defined as union
Syntax:

stm_r_dt_union_dt (IN el_list: LIST OF DATA_TYPE,
OUT status: INTEGER)

stm_r_dt_union_array_dt

Query: User-defined type by subtype

Purpose: Returns the user-defined types in the input list that are
defined as array of union
Syntax:

stm_r_dt_union_array_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_dt_unresolved_dt

Query: Unresolved user-defined types
Purpose: Returns the unresolved user-defined types in the input list

Syntax:

stm_r_dt_unresolved_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

406

Documentor Reference Guide




List of Query Functions

stm_r_dt_user_type_array_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as array of another user-defined type

Syntax:

stm_r_dt_user_type array_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_dt_user_type_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as other user-defined type

Syntax:

stm_r_dt_user_type_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_dt_user_type_queue_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list that are
defined as queue of another user-defined type

Syntax:

stm_r_dt_user_type_queue_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

Input List Type: fd

stm_r_dt_containing_fd Query: User-defined types containing a given field

Purpose: Returns the user-defined types (records or unions), in
which the fields in the input list are defined
Syntax:

stm_r_dt_containing_fd (IN el _list: LIST OF FIELD,
OUT status: INTEGER)

Rational Statemate 407



Query Functions

Events (ev)

This section documents the query functions that return a list of events.

Input List Type: af

stm_r_ev_flowing_through_af

Query: Events flowing through the specified a-flow-line

Purpose: Returns the events actually flowing through a-flow-lines in
the input list
Syntax:

stm_r_ev_Fflowing_through_af (IN af_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER)

stm_r_ev_labeling_af

Query: Events labeling a given a-flow-line
Purpose: Returns the events that label the a-flow-lines in the input list

Syntax:

stm_r_ev_labeling_af (IN af_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER)

Input List Type: ch

stm_r_ev_def or_unres_in_ch

Query: Events defined or unresolved in a given chart

Purpose: Returns the events that are explicitly defined or unresolved
in the charts of the input list

Syntax:

stm_r_ev_def _or_unres_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

stm_r_ev_defined_in_ch

Query: Events defined in a given chart

Purpose: Returns the events that are explicitly defined in the charts of
the input list
Syntax:

stm_r_ev_defined_in_ch (IN ch_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_ev_unresolved_in_ch

Query: Events unresolved in a given chart

Purpose: Returns the events that are unresolved in the charts of the
input list

Syntax:

stm_r_ev_unresolved_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

408

Documentor Reference Guide




List of Query Functions

Input List Type: ev

stm_r_ev_array_ev Query: Events by subtype
Purpose: Returns the events in the input list that are defined as array

Syntax:

stm_r_ev_array_ev (IN ev_list: LIST OF EVENT, OUT
status: INTEGER)

stm_r_ev_by_attributes_ev Query: Events by attributes

Purpose: Returns the events in the input list that match the specified
attribute name and value

Syntax:

stm_r_ev_by attributes ev (IN ev_list: LIST OF
EVENT, IN attr_name: STRING, IN attr_value: STRING,
OUT status: INTEGER)

stm_r_ev_by structure_type ev Query: None

Purpose: Returns the events in the input list that have the specified
structure type (for example, single or array)

Syntax:

stm_r_ev_by structure_type _ev (IN ev_list: LIST OF
EVENT, IN dtype: INTEGER, OUT status: INTEGER)

stm_r_ev_callback_binding_ev Query: Events with callback bindings

Purpose: Returns the events in the input list that have callback
bindings

Syntax:

stm_r_ev_callback_binding_ev (IN el_list: LIST OF
EVENT, OUT status: INTEGER)
stm_r_ev_explicit_defined_ev Query: Events explicitly defined

Purpose: Returns the events of the input list that were explicitly
defined

Syntax:

stm_r_ev_explicit_defined_ev (IN ev_list: LIST OF
EVENT, OUT status: INTEGER)

stm_r_ev_name_of_ev Query: Events whose names match a given pattern
Purpose: Returns all the events whose names match the specified
pattern
Syntax:
stm_r_ev_name_of_ev (IN pattern: STRING, OUT status:
INTEGER)

Rational Statemate 409



Query Functions

stm_r_ev_single_ev Query: Events by subtype
Purpose: Returns the events in the input list that are defined as single

Syntax:

stm_r_ev_single_ev (IN ev_list: LIST OF EVENT, OUT
status: INTEGER)

stm_r_ev_synonym_of_ev Query: Events whose synonyms match a given pattern

Purpose: Returns all the events whose synonyms match the specified
pattern

Syntax:

stm_r_ev_synonym_of_ev (IN pattern: STRING, OUT
status: INTEGER)

stm_r_ev_unresolved_ev Query: Unresolved events

Purpose: Returns the unresolved events in the input list

Syntax:

stm_r_ev_unresolved_ev (IN ev_list: LIST OF EVENT,
OUT status: INTEGER)

Input List Type: if

stm_r_ev_contained_in_if Query: Events contained in a given information-flow

Purpose: Returns the events contained in information-flows from the
input list (events used in the Consists of field of the information-flow’s
form)

Syntax:

stm_r_ev_contained_in_if (IN if_list: LIST OF
INFORMATION_FLOW, OUT status: INTEGER)

410 Documentor Reference Guide



List of Query Functions

Input List Type: mf

stm_r_ev_flowing_through_mf Query: Events flowing through a given m-flow-line

Purpose: Returns the events actually flowing through m-flow-lines
from the input list
Syntax:

stm_r_ev_flowing_through_mf (IN mf_list: LIST OF
M_FLOW_LINE, OUT status: INTEGER)

stm_r_ev_labeling_mf Query: Events labeling a given m-flow-line
Purpose: Returns the events that label the m-flow-lines in the input list

Syntax:

stm_r_ev_labeling_mf (IN mf_list: LIST OF
M_FLOW_LINE, OUT status: INTEGER)

Fields (fd)

This section documents the queries that return a list of fields.

Input List Type: ch

stm_r_fd_defined_in_ch Query: Fields defined in a given chart

Purpose: Returns the fields that are part of the structured data-items
in the input list
Syntax:

stm_r_fd_defined_in_ch (IN el_list: LIST OF CHART,
OUT status: INTEGER)

Input List Type: di

stm_r_fd_contained_in_di Query: Fields by subtype
Purpose: Returns the fields in the input list that are defined as array

Syntax:

stm_r_fd_contained_in_di (IN el_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

Rational Statemate 411



Query Functions

Input List Type: dt

stm_r_fd_contained_in_dt Query: Fields contained in user-defined type (UDT)

Purpose: Returns the fields that are part of the structured UDTs in the
input list

Syntax:

stm_r_fd_contained_in_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

Input List Type: fd

stm_r_fd_array_fd Query: Fields by subtype
Purpose: Returns the fields in the input list that are defined as array

Syntax:

stm_r_fd_array_fd (IN el_list: LIST OF FIELD, OUT
status: INTEGER)

stm_r_fd_array_missing_fd Query: Array of fields by subtype

Purpose: Returns the array of fields in the input list for which no type
is defined

Syntax:

stm_r_Tfd_array_missing_fd (IN el_list: LIST OF
FIELD, OUT status: INTEGER)

stm_r_fd_bit_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are defined as bit

Syntax:

stm_r_fd_bit_fd (IN el_list: LIST OF FIELD, OUT
status: INTEGER)

stm_r_fd_bit_queue_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are defined as queue
of bit
Syntax:

stm_r_fd_bit queue_fd (IN el_list: LIST OF FIELD,
OUT status: INTEGER)

stm_r_fd_bits_array_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are defined as bit
array

Syntax:

stm_r_Tfd_bits_array fd (IN el_list: LIST OF FIELD,
OUT status: INTEGER)

412 Documentor Reference Guide



List of Query Functions

stm_r_fd_bits_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are defined as bit
array

Syntax:

stm_r_fd_bits_fd (IN el_list: LIST OF FIELD, OUT
status: INTEGER)

stm_r_fd_bits_queue_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are defined as queue
of bit array

Syntax:

stm_r_fd_bits_queue_fd (IN el_list: LIST OF FIELD,
OUT status: INTEGER)

stm_r_fd_by_attributes_fd Query: Fields by attribute

Purpose: Returns the fields in the input list that match the specified
attribute and value

Syntax: stm_r_fd_by_ attributes_fd (IN fd_list: LIST
OF FIELD, IN attr_name: STRING, IN attr_value:
STRING, OUT status: INTEGER)

stm_r_fd_by_structure_type_fd Query: None

Purpose: Returns the fields in the input list that have the specified
structure type (for example, single or array)

Syntax:

stm_r_fd_by structure_type fd (IN el_list: LIST OF
FIELD, IN dtype: INTEGER, OUT status: INTEGER)

stm_r_fd_condition_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are defined as
condition

Syntax:

stm_r_fd_condition_fd (IN el_list: LIST OF FIELD,
OUT status: INTEGER)

stm_r_fd_condition_array_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are defined as array
of condition

Syntax:

stm_r_Tfd_condition_array_fd (IN el_list: LIST OF
FIELD, OUT status: INTEGER)

stm_r_fd_condition_queue_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are defined as queue
of condition

Syntax:

stm_r_fd_condition_queue_fd (IN el_list: LIST OF
FIELD, OUT status: INTEGER)

Rational Statemate 413



Query Functions

stm_r_fd_explicit_defined_fd Query: Fields explicitly defined
Purpose: Returns the fields in the input list that are explicitly defined

Syntax:

stm_r_fd_explicit_defined_fd (IN el_list: LIST OF
FIELD, OUT status: INTEGER)

stm_r_fd_integer_array_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are defined as array
of integer

Syntax:

stm_r_fd_integer_array_fd (IN el_list: LIST OF
FIELD, OUT status: INTEGER)

stm_r_fd_integer_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are defined as integer

Syntax:

stm_r_fd_integer_fd (IN el_list: LIST OF FIELD, OUT
status: INTEGER)

stm_r_fd_integer_queue_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are defined as queue
of integer

Syntax:

stm_r_fd_integer_queue_fd (IN el_list: LIST OF
FIELD, OUT status: INTEGER)

stm_r_fd_missing_fd Query: Fields by subtype

Purpose: Returns the fields in the input list for which no type is
defined

Syntax:

stm_r_fd_missing_fd (IN el_list: LIST OF FIELD, OUT
status: INTEGER)

stm_r_fd_name_of_fd Query: Fields whose names match a given pattern

Purpose: Returns all fields whose name matches the specified
pattern

Syntax:

stm_r_fd_name_of_fd (IN pattern: STRING, OUT
status: INTEGER)

stm_r_fd_queue_fd Query: Fields by subtype
Purpose: Returns the fields in the input list that are defined as queue

Syntax:

stm_r_fd_queue_fd (IN el_list: LIST OF FIELD, OUT
status: INTEGER)

414 Documentor Reference Guide



List of Query Functions

stm_r_fd_queue_missing_fd Query: Queues of field by subtype

Purpose: Returns the queues of fields in the input list for which no
type is defined

Syntax:

stm_r_Tfd_queue_missing_fd (IN el_list: LIST OF
FIELD, OUT status: INTEGER)

stm_r_fd_real_array_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are defined as array
of real

Syntax:

stm_r_fd_real_array_fd (IN el_list: LIST OF FIELD,
OUT status: INTEGER)

stm_r_fd_real_fd Query: Fields by subtype
Purpose: Returns the fields in the input list that are defined as real

Syntax:

stm_r_fd_real_fd (IN el_list: LIST OF FIELD, OUT
status: INTEGER)

stm_r_fd_real_queue_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are defined as queue
of real

Syntax:

stm_r_fd_real_queue_fd (IN el_list: LIST OF FIELD,
OUT status: INTEGER)

stm_r_fd_single_fd Query: Fields by subtype
Purpose: Returns the fields in the input list that are defined as single

Syntax:

stm_r_fd_single_fd (IN el_list: LIST OF FIELD, OUT
status: INTEGER)

stm_r_fd_string_array_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are defined as array
of string

Syntax:

stm_r_fd_string_array_fd (IN el_list: LIST OF
FIELD, OUT status: INTEGER)

stm_r_fd_string_fd Query: Fields by subtype
Purpose: Returns the fields in the input list that are defined as string

Syntax:

stm_r_fd_string_fd (IN el_list: LIST OF FIELD, OUT
status: INTEGER)

Rational Statemate 415



Query Functions

stm_r_fd_string_queue_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are defined as queue
of string
Syntax:

stm_r_Tfd_string_queue_fd (IN el_list: LIST OF
FIELD, OUT status: INTEGER)

stm_r_fd_user_type_array_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are defined as array
of user-defined type

Syntax:

stm_r_fd_user_type_array_fd (IN el_list: LIST OF
FIELD, OUT status: INTEGER)

stm_r_fd_user_type_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are defined as user-
defined type

Syntax:

stm_r_fd _user_type_fd (IN el_list: LIST OF FIELD,
OUT status: INTEGER)

stm_r_fd_user_type_queue_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are defined as queue
of user-defined type

Syntax:

stm_r_Tfd_user_type _queue_fd (IN el_list: LIST OF
FIELD, OUT status: INTEGER)

Input List Type: mx

stm_r_fd_contained_in_mx Query: Fields contained in a given element

Purpose: Returns the fields that are part of the structured elements
(data-items and user-defined types) in the input list
Syntax:

stm_r_fd_contained_in_mx (IN el_list: LIST OF
ELEMENT, OUT status: INTEGER)

416 Documentor Reference Guide



List of Query Functions

Functions (fn)

This section documents the queries that return a list of functions.

Input List Type: ch

stm_r_fn_name_of_fn Query: Function names that match a given pattern
Purpose: Returns all the functions whose names match the specified
pattern
Syntax:
stm_r_fn_name_of_fn (IN pattern: STRING, OUT status:
INTEGER)

stm_r_fn_unresolved_in_ch Query: Functions unresolved in a given chart

Purpose: Returns the functions that are unresolved in the charts of the
input list

Syntax: stm_r_fn_unresolved_in_ch (IN ch_list: LIST
OF CHART,OUT status: INTEGER)

Rational Statemate 417



Query Functions

Information-Flows (if)

This section documents the queries that return a list of information-flows.

Input List Type: af

stm_r_if_basic_flowing_af Query: Basic information-flows flowing through a given a-flow-line.

Purpose: Returns information-flows that are not decomposed to other
information items, and are flowing through a-flow-lines in the input list.
Syntax:

stm_r_if_basic_flowing_af (IN af_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER)

stm_r_if_flowing_through_af Query: Information-flows flowing through a given a-flow-line.

Purpose: Returns the information-flows flowing through a-flow-lines
in the input list.

Note: This function returns the highest information-flows, as opposed
to stm_r_if_basic_flowing_af, which returns the lowest level.
Syntax:

stm_r_if_flowing_through_af (IN af_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER)

stm_r_if_labeling_af Query: Information-flows labeling a given a-flow-line.

Purpose: Returns the information-flows that label a-flow-lines in the
input list.

Syntax:

stm_r_if_labeling_af (IN af_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER)

418 Documentor Reference Guide



List of Query Functions

Input List Type: ch

stm_r_if_def_or_unres_in_ch Query: Information-flows defined or unresolved in a given chart

Purpose: Returns the information-flows that are explicitly defined or
unresolved in the charts of the input list

Syntax:

stm_r_if _def_or_unres_in_ ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

stm_r_if_defined_in_ch Query: Information-flows defined in a given chart

Purpose: Returns the information-flows that are explicitly defined in
the charts of the input list
Syntax:

stm_r_if _defined_in_ch (IN ch_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_if_unresolved_in_ch Query: Information-flows unresolved in a given chart

Purpose: Returns the information-flows that are unresolved in the
charts of the input list
Syntax:

stm_r_if _unresolved_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

Input List Type: co

stm_r_if_containing_co Query: Information-flows containing a given condition

Purpose: Returns the information-flows containing conditions from the
input list (conditions appearing in the Consists of field of the
information-flow's form)

Syntax:

stm_r_if_containing_co (IN co_list: LIST OF
CONDITION, OUT status: INTEGER)

Rational Statemate 419



Query Functions

Input List Type: di

stm_r_if_containing_di Query: Information-flows containing a given data-item

Purpose: Returns the information-flows containing data-items from
the input list (data-items appearing in the Consists of field of the
information-flow’s form)

Syntax:

stm_r_if_containing_di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

Input List Type: ev

stm_r_if_containing_ev Query: Information-flows containing a given event

Purpose: Returns the information-flows containing events from the
input list (events appearing in the Consists of field of the information-
flow's form)

Syntax:

stm_r_if_containing_ev (IN ev_list: LIST OF EVENT,
OUT status: INTEGER)

420 Documentor Reference Guide



List of Query Functions

Input List Type: if

stm_r_if_basic_if

Query: Basic information-flows

Purpose: Returns the information-flows in the input list that are basic
(those not defined using other information-flows)

Syntax:

stm_r_if _basic_if (IN el_list: LIST OF
INFORMATION_FLOW, OUT status: INTEGER)

stm_r_if_by_attributes_if

Query: Information-flows by attributes

Purpose: Returns the information-flows in the input list that match a
particular attribute name and value

Syntax:

stm_r_if_by attributes_if (IN if_list: LIST OF
INFORMATION_FLOW, IN attr_name: STRING, IN
attr_value: STRING, OUT status: INTEGER)

stm_r_if_contained_in_if

Query: Information-flows contained in a given information-flow

Purpose: Returns the information-flows that are contained in
information-flows from the input list (as defined in the Consists of field)
Syntax:

stm_r_if_contained_in_if (IN if_list: LIST OF
INFORMATION_FLOW, OUT status: INTEGER)

stm_r_if_containing_if

Query: Information-flows containing a given information-flow
Purpose: Returns the information-flows that contain information-flows
from the input list (as defined in the Consists of field)

Syntax:

stm_r_if_containing_if (IN if_list: LIST OF
INFORMATION_FLOW, OUT status: INTEGER)

stm_r_if_explicit_defined_if

Query: Information-flows explicitly defined

Purpose: Returns the information-flows of the input list that were
explicitly defined

Syntax:

stm_r_if_explicit_defined_if (IN if_list: LIST OF
INFORMATION_FLOW, OUT status: INTEGER)

stm_r_if name_of _if

Query: Information-flow names that match a given pattern
Purpose: Returns all the information-flows whose names match the
specified pattern

Syntax: stm_r_if_name_of_if (IN pattern: STRING, OUT
status: INTEGER)

Rational Statemate

421



Query Functions

stm_r_if_synonym_of_if Query: Information-flow synonyms that match a given pattern

Purpose: Returns all the information-flows whose synonyms match
the specified pattern
Syntax:

stm_r_if_synonym_of_if (IN pattern: STRING, OUT
status: INTEGER)

stm_r_if_unresolved_if Query: Unresolved information-flows
Purpose: Returns the unresolved information-flows in the input list

Syntax:

stm_r_if _unresolved_if (IN if_list: LIST OF
INFORMATION_FLOW, OUT status: INTEGER)

Input List Type: mf

stm_r_if_basic_flowing_mf Query: Basic information-flows flowing through a given m-flow-line.

Purpose: Returns the information-flows that are not decomposed to
other information items and are flowing through m-flow-lines in the
input list.

Syntax:

stm_r_if_basic_flowing_mf (IN mf_list: LIST OF
M_FLOW_LINE, OUT status: INTEGER)

stm_r_if_flowing_through_mf Query: Information-flows flowing through a given m-flow-line.

Purpose: Returns the information-flow flowing through m-flow-lines in
the input list.

Note: This function returns the highest information-flows as opposed
to stm_r_if_basic_flowing_mfF, which returns the lowest level.

Syntax:

stm_r_if_flowing_through_mf (IN mf_list: LIST OF
M_FLOW_LINE, OUT status: INTEGER)

stm_r_if_labeling_mf Query: Information-flows labeling a given m-flow-line.

Purpose: Returns the information-flow labeling m-flow-lines in the
input list.
Syntax:

stm_r_if_labeling_mf (IN mf_list: LIST OF
M_FLOW_LINE, OUT status: INTEGER)

422 Documentor Reference Guide



List of Query Functions

M-Flow-Lines (bf, bm, Imf, mf)
This section documents the queries that return a list of m-flow-lines. The types are as follows:

¢ pf—Basic m-flow-lines
¢ Imf—Local m-flow-lines
¢ mf—Global (compound) m-flow-lines

Output List Type: bf

Input List Type: co

stm_r_bf_within_flows_co Query: A-flow-lines through which a given condition flows

Purpose: Returns the a-flow-lines through which conditions from the
input list actually flow

Syntax:

stm_r_bf within_flows_co (IN co_list: LIST OF
CONDITION, OUT status: INTEGER)

stm_r_bf_within_labels_co Query: A-flow-lines labeled by a given condition

Purpose: Returns the a-flow-lines labeled with conditions in the input
list

Syntax:

stm_r_bf within_labels_co (IN co_list: LIST OF
CONDITION, OUT status: INTEGER)

Input List Type: di

stm_r_bf_within_flows_di Query: A-flow-lines through which a given data-item flows

Purpose: Returns the a-flow-lines through which data-items from the
input list actually flow

Syntax:

stm_r_bf within_flows_di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)
stm_r_bf_within_labels_di Query: A-flow-lines labeled by a given data-item

Purpose: Returns the a-flow-lines labeled with data-items in the input
list

Syntax:

stm_r_bf within_labels_di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

Rational Statemate 423



Query Functions

Input List Type: ev

stm_r_bf_within_flows_ev Query: A-flow-lines through which a given event flows

Purpose: Returns the a-flow-lines through which events from the input
list actually flow
Syntax:

stm_r_bf _within_flows_ev (IN ev_list: LIST OF EVENT,
OUT status: INTEGER)

stm_r_bf_within_labels_ev Query: A-flow-lines labeled by a given event
Purpose: Returns the a-flow-lines labeled with events in the input list
Syntax:

stm_r_bf _within_labels_ev (IN ev_list: LIST OF
EVENT, OUT status: INTEGER)

Input List Type: if

stm_r_bf_within_flows_if Query: A-flow-lines through which a given information-flow flows

Purpose: Returns the a-flow-lines through which information-flows
from the input list actually flow

Syntax:

stm_r_bf _within_flows_if (IN if_list: LIST OF
INFORMATION_FLOW, OUT status: INTEGER)

stm_r_bf_within_labels_if Query: A-flow-lines labeled by a given information-flow

Purpose: Returns the a-flow-lines labeled with information-flows in
the input list
Syntax:

stm_r_bf_within_labels_if (IN if_list: LIST OF
INFORMATION_FLOW, OUT status: INTEGER)

424 Documentor Reference Guide



List of Query Functions

Input List Type: mx

stm_r_bf_from_source_mx Query: A-flow-lines whose source is a given element

Purpose: Returns basic a-flow-lines that originate at elements in the
input list
Syntax:

stm_r_bf from_source_mx (IN bl_list: LIST OF
ELEMENT, OUT status: INTEGER)

stm_r_bf_to_target_mx Query: A-flow-lines whose target is a given element

Purpose: Returns the basic a-flow-lines whose target is an element
from the input list
Syntax:

stm_r_bf to_target_mx (IN bl_list: LIST OF ELEMENT,
OUT status: INTEGER)

stm_r_bf_within_flows_mx Query: A-flow-lines through which a given element flows

Purpose: Returns the a-flow-lines through which elements from the
input list actually flow

Syntax:

stm_r_bf _within_flows_mx (IN if_list: LIST OF
ELEMENT, OUT status: INTEGER)
stm_r_bf_within_labels_mx Query: A-flow-lines labeled by a given elements

Purpose: Returns the a-flow-lines labeled with elements in the input
list

Syntax:

stm_r_bf within_labels _mx (IN di_list: LIST OF
ELEMENT, OUT status: INTEGER)

Rational Statemate 425



Query Functions

Output List Type: bm

Input List Type: mf

stm_r_bm_contained_in_mf Query: M-flow-lines labeled by given elements.

Purpose: Returns the basic m-flow-lines contained in the m-flow-lines
in the input list.
Syntax:

STM_R_BM_CONTAINED_IN_MF(IN mf_list: LIST OF
M_FLOW_LINE, OUT status: INTEGER):LIST OF
M_FLOW_LINE

stm_r_bm_enter_om Query: M-flow-lines labeled by given elements.

Purpose: Returns the basic m-flow-lines that enter the module-
occurrences in the input list.
Syntax:

STM_R_BM_ENTER_OM(IN om_list: LIST OF ELEMENT, OUT
status:

INTEGER) :LIST OF M_FLOW_LINE

426 Documentor Reference Guide



List of Query Functions

Output List Type: Imf

Input List Type: bm

stm_r_Imf_containing_bm Query: M-flow-lines labeled by a given elements
Purpose: Returns the a-flow-lines labeled with elements in the input list

Syntax:

STM_R_MF_CONTAINING_BM(IN bm_list: LIST OF
M_FLOW_LINE, OUT status:

INTEGER) :LIST OF M_FLOW_LINE

Input List Type: md

stm_r_Imf_from_source_md Query: M-flow-lines whose source is a given module within chart

Purpose: Returns the local compound m-flow-lines (those within
charts) whose source is a module from the input list
Syntax:

stm_r_Imf_from_source_md (IN md_list: LIST OF
MODULE, OUT status: INTEGER)

stm_r_Imf_input_to_md Query: M-flow-lines input to a given module within the chart

Purpose: Returns all the local compound m-flow-lines that originate
outside and terminate at (or inside) modules in the input list

Syntax:

stm_r_Imf_input_to_md (IN md_list: LIST OF MODULE,
OUT status: INTEGER)

stm_r_Imf_output_from_md Query: M-flow-lines output from a given module within that chart

Purpose: Returns all the local compound m-flow-lines that originate
at (or inside) and terminate outside modules in the input list
Syntax:

stm_r_ImFf_output_from_md (IN md_list: LIST OF
MODULE, OUT status: INTEGER)

stm_r_Imf_to_target_md Query: M-flow-lines whose target is a given module

Purpose: Returns the local m-flow-lines whose target is a module
from the input list
Syntax:

stm_r_Imf_to_target_md (IN md_list: LIST OF MODULE,
OUT status: INTEGER)

Rational Statemate 427



Query Functions

Input List Type: mf

stm_r_Imf_contained_in_mf

Query: None

Purpose: Returns the local m-flow-lines that contain the global m-
flow-lines in the input list
Syntax:

stm_r_Imf_contained_in_mf (IN af_list: LIST OF
M_FLOW_LINE, OUT status: INTEGER)

Output List Type: mf

Input List Type: co

stm_r_mf_within_flows_co

Query: M-flow-lines through which a given condition flows

Purpose: Returns the m-flow-lines through which conditions from the
input list actually flow
Syntax:

stm_r_mF_within_flows_co (IN co_list: LIST OF
CONDITION, OUT status: INTEGER)

stm_r_mf_within_labels_co

Query: M-flow-lines labeled by a given condition

Purpose: Returns the m-flow-lines that are labeled by the conditions in
the input list
Syntax:

stm_r_mf_within_labels_co (IN co_list: LIST OF
CONDITION, OUT status: INTEGER)

428

Documentor Reference Guide



List of Query Functions

Input List Type: di

stm_r_mf_within_flows_di Query: M-flow-lines through which a given data-item flows

Purpose: Returns the m-flow-lines through which data-items from the
input list actually flow

Syntax:

stm_r_mf_within_flows_di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

stm_r_mf_within_labels_di Query: M-flow-lines labeled by a given data-item

Purpose: Returns the m-flow-lines that are labeled by the data-items
in the input list

Syntax:

stm_r_mf_within_labels_di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

Input List Type: ev

stm_r_mf_within_flows_ev Query: M-flow-lines through which a given event flows

Purpose: Returns the m-flow-lines through which events from the
input list actually flow

Syntax:

stm_r_mf_within_flows_ev (IN ev_list: LIST OF EVENT,
OUT status: INTEGER)

stm_r_mf_within_labels_ev Query: M-flow-lines labeled by a given event

Purpose: Returns the m-flow-lines that are labeled by the events in
the input list

Syntax:

stm_r_mf_within_labels_ev (IN ev_list: LIST OF
EVENT, OUT status: INTEGER)

Rational Statemate 429



Query Functions

Input List Type: if

stm_r_mf_within_flows_if Query: M-flow-lines through which a given information-flow flows

Purpose: Returns the m-flow-lines through which information-flows
from the input list actually flow

Syntax:
stm_r_mf_within_flows_if (IN if_list: LIST OF
INFORMATION_FLOW, OUT status: INTEGER)

stm_r_mf_within_labels_if Query: M-flow-lines labeled with a given information-flow

Purpose: Returns the m-flow-lines that are labeled with information-
flows in the input list

Syntax:

stm_r_mf_within_labels_if (IN if_list: LIST OF
INFORMATION_FLOW, OUT status: INTEGER)

Input List Type: Imf

stm_r_mf_containing_Imf Query: None

Purpose: Returns the global m-flow-lines (which might spread over
several charts) that contain the local m-flow-lines (those within
charts) in the input list

Syntax:

stm_r_mf_containing_Imf (IN af_list: LIST OF
M_FLOW_LINE, OUT status: INTEGER)

430 Documentor Reference Guide



List of Query Functions

Input List Type: md

stm_r_mf_from_source_md

Query: M-flow-lines whose source is a given module

Purpose: Returns the global compound m-flow-lines (those that might
spread over several charts) whose source is a module from the input
list

Syntax:

stm_r_mf_from_source_md (IN md_list: LIST OF MODULE,
OUT status: INTEGER)

stm_r_mf_input_to_md

Query: M-flow-lines input to a given module

Purpose: Returns all the global compound m-flow-lines that originate
outside and terminate at (or inside) modules in the input list
Syntax:

stm_r_mf_input_to_md (IN md_list: LIST OF MODULE,
OUT status: INTEGER)

stm_r_mf_output_from_md

Query: M-flow-lines output from a given module

Purpose: Returns all the global compound m-flow-lines that originate
at (or inside) and terminate outside modules in the input list
Syntax:

stm_r_mf_output_from_md (IN md_list: LIST OF MODULE,
OUT status: INTEGER)

stm_r_mf_to_target_md

Query: M-flow-lines whose target is a given module

Purpose: Returns the global compound m-flow-lines whose target is a
module from the input list
Syntax:

stm_r_mf_to_target_md (IN md_list: LIST OF MODULE,
OUT status: INTEGER)

stm_r_Imf_to_target_md

Query: M-flow-lines whose target is a given module

Purpose: Returns the local compound m-flow-lines whose target is a
module from the input list
Syntax:

stm_r_Imf_to_target_md (IN md_list: LIST OF MODULE,
OUT status: INTEGER)

Rational Statemate

431



Query Functions

Input List Type: mx

stm_r_mf_within_flows_mx Query: M-flow-lines through which a given element flows

Purpose: Returns the m-flow-lines through which elements from the
input list actually flow
Syntax:

stm_r_mf_within_flows_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_mf_within_labels_mx Query: M-flow-lines that are labeled by a given information-flow
Purpose: Returns the m-flow-lines that are labeled with elements in
the input list
Syntax:

stm_r_mf_within_labels_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

432 Documentor Reference Guide



List of Query Functions

Modules (md)

This section documents the queries that return a list of modules.

Input List Type: ac

stm_r_md_carrying_out_ac

Query: Modules carrying out a given activity.

Purpose: Returns the modules carrying out activities in the input list.
The modules appear in the Implemented by Module field of an
activity’s form.

Syntax:

stm_r_md_carrying_out_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

Input List Type: ch

stm_r_md_def_or_unres_in_ch

Query: Modules defined or unresolved in a given chart

Purpose: Returns the modules that are explicitly defined or unresolved
in the charts of the input list
Syntax:

stm_r_md_def_or_unres_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

stm_r_md_defined_in_ch

Query: Modules defined in a given chart

Purpose: Returns the modules that are explicitly defined in the charts
of the input list
Syntax:

stm_r_md_defined_in_ch (IN ch_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_md_described_by_ch

Query: Modules described by a given activity-chart

Purpose: Returns the modules described by activity-charts in the input
list

Syntax:

stm_r_md_described_by ch (IN ch_list: LIST OF CHART,
OUT status: INTEGER)

Rational Statemate

433



Query Functions

stm_r_md_instance_of ch

Query: Modules instance of a given chart

Purpose: Returns the instance modules defined by the charts in the
input list

Syntax:

stm_r_md_instance_of_ch (IN ch_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_md_root_in_ch

Query: Root modules of a given chart

Purpose: Returns the internally defined modules (of type diagram)
attached to the charts in the input list
Syntax:

stm_r_md_root_in_ch (IN ch_list: LIST OF CHART, OUT
status: INTEGER)

stm_r_md_top_level_in_ch

Query: Top-level modules of a given chart

Purpose: Returns the top level modules (not contained in any box) of
the charts in the input list
Syntax:

stm_r_md_top_level _in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

stm_r_md_unresolved_in_ch

Query: Modules unresolved in a given chart

Purpose: Returns the modules that are unresolved in the charts of the
input list

Syntax:

stm_r_md_unresolved_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

Input List Type: ds

stm_r_md_contains_ds

Query: Modules in which a given data-store resides.

Purpose: Returns the modules in which data-stores from the input list
resides. The modules appear in the Resides in Module field of a
data-store’s form.

Syntax:

stm_r_md_contains_ds (IN ds_list: LIST OF
DATA_STORE, OUT status: INTEGER)

434

Documentor Reference Guide




List of Query Functions

Input List Type: md

stm_r_md_basic_md

Query: Basic modules

Purpose: Returns the modules in the input list that are basic modules
(those that have no descendants)
Syntax:

stm_r_md_basic_md (IN md_list: LIST OF MODULE, OUT
status: INTEGER)

stm_r_md_bus_md

Query: Bus modules
Purpose: Returns the modules in the input list that are bus modules
Syntax:

stm_r_md_bus md (IN md_list: LIST OF MODULE, OUT
status: INTEGER)

stm_r_md_by_attributes_md

Query: Modules by attributes

Purpose: Returns the modules in the input list that match a particular
attribute name and value

Syntax:

stm_r_md_by attributes _md (IN md_list: LIST OF
MODULE, IN attr_name: STRING, IN attr_value: STRING,
OUT status: INTEGER)

stm_r_md_control_md

Query: Control modules
Purpose: Returns the modules in the input list that are control modules

Syntax:

stm_r_md_control_md (IN md_list: LIST OF MODULE, OUT
status: INTEGER)

stm_r_md_def of instance_md

Query: Definition modules of a given module

Purpose: Returns the definition modules (top level modules in a
definition chart) for instances in the input list
Syntax:

stm_r_md_def_of_instance_md (IN md_list: LIST OF
MODULE, OUT status: INTEGER)

stm_r_md_defined_environment_md

Query: Environment modules

Purpose: Returns the modules from the input list that were defined as
environment modules
Syntax:

stm_r_md_defined_environment_md (IN md_list: LIST OF
MODULE,OUT status: INTEGER)

Rational Statemate

435



Query Functions

stm_r_md_environment_md

Query: Environment modules

Purpose: Returns the modules in the input list that are environment
modules

Syntax:

stm_r_md_environment_md (IN md_list: LIST OF
MODULE,OUT status: INTEGER)

stm_r_md_explicit_defined_md

Query: Modules explicitly defined

Purpose: Returns the modules of the input list that were explicitly
defined
Syntax:

stm_r_md_explicit_defined_md (IN md_list: LIST OF
MODULE, OUT status: INTEGER)

stm_r_md_external_md

Query: External modules
Purpose: Returns the modules in the input list that are external
Syntax:

stm_r_md_external_md (IN md_list: LIST OF MODULE,OUT
status: INTEGER)

stm_r_md_generic_instance_md

Query: Generic instance modules

Purpose: Returns the modules in the input list that are instances of
generic charts

Syntax:

stm_r_md_generic_instance_md (IN md_list: LIST OF
MODULE, OUT status: INTEGER)

stm_r_md_instance_md

Query: Instance modules

Purpose: Returns the instance modules from the modules in the input
list

Syntax:

stm_r_md_instance_md (IN md_list: LIST OF MODULE,
OUT status: INTEGER)

stm_r_md_instance_of def m

Query: Instance modules of a given definition module

Purpose: Returns the instance modules for definition modules (top-
level modules in a definition chart) in the input list
Syntax:

stm_r_md_instance_of_def_md (IN md_list: LIST OF
MODULE, OUT status: INTEGER)

stm_r_md_library_md

Query: Library modules

Purpose: Returns the modules from the input list that are library
modules
Syntax:

stm_r_md_library_md (IN md_list: LIST OF MODULE, OUT
status: INTEGER)

436

Documentor Reference Guide




List of Query Functions

stm_r_md_logical_desc_of_md Query: Logical descendants of a given module

Purpose: Returns the logical descendants of the modules in the input
list, taking into account the translation of instances to their definition
charts

Syntax:

stm_r_md_logical_desc_of md (IN md_list: LIST OF
MODULE, OUT status: INTEGER)

stm_r_md_logical_parent_of_md Query: Logical parent modules of a given module

Purpose: Returns the logical parent modules of the modules in the
input list, taking into account the translation of instances to their
definition charts

Syntax:

stm_r_md_logical_parent_of md (IN md_list: LIST OF
MODULE, OUT status: INTEGER)
stm_r_md_logical_sub_of_md Query: Logical submodules of a given module

Purpose: Returns the logical submodules of the modules in the input
list, taking into account the translation of instances to their definition
charts

Syntax:

stm_r_md_logical_sub_of md (IN md_Hist: LIST OF
MODULE, OUT status: INTEGER)

stm_r_md_name_of_md Query: Modules whose names match a given pattern
Purpose: Returns all the modules whose names match the specified
pattern
Syntax:
stm_r_md_name_of _md (IN pattern: STRING, OUT status:
INTEGER)

stm_r_md_offpage_instance_md Query: Offpage instance modules

Purpose: Returns the modules in the input list that are instances of
offpage charts

Syntax:

stm_r_md_offpage_instance_md (IN md_list: LIST OF
MODULE, OUT status: INTEGER)
stm_r_md_physical_desc_of_md Query: Physical descendants of a given module

Purpose: Returns the physical descendants (those within the same
chart) for the modules in the input list
Syntax:

stm_r_md_physical_desc_of md (IN md_list: LIST OF
MODULE, OUT status: INTEGER)

Rational Statemate 437



Query Functions

stm_r_md_physical_parent_of_md

Query: Physical parent modules of a given module

Purpose: Returns the physical parent modules (those within the same
chart) for the modules in the input list
Syntax:

stm_r_md_physical_parent_of_md (IN md_list: LIST OF
MODULE, OUT status: INTEGER)

stm_r_md_physical_sub_of_md

Query: Physical submodules of a given module

Purpose: Returns the physical submodules (those within the same
chart) for the modules in the input list
Syntax:

stm_r_md_physical_sub_of md (IN md_list: LIST OF
MODULE, OUT status: INTEGER)

stm_r_md_regular_md

Query: Regular modules

Purpose: Returns the modules from the input list that are regular
modules (not environment or storage)
Syntax:

stm_r_md_regular_md (IN md_list: LIST OF MODULE, OUT
status: INTEGER)

stm_r_md_resolved_to_ext md

Query: Modules resolved to a given external module

Purpose: Returns the modules (internal, external, or environment) to
which the external modules in the input list are resolved
Syntax:

stm_r_md_resolved_to_ext_md (IN md_list: LIST OF
MODULE,OUT status: INTEGER)

stm_r_md_storage_md

Query. Storage modules

Purpose: Returns the modules from the input list that are storage
modules
Syntax:

stm_r_md_storage_md (IN md_list: LIST OF MODULE, OUT
status: INTEGER)

stm_r_md_synonym_of_md

Query: Modules whose synonyms match a given pattern

Purpose: Returns all the modules whose synonyms match the
specified pattern
Syntax:

stm_r_md_synonym_of _md (IN pattern: STRING, OUT
status: INTEGER)

stm_r_md_unresolved_md

Query: Unresolved modules
Purpose: Returns the unresolved modules in the input list
Syntax:

stm_r_md_unresolved_md (IN md_list: LIST OF MODULE,
OUT status: INTEGER)

438

Documentor Reference Guide




List of Query Functions

Input List Type: mf

stm_r_md_source_of _mf

Query: Modules that are sources of a given m-flow-line

Purpose: Returns the modules that are sources of m-flow-lines from
the input list
Syntax:

stm_r_md_source_of_mf (IN mf_list: LIST OF
M_FLOW_LINE, OUT status: INTEGER)

stm_r_md_target_of_mf

Query: Modules that are targets of a given m-flow-line

Purpose: Returns the modules that are targets of m-flow-lines from
the input list
Syntax:

stm_r_md_target_of mf (IN mf_list: LIST OF
M_FLOW_LINE, OUT status: INTEGER)

Input List Type: router

stm_r_md_contains_router

Query: Modules in which a given router resides.

Purpose: Returns the modules in which routers from the input list
resides. The modules appear in the Resides in Module field of a
router’s form.

Syntax:

stm_r_md_contains_router (IN router_list: LIST OF
ROUTER, OUT status: INTEGER)

Rational Statemate

439



Query Functions

Mixed (mx)

This section documents the queries that return a list of elements.

Input List Type: af

stm_r_mx_flowing_through_af

Query: Elements flowing through a given a-flow-line

Purpose: Returns the information elements (conditions, events, data-
items, and basic information-flows) that actually flow through the a-
flow-lines in the input list

Syntax:

stm_r_mx_Flowing_through_af (IN af_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER)

stm_r_mx_labeling_af

Query: Elements labeling a given a-flow-line
Purpose: Returns the elements that label a-flow-lines in the input list
Syntax:

stm_r_mx_labeling_af (IN af_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER)

stm_r_mx_source_of_af

Query: Elements that are sources of a given a-flow-line

Purpose: Returns the elements (activities and data-stores) that are
sources of a-flow-lines in the input list

Syntax:

stm_r_mx_source_of _af (IN af_list: LIST OF
A_FLOW_LINE,OUT status: INTEGER)

stm_r_mx_target_of_af

Query: Elements that are targets of a given a-flow-line

Purpose: Returns the elements (activities and data-stores) that are
sources of a-flow-lines in the input list
Syntax:

stm_r_mx_target_of_af (IN af_list: LIST OF
A_FLOW_LINE,OUT status: INTEGER)

stm_r_mx_source_of _ba

Query: Elements affected by a given activity.

Purpose: Returns the elements that are sources of basic a-flow-lines
in the input list.

Syntax:

stm_r_mx_source_of_ ba (stm_list in_list, int
*status);

stm_r_mx_target_of_ba

Query: Elements affected by a given activity.

Purpose: Returns the elements that are targets of basic a-flow-lines in
the input list.

Syntax:

stm_r_mx_target_of_ ba (stm_list in_list, int
*status);

440

Documentor Reference Guide



List of Query Functions

stm_r_mx_target_of_ba Query:Elements that are targets of a given flow line.

Purpose: Returns the elements that are targets of basic a-flow-lines in
the input list
Syntax:

STM_R_MX_TARGET_OF _BA(IN ba_list: LIST OF
A_FLOW_LINE,OUT status: INTEGER): LIST OF ELEMENT;

Input List Type: ac

stm_r_mx_affected_by_ac Query: Elements affected by a given activity.

Purpose: Returns the elements (data-items, conditions, and events)
affected (modified or generated) by activities, in mini-specs, and
combinational assignments in the input list.

Syntax:

stm_r_mx_affected_by ac (IN ac_list: LIST OF
ACTIVITY,OUT status: INTEGER)

stm_r_mx_influence_ac Query: Elements that are referenced by or influence a given activity.
Purpose: Returns the elements used in all levels by the activities in
the input list.

This includes all logical descendant activities, a-flow-lines that enter or
exit these activities, elements that appear in the various fields of these
activities, and in the labels of the flow-lines and their components.

Syntax:

stm_r_mx_influence_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_mx_influenced_by_ac Query: Elements that see, or are influenced by, a given activity.
Purpose: Returns the elements that directly or indirectly use the
activities in the input list.

This query identifies all the elements, in all levels, that see or affect
the input activities.

Syntax:

stm_r_mx_influenced by ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_mx_refer_to_ac Query: Elements that see a given activity.

Purpose: Returns the elements that directly see activities in the input
list.

This query identifies where input activities are used.

Syntax:

stm_r_mx_refer_to_ac (IN ac_list: LIST OF ACTIVITY,
OUT status: INTEGER)

Rational Statemate 441



Query Functions

stm_r_mx_referenced_by_ac

Query: Elements that are referenced by a given activity.

Purpose: Returns the elements that appear in the activities of the
input list.

This includes all physical descendant activities, a-flow-lines that enter

or exit these activities, elements that appear in the various fields of
these activities, and in the labels of the flow-lines.

Syntax:

stm_r_mx_referenced_by ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_mx_resolved_to_ext_ac

Query: Elements resolved to a given external activity.

Purpose: Returns the activities and modules (internal, external, or
environment) to which the external activities in the input list are
resolved.

Syntax:

stm_r_mx_resolved_to_ext_ac (IN ac_list: LIST OF
ACTIVITY,OUT status: INTEGER)

stm_r_mx_used_by_ac

Query: Elements used by a given activity.

Purpose: Returns the elements (data-items, conditions, and events)
used (evaluated) by activities in mini-specs and combinational
assignments in the input list.

Syntax:

stm_r_mx_used_by _ac (IN ac_list: LIST OF
ACTIVITY,OUT status: INTEGER)

Input List Type: actor

stm_r_actor_explicit_defined_actor

Query:
Purpose: Extracts a list of elements from the input list that are explictly
defined elements of the requested type

Syntax:

stm_r_actor_explicit_defined_actor (stm_list
actor_list, iInt *status);

442

Documentor Reference Guide




List of Query Functions

Input List Type: an

stm_r_mx_in_definition_of_an

Query: Elements appearing in the definition of a given action.
Purpose: Returns the elements that appear in the Definition field of
actions (in the action’s form) in the input list.

This query identifies the elements that are used directly by the actions
in the input list.

Syntax:

stm_r_mx_in_definition_of_an (IN an_list: LIST OF
ACTION, OUT status: INTEGER)

stm_r_mx_influence_value_of_an

Query: Elements that influence the value of a given action.

Purpose: Returns the elements that appear in the Definition field of
actions in the input list, and those that appear in the definitions of
these elements (for all levels).

This query identifies the elements that are used directly or indirectly by
the actions in the input list.

Syntax:

stm_r_mx_influence_value_of_an (IN an_list: LIST OF
ACTION, OUT status: INTEGER)

stm_r_mx_influenced_by_an

Query: Elements that see, or are influenced by, a given action.
Purpose: Returns the elements that directly or indirectly use the
actions in the input list.

This query identifies all the elements, in all levels, that use the input
actions.

Syntax:

stm_r_mx_influenced_by an (IN an_list: LIST OF
ACTION, OUT status: INTEGER)

stm_r_mx_refer_to_an

Query: Elements that see a given action.

Purpose: Returns the elements that directly use the actions in the
input list.

This query identifies where the input actions appear.

Syntax:

stm_r_mx_refer_to_an (IN an_list: LIST OF ACTION,
OUT status: INTEGER)

Rational Statemate

443



Query Functions

Input List Type: bb

stm_r_bb_explicit_defined_bb

Query:

Purpose: Extracts a list of elements from the input list that are explictly
defined elements of the requested type

Syntax:

stm_r_bb_explicit_defined_bb (stm_list bb_list, int
*status);

Input List Type: bt

stm_r_mx_source_of bt

Query: Elements affected by a given activity.

Purpose: Returns the elements that are sources of basic transitions
in the input list

Syntax:
stm_r_mx_source_of _bt(stm_list in_list, int
*status);

stm_r_mx_target_of_bt

Query: Transitions containing the given basic transitions
Purpose: Returns the compound transitions that contain the basic
transitions in the input list

Syntax:

stm_r_tr_containing_bt (IN bt_list: LIST OF
TRANSITION, OUT status: INTEGER)

stm_r_tr_containing_bt

Query: Transitions containing the given basic transitions

Purpose: Returns the compound transitions that contain the basic
transitions in the input list

Syntax:

stm_r_tr_containing_bt (IN bt_list: LIST OF
TRANSITION, OUT status: INTEGER)

stm_r_bt_exit_from_st

Query: Basic transitions whose source is the specified state
Purpose: Returns the basic transitions whose source is a state
appearing in the input list

Syntax:

stm_r_bt _exit_from_st (IN st_list: LIST OF STATE,
OUT status: INTEGER)

444

Documentor Reference Guide



List of Query Functions

stm_r_bt_exit_from_cn

Query: Basic transitions whose source is the specified connector.
Purpose: Returns the basic transitions whose source is a connector
appearing in the input list

Syntax:

stm_r_bt_exit_from_cn (IN cn_list: LIST OF
CONNECTOR, OUT status: INTEGER)

stm_r_bt_enter_st

Query: Basic transitions whose target is the specified state

Purpose: Returns the basic transitions whose target is a state
appearing in the input list
Syntax:

stm_r_bt_enter_st (IN st_list: LIST OF STATE, OUT
status: INTEGER)

stm_r_bt_enter_cn

Query: Basic transitions whose target is the specified connector

Purpose: Returns the basic transitions whose target is a connector
appearing in the input list
Syntax:

stm_r_bt _enter_cn (IN st_list: LIST OF CONNECTOR,
OUT status: INTEGER)

stm_r_bt_defined_in_ch

Query: Basic transitions

Purpose: Returns the basic transitions defined in the input list of
charts

Syntax:

stm_r_bt_defined_in_ch(IN ch_list: LIST OF CHART,
OUT status: INTEGER);

stm_r_af_containing_ba

Query: A-flow-lines

Purpose: Returns the a-flow-lines that contain the basic a-flow-lines in
the input list

Syntax:

stm_r_af _containing_ba(IN ba_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER);

Rational Statemate

445



Query Functions

Input List Type: bm

stm_r_mx_source_of_bm Query: Elements affected by a given activity.

Purpose: Returns the elements that are sources of basic m-flow-lines
in the input list

Syntax:
stm_r_mx_source_of_ bm (stm_list in_list, int
*status);

stm_r_mx_target_of_bm Query: Elements affected by a given activity.

Purpose: Returns the elements that are targets of basic m-flow-lines
in the input list

Syntax:
stm_r_mx_target_of_ bm (stm_list in_list, int
*status);

stm_r_bm_exit_from_md Query: Basic m-flow-lines whose source is a given module

Purpose: Returns the basic m-flow-lines whose source is a module
from the input list

Syntax:

stm_r_bm_exit_from_md (IN md_list: LIST OF MODULE,
OUT status: INTEGER);

stm_r_bm_exit_from_cn Query: Basic m-flow-lines whose source is a given connector
Purpose: Returns the basic m-flow-lines whose source is a connector
from the input list

Syntax:

stm_r_bm_exit_from_cn (IN cn_list: LIST OF
CONNECTOR, OUT status: INTEGER);

stm_r_bm_enter_md Query: Basic m-flow-lines whose target is a given module

Purpose: Returns the basic m-flow-lines whose target is a module
from the input list

Syntax:

stm_r_bm _enter_md (IN md_list: LIST OF MODULE, OUT
status: INTEGER);

stm_r_bm_enter_cn Query: Basic m-flow-lines whose target is a given connector

Purpose: Returns the basic m-flow-lines whose target is a connector
from the input list

Syntax:

stm_r_bm_enter_cn(IN md_list: LIST OF CONNECTOR, OUT
status: INTEGER);

446 Documentor Reference Guide



List of Query Functions

stm_r_bm_exit_from_om

Query: Basic m-flow-lines whose source is a given module-
occurrence

Purpose: Returns the basic m-flow-lines whose source is a module-
occurrence from the input list

Syntax:

stm_r_bm _exit_from_om (IN md_list: LIST OF ELEMENT,
OUT status: INTEGER);

Input List Type: ch

stm_r_mx_constant_parameter_ch

Query: Constant parameters in a given chart

Purpose: Returns the constant formal parameters of generic charts
and components in the input list

Syntax:

stm_r_mx_constant_parameter_ch (IN ch_list: LIST OF
CHART, OUT status: INTEGER)

stm_r_mx_def or_unres_in_ch

Query: Elements that are defined or unresolved in a given chart

Purpose: Returns the elements that are explicitly defined or
unresolved in the charts of the input list
Syntax:

stm_r_mx_def_or_unres_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

stm_r_mx_defined_in_ch

Query: Elements that are defined in a given chart

Purpose: Returns the elements that are explicitly defined in the
charts of the input list
Syntax:

stm_r_mx_defined_in_ch (IN ch_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_mx_in_parameter_ch

Query: In parameters in a given chart

Purpose: Returns the formal in parameters of generic charts and
components in the input list

Syntax:

stm_r_mx_in_parameter_ch (IN ch_list: LIST OF
CHART, OUT status: INTEGER)

stm_r_mx_influence_value_of ch

Query: Elements referenced or influenced by a given chart

Purpose: Returns the elements that are used directly or indirectly
(referenced or affected) by the charts of the input list

Syntax:

stm_r_mx_influence_value_of_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

Rational Statemate

447



Query Functions

stm_r_mx_inout_parameter_ch Query: Inout parameters in a given chart

Purpose: Returns the formal inout parameters of generic charts and
components in the input list

Syntax:

stm_r_mx_inout_parameter_ch (IN ch_list: LIST OF
CHART, OUT status: INTEGER)

stm_r_mx_instance_of_ch Query: Element instance of a given chart

Purpose: Returns the element instances defined by the charts in the
input list
Syntax:

stm_r_mx_instance_of_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

stm_r_mx_out_parameter_ch Query: Out parameters in a given chart

Purpose: Returns the formal out parameters of generic charts and
components in the input list

Syntax:

stm_r_mx_out_parameter_ch (IN ch_list: LIST OF
CHART, OUT status: INTEGER)

stm_r_mx_parameter_of_ch Query: Parameters in a given chart

Purpose: Returns the formal parameters of generic charts and
components in the input list

Syntax:

stm_r_mx_parameter_of _ch (IN ch_list: LIST OF
CHART, OUT status: INTEGER)

stm_r_mx_referenced_by_ch Query: Elements referenced by a given chart

Purpose: Returns the elements that appear in the charts of the input
list

Syntax:

stm_r_mx_referenced_by ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

stm_r_mx_root_in_ch Query: Root elements of a given chart

Purpose: Returns the internally defined elements (of type diagram)
attached to the charts in the input list
Syntax:

stm_r_mx_root_in_ch (IN el_list: LIST OF CHART, OUT
status: INTEGER)

stm_r_mx_text_def_unres_in_ch Query: Textual elements defined or unresolved in a given chart

Purpose: Returns the textual elements that are explicitly defined or
unresolved in the charts of the input list
Syntax:

stm_r_mx_text_def _unres_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

448 Documentor Reference Guide



List of Query Functions

stm_r_mx_text_unresolved_in_ch

Query: Textual elements unresolved in a given chart

Purpose: Returns the textual elements that are unresolved in the
charts of the input list
Syntax:

stm_r_mx_text_unresolved_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

stm_r_mx_textual_defined_in_ch

Query: Textual elements that are defined in a given chart

Purpose: Returns the textual elements that are explicitly defined in
the charts of the input list
Syntax:

stm_r_mx_textual_defined_in_ch (IN ch_list: LIST OF
CHART, OUT status: INTEGER)

stm_r_mx_unresolved_in_ch

Query: Elements unresolved in a given chart

Purpose: Returns elements that are unresolved in the charts of the
input list

Syntax:

stm_r_mx_unresolved_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

Input List Type: co

stm_r_mx_in_definition_of_co

Query: Elements appearing in the definition of a given condition.
Purpose: Returns the elements that appear in the Definition field of
conditions (in the condition’s form) in the input list.

This query identifies the elements that are used directly by the
conditions in the input list.

Syntax:

stm_r_mx_in_definition_of_co (IN co_list: LIST OF
CONDITION, OUT status: INTEGER)

stm_r_mx_influence_value_of_co

Query: Elements that influence the value of a given condition.

Purpose: Returns the elements that appear in the Definition field of
the conditions in the input list, and those that appear in the definitions
of these elements (for all levels).

This query identifies the elements that directly or indirectly influence
the conditions in the input list.

Syntax:

stm_r_mx_influence_value_of_co (IN co_list: LIST OF
CONDITION, OUT status: INTEGER)

Rational Statemate

449



Query Functions

stm_r_mx_influenced_by_co

Query: Elements that see, or are influenced by, a given condition.

Purpose: Returns the elements that directly or indirectly use the
conditions in the input list.

Syntax:

stm_r_mx_influenced_by co (IN co_list: LIST OF
CONDITION, OUT status: INTEGER)

stm_r_mx_refer_to_co

Query: Elements that see a given condition.

Purpose: Returns the elements that directly use the conditions in the
input list.

This query identifies where the input conditions appear.

Syntax:

stm_r_mx_refer_to_co (IN co_list: LIST OF CONDITION,
OUT status: INTEGER)

Input List Type: di

stm_r_mx_in_definition_of_di

Query: Elements appearing in the definition of a given data-item.

Purpose: Returns the elements that appear in the Definition and the

Consists of fields of data-items (in the data-item’s form) in the input
list.

This query identifies the elements that are directly used by the data-
items in the input list.

Syntax:

stm_r_mx_in_definition_of_di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

stm_r_mx_influence_value_of_di

Query: Elements that influence the value of a given data-item.

Purpose: Returns the elements that appear in the Definition and
Consists of fields of data-items in the input list, and those that appear
in the fields of these elements (for all levels).

This query identifies the elements that directly or indirectly influence the
data-items in the input list.

Syntax:

stm_r_mx_influence_value_of _di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

stm_r_mx_influenced_by_di

Query: Elements that see, or are influenced by, a given data-item.
Purpose: Returns the elements that directly or indirectly use the data-
items in the input list.

This query identifies all the elements, in all levels, that see or affect the
input data-items.

Syntax:

stm_r_mx_influenced_by di (IN di_list: LIST OF
DATA_ITEM, OUT status: INTEGER)

450

Documentor Reference Guide




List of Query Functions

stm_r_mx_refer_to_di

Query: Elements that see the specified data-item.

Purpose: Returns the elements that directly use the data-items in the
input list.

This query identifies where the input data-items appear.

Syntax:

stm_r_mx_refer_to_di (IN di_list: LIST OF DATA_ ITEM,
OUT status: INTEGER)

Input List Type: ds

stm_r_mx_refer_to_ds

Query: Elements that see a given data-store

Purpose: Returns the elements directly affected by data-stores in the
input list
Syntax:

stm_r_mx_refer_to_ds (IN ds_list: LIST OF
DATA_STORE, OUT status: INTEGER)

Input List Type: dt

stm_r_mx_in_definition_of dt

Query: Elements that appear in the definition of a given user-defined
type

Purpose: Returns the elements that appear in the definition form of the
user-defined types in the input list

Syntax:

stm_r_mx_in_definition_of _dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_mx_influence_value_of dt

Query: Elements that influence the definition of a given user-defined
type

Purpose: Returns the elements, data-items and user-defined types,
that appear in the definition form of the user-defined types in the input
list, and those that appear in the definition form of these elements—in
all levels

Syntax:

stm_r_mx_influence_value_of_dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

Rational Statemate

451




Query Functions

stm_r_mx_influenced_by_dt

Query: Elements that see or influenced by a given user-defined type

Purpose: Returns the elements that directly or indirectly use in their
definition the user-defined types in the input list.
Syntax:

stm_r_mx_influenced_by dt (IN el_list: LIST OF
DATA_TYPE, OUT status: INTEGER)

stm_r_mx_refer_to_dt

Query: Elements that see a given user-defined type

Purpose: Returns the elements that use in their definition form the
user-defined types in the input list
Syntax:

stm_r_mx_refer_to_dt (IN el_list: LIST OF DATA TYPE,
OUT status: INTEGER)

Input List Type: ev

stm_r_mx_in_definition_of ev

Query: Elements appearing in the definition of a given event.
Purpose: Returns the elements that appear in the Definition field of
events (in the event’s form) in the input list.

This query identifies the elements that are directly used by the events in
the input list.

Syntax:

stm_r_mx_in_definition_of _ev (IN ev_list: LIST OF
EVENT, OUT status: INTEGER)

stm_r_mx_influence_value_of ev

Query: Elements that influence the value of a given event.

Purpose: Returns the elements that appear in the Definition field of
events in the input list, and those that appear in the definitions of these
elements (for all levels).

This query identifies the elements that are used directly or indirectly by
the events in the input list.

Syntax:

stm_r_mx_influence_value_of_ev (IN ev_list: LIST OF
EVENT, OUT status: INTEGER)

stm_r_mx_influenced_by_ev

Query: Elements that see, or are influenced by, a given event.
Purpose: Returns the elements that directly or indirectly use the
events in the input list.

This query identifies all the elements, in all levels, that see or affect the
input events.

Syntax:

stm_r_mx_influenced_by ev (IN ev_list: LIST OF
EVENT, OUT status: INTEGER)

452

Documentor Reference Guide




List of Query Functions

stm_r_mx_refer_to_ev Query: Elements that see a given event.

Purpose: Returns the elements that directly use the events in the input
list.

This query identifies where the input events appear.
Syntax:

stm_r_mx_refer_to_ev (IN ev_list: LIST OF EVENT, OUT
status: INTEGER)

Input List Type: fd

stm_r_mx_containing_fd Query: Elements containing a given field.

Purpose: Returns the data-items and user-defined types in which the
fields in the input list are defined.
Syntax:

stm_r_mx_containing_fd (IN el_list: LIST OF FIELD,
OUT status: INTEGER)

stm_r_mx_in_definition_of_fd Query: Elements that appear in the definition of a given field.

Purpose: Returns the elements that appear in the type definition of
the fields in the input list.

Syntax:

stm_r_mx_in_definition_of fd (IN el_list: LIST OF
FIELD, OUT status: INTEGER)
stm_r_mx_influence_value_of_f Query: Elements that influence the definition of a given field.

Purpose: Returns the elements, data-items, and user-defined types
that appear in the type definition of the fields in the input list, and those
that appear in the definition form of these elements (in all levels).

Syntax:

stm_r_mx_influence_value_of_fd (IN el_list: LIST OF
FIELD, OUT status: INTEGER)

stm_r_mx_influenced_by_fd Query: Elements that see, or are influenced by, a given field.

Purpose: Returns the elements that directly see the fields in the input
list.

This query identifies where the fields in the input list are used.

Syntax:

stm_r_mx_influenced_by fd (IN el _list: LIST OF
FIELD, OUT status: INTEGER)

stm_r_mx_refer_to_fd Query: Elements that see a given field.

Purpose: Returns the elements that directly see the fields in the input
list.

This query identifies where the fields in the input list are used.
Syntax:

stm_r_mx_refer_to_fd (IN el_list: LIST OF FIELD, OUT
status: INTEGER)

Rational Statemate 453



Query Functions

Input List Type: fn

stm_r_mx_influenced_by_fn

Query: Elements that see, or are influenced by, a given function
Purpose: Returns the elements that indirectly or directly use the
functions in the input list.

This query identifies all the elements, in all levels, that see the input
functions.

Syntax:

stm_r_mx_influenced_by fn (IN fn_list: LIST OF
FUNCTION, OUT status: INTEGER)

stm_r_mx_refer_to_fn

Query: Elements that see a given function.

Purpose: Returns the elements that directly use the functions in the
input list.

This query identifies where the input functions appear.

Syntax:

stm_r_mx_refer_to_fn (IN fn_list: LIST OF FUNCTION,
OUT status: INTEGER)

Input List Type: if

stm_r_mx_in_definition_of_if

Query: Elements appearing in the definition of a given a information-
flow.

Purpose: Returns the elements listed in the Consists of field (in the
information-flow’s forms) for information-flows in the input list.

This query identifies the elements that are used directly by the
information-flows in the input list.

Syntax:

stm_r_mx_in_definition_of _if (IN if_list: LIST OF
INFORMATION_FLOW, OUT status: INTEGER)

stm_r_mx_influence_value_of_if

Query: Elements that influence the value of a given information-flow.

Purpose: Returns the elements contained in the information-flows in
the input list (as listed in the Consists of field), for all levels of
decomposition.

This query identifies the elements that are directly or indirectly
contained in the information-flows of the input list.

Syntax:

stm_r_mx_influence_value_of_if (IN if_list: LIST OF
INFORMATION_FLOW, OUT status: INTEGER)

454

Documentor Reference Guide



List of Query Functions

stm_r_mx_influenced_by_if Query: Elements that see, or are influenced by, a given information-
flow

Purpose: Returns the elements that directly or indirectly use the
information-flows in the input list.

This query identifies all the elements, in all levels, that see the input
information-flows.

Syntax:

stm_r_mx_influenced_by_ if (IN if_list: LIST OF
INFORMATION_FLOW, OUT status: INTEGER)

stm_r_mx_refer_to_if Query: Elements that see a given information-flow.

Purpose: Returns the elements that directly use the information-flows
in the input list.

This query identifies where the input information-flows appear.
Syntax:

stm_r_mx_refer_to_if (IN if_list: LIST OF
INFORMATION_FLOW, OUT status: INTEGER)

Input List Type: md

stm_r_mx_influence_md Query: Elements that are referenced by or influence a given module.

Purpose: Returns the elements that are used in all levels by the
modules in the input list.
Syntax:

stm_r_mx_influence_md (IN md_list: LIST OF MODULE,
OUT status: INTEGER)

stm_r_mx_influenced_by_md Query: Elements that see, or are influenced by, a given module

Purpose: Returns the elements that directly or indirectly use the
modules in the input list
Syntax:

stm_r_mx_influenced_by md (IN el_list: LIST OF
MODULE, OUT status: INTEGER)

stm_r_mx_refer_to_md Query: Elements that see a given module.

Purpose: Returns the elements that directly see modules in the input
list.

Syntax:

stm_r_mx_refer_to_md (IN md_list: LIST OF MODULE,
OUT status: INTEGER)

Rational Statemate 455



Query Functions

stm_r_mx_referenced_by_md Query: Elements that are referenced by a given module.

Purpose: Returns the elements that appear in the modules of the
input list.
Syntax:

stm_r_mx_referenced_by md (IN md_list: LIST OF
MODULE, OUT status: INTEGER)

stm_r_mx_resolved_to_ext_md Query: Elements resolved to a given external module.

Purpose: Returns the elements to which the external modules in the
input list are resolved.
Syntax:

stm_r_mx_resolved_to_ext_md (IN md_list: LIST OF
MODULE,OUT status: INTEGER)

Input List Type: mf

stm_r_mx_flowing_through_mf Query: Elements flowing through a given m-flow-line

Purpose: Returns the information elements (conditions, events, data-
items and basic information-flows) that actually flow through the m-
flow-lines in the input list

Syntax:

stm_r_mx_Fflowing_through_mf (IN mf_list: LIST OF
M_FLOW_LINE, OUT status: INTEGER)

stm_r_mx_labeling_mf Query: Elements labeling a given m-flow-line
Purpose: Returns the elements that label m-flow-lines in the input list

Syntax:

stm_r_mx_labeling_mf (IN mf_list: LIST OF
M_FLOW_LINE, OUT status: INTEGER)

Input List Type: msg

stm_r_mx_labeling_msg Query: Elements labeling a given message

Purpose: Returns those elements that appear in labels of messages
in the input list

Syntax:

stm_r_mx_labeling_msg (IN mess_list: LIST OF
MESSAGE, OUT status: INTEGER)

456 Documentor Reference Guide



List of Query Functions

Input List Type: mx

stm_r_mx_affected_by_mx

Query: Elements affected by a given element.

Purpose: Returns the elements (primitive data-items, conditions,
events, and activities) that are affected (modified, generated, started,
stopped, and so on) by elements (states in static reactions or transitions
in labels) in the input list.

Syntax:

stm_r_mx_affected_by mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_mx_affecting_mx

Query: Elements in which a given element is affected.

Purpose: Returns the elements (states and transitions) that affect
(modify, generate, or activate) the elements (for example, events, data-
items, or activities) in the input list.

Syntax:

stm_r_mx_affecting_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_mx_meaningly_affecting_mx

Query:
Activities in which a given element is affected.
Purpose:

Identical to stm_r_mx_affecting_mx, but when the input list includes an
ID of a record/union, stm_r_mx_meaningly_affecting_mx will also
return elements that affect a field of the record/union, and not
necessarily the whole record/union element.

Syntax:

stm_r_mx_meaningly_affecting_mx (stm_list in_list,
int *status);

stm_r_mx_by_attributes_mx

Query: Elements by attributes

Purpose: Returns the elements in the input list that match a particular
attribute name and value

Syntax:

stm_r_mx_by_attributes_mx (IN mx_list: LIST OF
ELEMENT, IN attr_name: STRING, IN attr_value: STRING,
OUT status: INTEGER)

stm_r_mx_callback_binding_mx

Query: Elements with callback bindings.

Purpose: Returns the elements in the input list that have callback
bindings.

Syntax:

stm_r_mx_callback_binding_mx (IN el_list: LIST OF
ELEMENT, OUT status: INTEGER)

Rational Statemate

457



Query Functions

stm_r_mx_comb_elements_mx

Query: None.

Purpose: Returns the elements (data-items and conditions) in the input
list that are combinational elements.

Syntax:

stm_r_mx_comb_elements_mx (IN mx_list: LIST OF
ELEMENT, OUT status: INTEGER)

stm_r_mx_def_of_instance_mx

Query: Definition elements of a given element.

Purpose: Returns the definition elements (top-level) for instances in
the input list.

Syntax:

stm_r_mx_def_of_instance_mx (IN el_list: LIST OF
ELEMENT, OUT status: INTEGER)

stm_r_mx_explicit_defined_mx

Query: Elements explicitly defined.

Purpose: Returns the elements of the input list that were explicitly
defined.

Syntax:

stm_r_mx_explicit_defined_mx (IN _list: LIST OF
ELEMENT, OUT status: INTEGER)

stm_r_mx_generic_instance_mx

Query: None.

Purpose: Returns the boxes (states, activities, and modules) in the
input list that are instances of generic charts.

Syntax:

stm_r_mx_generic_instance_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_mx_in_definition_of_mx

Query: Elements that appear in the definition of a given element.

Purpose: Returns the elements that appear in the various fields of the
element’s form, or in labels of elements in the input list.

This query identifies the elements that are used directly by the elements
in the input list.

Syntax:

stm_r_mx_in_definition_of _mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_mx_influence_value_of_mx

Query: Elements that influence the value of a given element.

Purpose: Returns the elements that appear in various form’s fields or
labels of elements in the input list, and those that appear in the fields of
these elements (for all levels).

This query identifies the elements that directly or indirectly influence the
elements in the input list.

Syntax:

stm_r_mx_influence_value_of_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

458

Documentor Reference Guide




List of Query Functions

stm_r_mx_influenced_by_mx

Query: Elements that see or influenced by a given element.

Purpose: Returns the elements that directly or indirectly use the
elements in the input list.

This query identifies all the elements, in all levels, that see or affect the
input elements.

Syntax:

stm_r_mx_influenced_by mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_mx_instance_mx

Query: Element instance of a given element

Purpose: Returns the instance elements defined by the elements in
the input list

Syntax:

stm_r_mx_instance_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_mx_instance_of_def_mx

Query: Instance elements

Purpose: Returns the instance elements for definition elements (top-
level) in the input list.
Syntax:

stm_r_mx_instance_of_def mx (IN el_list: LIST OF
ELEMENT, OUT status: INTEGER)

stm_r_mx_logical_desc_of_mx

Query: Logical descendants of a given element

Purpose: Returns the logical descendants of the elements in the input
list

Syntax:

stm_r_mx_logical_desc_of _mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_mx_logical_parent_of_mx

Query: Logical parent elements of a given element.

Purpose: Returns the logical parent elements of the elements in the
input list, taking into account the translation of instances to their
definition charts.

Syntax:

stm_r_mx_logical_parent_of _mx (IN el_list: LIST OF
ELEMENT, OUT status: INTEGER)

stm_r_mx_logical_sub_of_mx

Query: Logical subelements of a given element

Purpose: Returns the logical subelements of the elements in the input
list

Syntax:

stm_r_mx_logical_sub_of_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

Rational Statemate

459



Query Functions

stm_r_mx_name_of_mx

Query: Element whose names match a given pattern

Purpose: Returns all the elements whose names match the specified
pattern

Syntax:

stm_r_mx_name_of_mx (IN pattern: STRING, OUT status:
INTEGER)

stm_r_mx_offpage_instance_mx

Query: None.

Purpose: Returns the boxes (states, activities, and modules) in the
input list that are instances of offpage charts.

Syntax:

stm_r_mx_offpage_instance_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_mx_parameter_mx

Query: Elements that are parameters.

Purpose: Returns the elements in the input list that are declared as
formal parameters of a generic chart.

Syntax:

stm_r_mx_parameter_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_mx_physical_desc_of_mx

Query: Physical descendants of a given element

Purpose: Returns the physical descendants (those within the same
chart) for the elements in the input list

Syntax:

stm_r_mx_physical_desc_of _mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_mx_physical_parent_of_mx

Query: Physical parent elements of a given element

Purpose: Returns the physical parent elements (those within the same
chart) for the elements in the input list

Syntax:

stm_r_mx_physical_parent_of_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_mx_physical_sub_of_mx

Query: Physical subelements of a given element

Purpose: Returns the physical subelements (those within the same
chart) for the elements in the input list

Syntax:

stm_r_mx_physical_sub_of mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_mx_refer_to_mx

Query: Elements that see a given element.

Purpose: Returns the elements that directly see elements in the input
list.

This query identifies where the input elements are used.

Syntax:

stm_r_mx_refer_to_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

460

Documentor Reference Guide




List of Query Functions

stm_r_mx_resolved_to_ext_mx

Query: Elements resolved to a given external box.

Purpose: Returns the activities and modules (internal, external, or
environment) to which the external activities and modules in the input
list are resolved.

Syntax:

stm_r_mx_resolved_to_ext_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_mx_synonym_of_mx

Query: Elements whose synonyms match a given pattern

Purpose: Returns all the elements whose synonyms match the
specified pattern

Syntax:

stm_r_mx_synonym_of_mx (IN pattern: STRING, OUT
status: INTEGER)

stm_r_mx_unresolved_mx

Query: Unresolved elements.
Purpose: Returns the unresolved elements in the input list.

Syntax:

stm_r_mx_unresolved_mx (IN mx_list: LIST OF ELEMENT,
OUT status: INTEGER)

stm_r_mx_used_by_mx

Query: Elements used by a given element.

Purpose: Returns the elements (primitive events, conditions, data-
items, states, and activities) that are used (evaluated by the elements,
such as states in static reactions and transitions in labels) in the input
list.

Syntax:

stm_r_mx_used_by mx (IN mx_list: LIST OF ELEMENT,OUT
status: INTEGER)

stm_r_mx_using_mx

Query: Elements in which a given element is used.

Purpose: Returns the elements (states in static reactions and
transitions in labels) that use (evaluate) the elements (basic events,
conditions, data-items, states, and activities) in the input list.

Syntax:

stm_r_mx_using_mx (IN mx_list: LIST OF ELEMENT,OUT
status: INTEGER)

stm_r_mx_meaningly_using_mx

Query:
Activities in which a given element is used.
Purpose:

Identical to stm_r_mx_using_mx, but when the input list includes an
ID of a record/union, stm_r_mx_meaningly_using_mx will also
return elements that use a field of the record/union, and not necessarily
the whole record/union element.

Syntax:

stm_r_mx_meaningly using _mx (stm_list in_list, int
*status);

Rational Statemate

461



Query Functions

stm_r_mx_with_combinationals_mx Query: None.

Purpose: Returns the elements (activities and state charts) in the input
list that have combinational assignments.

Syntax:

stm_r_mx_with_combinationals_mx (IN mx_list: LIST OF
ELEMENT, OUT status: INTEGER)

Input List Type: tr

stm_r_tr_by_attributes_tr Query: Transitions by attributes

Purpose: Returns the transitions from the input list which have attribute
attr_name with value attr_value in their attribute list

Syntax:

stm_r_tr_by attributes_tr(IN st_list: LIST OF
TRANSITION, IN attr_name : STRING, IN attr_value :
STRING, OUT status: INTEGER);

Input List Type: uc

stm_r_uc_explicit_defined_uc Query: Use-case elements

Purpose: Extracts the list of use-case elements from the input list that are
explicitly defined

Syntax:

stm_r_uc_explicit_defined_uc(IN uc_list: LIST OF
USE_CASE, OUT status: INTEGER);

stm_r_uc_associates_ac Query: Use-case elements

Purpose: Returns the use cases that associate with activities in the input list.
Syntax:

stm_r_tr_by attributes_tr(IN st_list: LIST OF TRANSITION,
IN attr_name : STRING, IN attr_value : STRING, OUT
status: INTEGER)

462 Documentor Reference Guide



List of Query Functions

Function Relationships

The following functions are related, but have subtle differences:

¢  stm_r_mx_influenced by mx
¢  stm_r_mx_affected_by_mx

¢  stm_r_mx_used_by mx

¢  stm_r_mx_affecting_mx

The following matrix shows their relationships. In the matrix, opposite functions go from left to
right, whereas cause and effect functions go up and down.

influenced by | used by

Function

affected by ‘ affecting

For example:

¢ Ifxisinfluenced by y, then y is used by x.
¢ If nis affected by m, then m is affecting n.
Consider the following statement:

if x is true then Function will set y=5
In this statement, x influences Function and Function affects y. This is shown in the matrix as
follows:
+ Elements above the double line influence Function.
¢ Elements below the double line are affected by Function.
For example, x is used by Function to determine whether to set the value of y, and Function is
affecting y by setting its value.

There are four possible relationships between these functions: two opposites and two cause and
effects.

+ Opposite: influenced by and used by

+ Opposite: affected by and affecting

+ Cause and effect: influenced by and affected by

+ Cause and effect: used by and affecting
To illustrate the relationships, consider the following static reaction in a state called STATE:

[D]/X=5 if D is true, then set x=y

Rational Statemate 463



Query Functions

The following table shows the relationships.

Relation Type

Description

Opposite: influenced and used by

STATE reads D to determine whether to perform an action, and D gives
STATE the cue to set X=Y.

In other words, STATE is influenced by D, and D is used by STATE.

Opposite: affected by and affecting

X’s value is set by STATE and STATE sets the value of X.
In other words, X is affected by STATE, and STATE is affecting X.

Cause and effect: influenced by and
affected by

STATE reads y to determine which value should be assigned to X, and
while in STATE, X can be setto y.

In other words, when STATE is influenced by v, it results in X being affected
by STATE.

Cause and effect: used by and
affecting

If y is true, STATE sets the value of X. y is influencing STATE; STATE is
affecting X.

In other words, when vy is used by STATE, it results in STATE affecting X.

464

Documentor Reference Guide




List of Query Functions

Input List Type: router

stm_r_mx_flowing_from_router

Query: Elements flowing from a given router

Purpose: Returns the elements actually flowing from routers in the
input list

Syntax:

stm_r_mx_Fflowing_from_router (IN router_lIst: LIST OF
ROUTER, OUT status: INTEGER)

stm_r_mx_flowing_to_router

Query: Elements flowing to a given router

Purpose: Returns the elements actually flowing to routers in the input
list

Syntax:

stm_r_mx_Fflowing_to_router (IN router_Ist: LIST OF
ROUTER, OUT status: INTEGER)

stm_r_mx_refer_to_router

Query: Elements that see a given router.

Purpose: Returns the elements that directly see routers in the input
list.

This query identifies where the routers are used.

Syntax:

stm_r_mx_refer_to_router (IN router_list: LIST OF
ROUTER, OUT status: INTEGER)

stm_r_mx_resolved_to_ext_router

Query: Elements resolved to a given router.

Purpose: Returns the elements to which the external routers in the
input list are resolved.

Syntax:

stm_r_mx_resolved_to_ext_router (IN router_list:
LIST OF ROUTER, OUT status: INTEGER)

Rational Statemate

465



Query Functions

Input List Type: sb

stm_r_mx_influenced_by_sb Query: Elements that see, or are influenced by, a given subroutine

Purpose: Returns the elements that directly or indirectly use the
subroutines in the input list
Syntax:

stm_r_mx_influenced_by _sb (IN fn_list: LIST OF
SUBROUTINE, OUT status: INTEGER)

stm_r_mx_refer_to_sb Query: Elements that see a given subroutine

Purpose: Returns the elements that directly see subroutines in the
input list

Syntax:

stm_r_mx_refer_to_sb (IN fn_list: LIST OF
SUBROUTINE, OUT status: INTEGER)

Input List Type: st

stm_r_mx_affected_by_st Query: Elements affected by a given state.

Purpose: Returns the elements (data-items, conditions, and events)
that are affected (modified or generated) by states (in mini-specs and
combinational assignments) in the input list.

Syntax:

stm_r_mx_affected_by_st (IN st_list: LIST OF
STATE,OUT status: INTEGER)

stm_r_mx_influence_st Query: Elements that are referenced by or influence a given state.
Purpose: Returns the elements that are used in all levels by the
states in the input list.

This includes all logical descendant states, the transitions that enter or
exit these states, and the elements that appear in the various fields of
these states, the labels of the transitions, and their components.

Syntax:

stm_r_mx_influence_st (IN st_list: LIST OF STATE,
OUT status: INTEGER)

466 Documentor Reference Guide



List of Query Functions

stm_r_mx_influenced_by_st Query: Elements that see, or are influenced by a given state.
Purpose: Returns the elements that directly or indirectly use the
states in the input list.

This query identifies all the elements, in all levels, that see or affect the
input states.

Syntax:

stm_r_mx_influenced_by st (IN st_list: LIST OF
STATE, OUT status: INTEGER)

stm_r_mx_refer_to_st Query: Elements that see a given state.

Purpose: Returns the elements that directly see states in the input
list.

This query identifies where the input states are used.

Syntax:

stm_r_mx_refer_to_st (IN st_list: LIST OF STATE, OUT
status: INTEGER)

stm_r_mx_referenced_by_st Query: Elements that are referenced by a given state.

Purpose: Returns the elements that appear in the states of the input
list.

This includes all physical descendant states, the transitions that enter
or exit these states, and the elements that appear in the various fields
of these states and in the labels of the transitions.

Syntax:

stm_r_mx_referenced_by st (IN st_list: LIST OF
STATE, OUT status: INTEGER)

stm_r_mx_used_by_st Query: Elements used by a given state.

Purpose: Returns the elements (data-items, conditions, and events)
that are used (evaluated) by states (in mini-specs and combinational
assignments) in the input list.

Syntax:

stm_r_mx_used_by st (IN st_list: LIST OF STATE,OUT
status: INTEGER)

Rational Statemate 467



Query Functions

Input List Type: tr

stm_r_mx_affected_by_tr Query: Elements affected by a given transition

Purpose: Returns the elements (data-items, conditions, and events)
that are affected (modified, generated) by transitions (in mini-specs
and combinational assignments) in the input list

Syntax:

stm_r_mx_affected_by_tr (IN tr_list: LIST OF
TRANSITION,OUT status: INTEGER)

stm_r_mx_labeling_tr Query: Elements labeling a given transition

Purpose: Returns those elements that appear in labels of the
transitions in the input list
Syntax:

stm_r_mx_Jlabeling_tr (IN tr_list: LIST OF
TRANSITION, OUT status: INTEGER)

stm_r_mx_source_of_tr Query: Elements that are sources of a given transition

Purpose: Returns the elements (states and connectors) that are
sources of transitions in the input list
Syntax:

stm_r_mx_source_of _tr (IN tr_list: LIST OF
TRANSITION,OUT status: INTEGER)

stm_r_mx_target_of_tr Query: Elements that are targets of a given transition

Purpose: Returns elements (states and connectors) that are targets
of transitions in the input list
Syntax:

stm_r_mx_target_of_tr (IN tr_list: LIST OF
TRANSITION,OUT status: INTEGER)

stm_r_mx_used_by_tr Query: Elements used by a given transition

Purpose: Returns the elements (data-items, conditions, and events)
that are used (evaluated) by transitions (in mini-specs and
combinational assignments) in the input list

Syntax:

stm_r_mx_used_by_tr (IN tr_list: LIST OF
TRANSITION,OUT status: INTEGER)

468 Documentor Reference Guide



List of Query Functions

Input List Type: uc

stm_r_uc_explicit_defined_uc Query: Elements from an input list.

Purpose: Returns the elements (data-items, conditions, and events)
that are explicitly defined.

Syntax:

stm_r_uc_associates_uc Query:

Purpose:

Syntax:

Routers (router)

This section documents the queries that return a list of routers.

Input List Type: ac

stm_r_router_contained_in_ac Query: Routers contained in a given activity

Purpose: Returns the routers contained directly in activities from the
input list
Syntax:

stm_r_router_contained_in_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_router_in_ac Query: Router in a given activity

Purpose: Returns the routers directly and indirectly contained in the
activities from the input list

Syntax:

stm_r_router_in_ac (IN el_list: LIST OF ROUTER, OUT
status: INTEGER)

Rational Statemate 469




Query Functions

Input List Type: af

stm_r_router_source_of_af

Query: Routers that are sources of a given a-flow-line

Purpose: Returns the routers that are sources of a-flow-lines in the
input list

Syntax:

stm_r_router_source_of_af (IN af_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER)

stm_r_router_target_of_af

Query: Routers that are targets of a given a-flow-line

Purpose: Returns the routers that are sources of a-flow-lines in the
input list

Syntax:

stm_r_router_target_of _af (IN af_list: LIST OF
A_FLOW_LINE, OUT status: INTEGER)

Input List Type: ch

stm_r_router_def_or_unres_in_ch

Query: Routers defined or unresolved in a given chart

Purpose: Returns the routers that are explicitly defined or unresolved
in the charts of the input list
Syntax:

stm_r_router_def_or_unres_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

stm_r_router_defined_in_ch

Query: Routers defined in a given chart

Purpose: Returns the routers that are explicitly defined in the charts
of the input list
Syntax:

stm_r_router_defined_in_ch (IN ch_list: LIST OF
CHART, OUT status: INTEGER)

stm_r_router_unresolved_in_ch

Query: Routers unresolved in a given chart

Purpose: Returns the routers that are unresolved in the charts of the
input list

Syntax:

stm_r_router_unresolved_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

470

Documentor Reference Guide



List of Query Functions

Input List Type: md

stm_r_router_resides_in_md Query: Routers residing in a given module.

Purpose: Returns the routers residing in modules from the input list.
The module appears in the Resides in Module field of the router’s
form.

Syntax:

stm_r_router_resides_in_md (IN md_list: LIST OF
MODULE, OUT status: INTEGER)

Input List Type: router

stm_r_router_by_attr_router Query: Routers by attributes

Purpose: Returns the routers in the input list that match a given
attribute name and value

Syntax:

stm_r_router_by attr_router (IN router_list: LIST OF
ROUTER, IN attr_name: STRING, IN attr_value: STRING,
OUT status: INTEGER)

stm_r_router_exp_def_router Query: Routers that are explicitly defined

Purpose: Returns from the input list those routers that were explicitly
defined

Syntax:

stm_r_router_exp_def_router (IN router_list: LIST OF
ROUTER, OUT status: INTEGER)

stm_r_router_name_of_router Query: Routers whose names match a given pattern
Purpose: Returns all routers whose name matches a given pattern

Syntax:

stm_r_router_name_of_router (IN pattern: STRING, OUT
status: INTEGER)

stm_r_router_res_to_ext_router Query: Routers resolved by a given external router

Purpose: Returns the routers (internal and external) to which the
external routers in the input list are resolved

Syntax:

stm_r_router_res_to_ext_router (IN router_list: LIST
OF ROUTER, OUT status: INTEGER)

Rational Statemate 471



Query Functions

stm_r_router_synonym_of_router

Query: Routers whose synonyms match a given pattern
Purpose: Returns all routers whose synonyms match a given pattern

Syntax:

stm_r_router_synonym_of_router (IN pattern: STRING,
OUT status: INTEGER)

stm_r_router_unresolved_router

Query: Unresolved routers
Purpose: Returns the unresolved routers in the input list

Syntax:

stm_r_router_unresolved_router (IN router_list: LIST
OF ROUTER, OUT status: INTEGER)

Subroutines (sb)

This section documents the queries that return a list of subroutines.

Input List Type: ch

stm_r_sb_connected_to_ch

Query: Subroutines that are connected to a given procedural
statechart

Purpose: Returns the subroutines in the input list that are connected
to the specified procedural statechart
Syntax:

stm_r_sb_connected_to_ch (IN el_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_sb_defined_in_ch

Query: Subroutines defined in a given chart

Purpose: Returns the subroutines that are explicitly defined in the
charts in the input list
Syntax:

stm_r_sb_defined_in_ch (IN el_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_sb_def or_unres_in_ch

Query: Subroutines defined or unresolved in a given chart

Purpose: Returns the subroutines that are explicitly defined or
unresolved in the charts in the input list
Syntax:

stm_r_sb_def _or_unres_in_ch (IN el_list: LIST OF
CHART, OUT status: INTEGER)

stm_r_sb_unresolved_in_ch

Query: Subroutines unresolved in a given chart

Purpose: Returns the subroutines that are unresolved in the charts in
the input list
Syntax:

stm_r_sb_unresolved_in_ch (IN ch_list: LIST OF
CHART, OUT status: INTEGER)

472

Documentor Reference Guide




List of Query Functions

Input List Type: sb

stm_r_sb_ada_sb Query: Subroutines written in Ada

Purpose: Returns subroutines in the input list that are written in Ada
and stored in the database using the Implementation menu
Syntax:

stm_r_sb_ada_sb (IN el_list: LIST OF SUBROUTINE, OUT
status: INTEGER)

stm_r_sb_ansi_c_sb Query: Subroutines written in ANSI C

Purpose: Returns subroutines in the input list that are written in ANSI
C and stored in the database using the Implementation menu

Syntax:

stm_r_sb_ansi_c_sb (IN el_list: LIST OF SUBROUTINE,
OUT status: INTEGER)

stm_r_sb_bit_sb Query: Subroutines by subtype

Purpose: Returns the subroutines in the input list that are defined as
bit

Syntax:

stm_r_sb_bit_sb (IN el_list: LIST OF SUBROUTINE, OUT
status: INTEGER)

stm_r_sb_bits_sb Query: Subroutines by subtype

Purpose: Returns the subroutines in the input list that are defined as
bit array

Syntax:

stm_r_sb_bits_sb (IN el_list: LIST OF SUBROUTINE,
OUT status: INTEGER)

stm_r_sb_by_attributes_sb Query: Subroutines by attributes

Purpose: Returns the subroutines in the input list that match the
specified attribute name and value
Syntax: stm_r_sb_by attributes_sb (IN el_list: LIST

OF SUBROUTINE, IN attr_name: STRING, IN attr_value:
STRING, OUT status: INTEGER)

stm_r_sb_explicit_defined_sb Query: Subroutines that are explicitly defined

Purpose: Returns the subroutines in the input list that are explicitly
defined

Syntax:

stm_r_sb_explicit_defined_sb (IN el_list: LIST OF
SUBROUTINE, OUT status: INTEGER)

Rational Statemate 473



Query Functions

stm_r_sb_fn_with_side_effect_sb Query: Function subroutines with potential side-effects

Purpose: Returns the function subroutines in the input list that have
potential side-effects
Syntax:

stm_r_sb_fn_with_side_effect_sb (IN el_list: LIST OF
SUBROUTINE, OUT status: INTEGER)

stm_r_sb_function_sb Query: Subroutines defined as functions

Purpose: Returns the subroutines in the input list that are defined as
functions
Syntax:

stm_r_sb_function_sb (IN el_list: LIST OF
SUBROUTINE, OUT status: INTEGER)

stm_r_sb_globals_usage_sb Query: Subroutines that have global data
Purpose: Returns all subroutines in the input list that have global data
Syntax:

stm_r_sb_globals_usage _sb (IN el_list: LIST OF
SUBROUTINE, OUT status: INTEGER)

stm_r_sb_imp_action_lang_sb Query: Subroutines whose selected implementation is Action
Language

Purpose: Returns the subroutines in the input list that are
implemented in the Statemate Action Language using Select
Implementation

Syntax:

stm_r_sb_imp_action_lang_sb (IN el_list: LIST OF
SUBROUTINE, OUT status: INTEGER)

stm_r_sb_imp_ada_code_sb Query: Subroutines whose selected implementation is Ada Code

Purpose: Returns the subroutines in the input list that are implemented
in Ada using Select Implementation in the properties
Syntax:

stm_r_sb_imp_ada_code_sb (IN el_list: LIST OF
SUBROUTINE, OUT status: INTEGER)

stm_r_sb_imp_ansi_c_code_sb Query: Subroutines whose selected implementation is ANSI C Code

Purpose: Returns the subroutines in the input list that are implemented
in ANSI C using Select Implementation
Syntax:

stm_r_sb_imp_ansi_c_code_sb (IN el_list: LIST OF
SUBROUTINE, OUT status: INTEGER)

474 Documentor Reference Guide



List of Query Functions

stm_r_sb_imp_best_match_sb Query: Subroutines whose selected implementation is Best Match

Purpose: Returns the subroutines in the input list that are
implemented as the Best Match using Select Implementation
Syntax:

stm_r_sb_imp_best_match_sb (IN el_list: LIST OF
SUBROUTINE, OUT status: INTEGER)

stm_r_sb_imp_kr_c_code_sb Query: Subroutines whose selected implementation is K&R C Code

Purpose: Returns the subroutines in the input list that are
implemented in K&R C using Select Implementation
Syntax:

stm_r_sb_imp_kr_c_code_sb (IN el_list: LIST OF
SUBROUTINE, OUT status: INTEGER)

stm_r_sb_imp_none_sb Query: Subroutines whose selected implementation is None

Purpose: Returns the subroutines in the input list that are not
implemented (None) using Select Implementation
Syntax:

stm_r_sb_imp_none_sb (IN el_list: LIST OF
SUBROUTINE, OUT status: INTEGER)

stm_r_sb_imp_procedural_sch_sb Query: Subroutines whose selected implementation is Procedural
Statechart

Purpose: Returns the subroutines in the input list that are
implemented as Procedural Statecharts using Select
Implementation

Syntax:

stm_r_sb_imp_procedural_sch_sb (IN el_list: LIST OF
SUBROUTINE, OUT status: INTEGER)

stm_r_sb_imp_truth_table_sb Query: Subroutines implemented in a truth table

Purpose: Returns the subroutines in the input list that were
implemented in a truth table
Syntax:

stm_r_sb_imp_truth_table_sb (IN el_list: LIST OF
SUBROUTINE, OUT status: INTEGER)

stm_r_sb_integer_sb Query: Subroutines by subtype

Purpose: Returns the subroutines in the input list that are defined as
integer

Syntax:

stm_r_sb_integer_sb (IN el_list: LIST OF SUBROUTINE,
OUT status: INTEGER)

Rational Statemate 475



Query Functions

stm_r_sb_kr_c_sb Query: Subroutines written in K&R C

Purpose: Returns subroutines in the input list that are written in K&R C
and stored in the database using the Implementation menu
Syntax:

stm_r_sb_kr_c_sb (IN el_list: LIST OF SUBROUTINE,
OUT status: INTEGER)

stm_r_sb_missing_sb Query: Subroutines by subtype

Purpose: Returns the subroutines in the input list for which no type is
defined

Syntax:

stm_r_sb_missing_sb (IN el_list: LIST OF SUBROUTINE,
OUT status: INTEGER)

stm_r_sb_name_of_sb Query: Subroutines whose hames match a given pattern
Purpose: Returns all subroutines whose name matches the specified
pattern
Syntax:
stm_r_sb_name_of_sb (IN pattern: STRING, OUT status:
INTEGER)

stm_r_sb_parameters_sb Query: Subroutines that have parameters

Purpose: Returns all subroutines in the input list that have parameters
Syntax:

stm_r_sb_parameters_sb (IN el _list: LIST OF
SUBROUTINE, OUT status: INTEGER)

stm_r_sb_procedural_sch_sb Query: Subroutines designed as procedural statecharts

Purpose: Returns subroutines in the input list that are designed as
procedural statecharts and stored in the database using the
Implementation menu

Syntax:

stm_r_sb_procedural_sch_sb (IN el_list: LIST OF
SUBROUTINE, OUT status: INTEGER)

stm_r_sb_procedure_sb Query: Subroutines defined as procedures

Purpose: Returns the subroutines in the input list that are defined as
procedures
Syntax:

stm_r_sb_procedure_sb (IN el_list: LIST OF
SUBROUTINE, OUT status: INTEGER)

stm_r_sb_real_sb Query: Subroutines by subtype

Purpose: Returns the subroutines in the input list that are defined as
real
Syntax:

stm_r_sb_real_sb (IN el_list: LIST OF SUBROUTINE,
OUT status: INTEGER)

476 Documentor Reference Guide



List of Query Functions

stm_r_sb_statemate_action_sb Query: Subroutines written in the Statemate action language

Purpose: Returns subroutines in the input list that are written in the
Statemate action language and stored in the database using the
Implementation menu

Syntax:

stm_r_sb_statemate_action_sb (IN el_list: LIST OF
SUBROUTINE, OUT status: INTEGER)

stm_r_sb_string_sb Query: Subroutines by subtype

Purpose: Returns the subroutines in the input list that are defined as
string

Syntax:

stm_r_sb_string_sb (IN el_list: LIST OF SUBROUTINE,
OUT status: INTEGER)

stm_r_sb_synonym_of_sb Query: Subroutines whose synonyms match a given pattern

Purpose: Returns all subroutines whose synonyms match the
specified pattern
Syntax:

stm_r_sb_synonym_of _sb (IN el _list: LIST OF
SUBROUTINE, OUT status: INTEGER)

stm_r_sb_task_sb Query: Subroutines defined as tasks

Purpose: Returns the subroutines in the input list that are defined as
tasks

Syntax:

stm_r_sb_task_sb (IN el_list: LIST OF SUBROUTINE,
OUT status: INTEGER)

stm_r_sb_unresolved_sb Query: Unresolved subroutines

Purpose: Returns the unresolved subroutines in the input list

Syntax:

stm_r_sb_unresolved_sb (IN el _list: LIST OF
SUBROUTINE, OUT status: INTEGER)

stm_r_sb_user_type_sb Query: Subroutines by subtype

Purpose: Returns the subroutines in the input list that are defined as
user-defined type

Syntax:

stm_r_sb_user_type_sb (IN el_list: LIST OF
SUBROUTINE, OUT status: INTEGER)
stm_r_sb_procedural_fch_sb Query: Subroutines designed as Flowchart

Purpose: Returns subroutines in the input list that are designed as
Flowcharts and stored in the database using the Implementation menu

Syntax:

stm_r_sb_procedural_fch_sb (IN sb_list: LIST OF
SUBROUTINE, OUT st: INTEGER);

Rational Statemate 477



Query Functions

stm_r_sch_connected_to_sb

Query: Statecharts connected to a given subroutine

Purpose: Returns the procedural Statecharts that are connected to the
subroutines in the input list

Syntax:

stm_r_sch_connected_to_sb (IN sb_list: LIST OF
SUBROUTINE, OUT st: INTEGER);

stm_r_fch_connected_to_sb

Query: Flowcharts connected to a given subroutine

Purpose: Returns the Flowcharts that are connected to the subroutines
in the input list

Syntax:

stm_r_fch_connected_to_sb (IN sb_list: LIST OF
SUBROUTINE, OUT st: INTEGER);

States (st)

This section documents the queries that return a list of states.

Input List Type: ac

stm_r_st_done_throughout_ac

Query: States in which a given activity is performed throughout

Purpose: Returns the states for which activities in the input list are
performed throughout that state (as specified in Activities Within/
Throughout field in the state’s form)

Syntax:

stm_r_st_done_throughout_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

stm_r_st_done_within_ac

Query: States in which a given activity is performed within them

Purpose: Returns the states in which activities in the input list are
performed within that state (as specified in Activities Within/
Throughout field in the state’s form)

Syntax:

stm_r_st_done_within_ac (IN ac_list: LIST OF
ACTIVITY, OUT status: INTEGER)

478

Documentor Reference Guide




List of Query Functions

Input List Type: ch

stm_r_st_def_or_unres_in_ch

Query: States defined or unresolved in a given chart

Purpose: Returns the states that are explicitly defined or unresolved in
the charts of the input list
Syntax:

stm_r_st_def _or_unres_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

stm_r_st_defined_in_ch

Query: States defined in a given chart

Purpose: Returns the states that are explicitly defined in the charts of
the input list
Syntax:

stm_r_st_defined_in_ch (IN ch_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_st_instance_of ch

Query: State instances of a given chart

Purpose: Returns the instance states defined by the charts in the input
list

Syntax:

stm_r_st_instance_of_ch (IN ch_list: LIST OF CHART,
OUT status: INTEGER)

stm_r_st_root_in_ch

Query: Root states of a given chart

Purpose: Returns the internally defined states (of type diagram)
attached to the charts in the input list
Syntax:

stm_r_st_root_in_ch (IN ch_list: LIST OF CHART, OUT
status: INTEGER)

stm_r_st_top_level_in_ch

Query: Top-level states of a given chart

Purpose: Returns the top-level states (not contained in any box) of the
charts in the input list
Syntax:

stm_r_st_top_level_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

stm_r_st _unresolved_in_ch

Query: States unresolved in a given chart

Purpose: Returns the states that are unresolved in the charts of the
input list

Syntax:

stm_r_st_unresolved_in_ch (IN ch_list: LIST OF
CHART,OUT status: INTEGER)

Rational Statemate

479



Query Functions

Input List Type: cn

stm_r_st_containing_cn Query: States containing a given connector

Purpose: Returns the states that encapsulate specified connectors
from the input list

Syntax:

stm_r_st_containing_cn (IN cn_list: LIST OF
CONNECTOR,OUT status: INTEGER)

Input List Type: mx

stm_r_st_affecting_mx Query: States in which a given element is affected.

Purpose: Returns the states that affect (modify, generate, or activate)
the elements (for example, events, data-items, or activities) in the
input list.

Syntax:

stm_r_st_affecting_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_st_meaningly_affecting_mx Query: States in which a given element is affected.
Purpose: Identical to stm_r_st_affecting_mx, but when the input list

includes an ID of a record/union,
stm_r_st_meaningly_affecting_mx will also return elements that affect

a field of the record/union, and not necessarily the whole record/union
element.

Syntax:

stm_r_st_meaningly_affecting_mx (IN mx_list: LIST
OF ELEMENT,OUT status: INTEGER

stm_r_st_using_mx Query: States in which a given element is used.

Purpose: Returns the states in static reactions that use (evaluate) the
elements (basic events, conditions, data-items, states, and activities)
in the input list.

Syntax:

stm_r_st _using_mx (IN mx_list: LIST OF ELEMENT,OUT
status: INTEGER)

stm_r_st_meaningly_using_mx Query: States in which a given element is used.

Purpose: Identical to stm_r_st_using_mx, but when the input list
includes an ID of a record/union,

stm_r_st_meaningly_using_mx will also return elements that affect a
field of the record/union, and not necessarily the whole record/union
element.
Syntax:

stm_r_st_meaningly_using_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER);

480 Documentor Reference Guide



List of Query Functions

Input List Type: st

stm_r_st_and_st Query: And states.
Purpose: Returns the states in the input list that are And-states.
Syntax:

stm_r_st _and_st (IN st_list: LIST OF STATE, OUT
status: INTEGER)

stm_r_st_basic_st Query: Basic states.

Purpose: Returns the states in the input list that are basic (states that
have no descendants).

Syntax:

stm_r_st basic_st (IN st_list: LIST OF STATE, OUT
status: INTEGER)

stm_r_st_by_attributes_st Query: States by attributes.

Purpose: Returns the states in the input list that match a given
attribute name and value.

Syntax:

stm_r_st_by attributes_st (IN st_list: LIST OF
STATE, IN attr_name: STRING, IN attr_value: STRING,
OUT status: INTEGER)

stm_r_st_callback_binding_st Query: States with callback bindings.

Purpose: Returns the states in the input list that have callback
bindings.
Syntax:

stm_r_st_callback_binding_st (IN el_list: LIST OF
STATE, OUT status: INTEGER)

stm_r_st_def_of_instance_st Query: Definition states of a given state.

Purpose: Returns the definition states (top-level in the definition chart)
for instances in the input list.

Syntax:

stm_r_st_def_of _instance_st (IN st_list: LIST OF
STATE, OUT status: INTEGER)

stm_r_st_default_entry_to_st Query: Default entry to the default state.

Purpose: Returns the default states of the or-states in the input list.

Syntax:

stm_r_st_default_entry_to_st (IN st_list: LIST OF
STATE, OUT status: INTEGER)

Rational Statemate 481



Query Functions

stm_r_st_explicit_defined_st

Query: States explicitly defined.

Purpose: Returns the states in the input list that were explicitly
defined.

Syntax:

stm_r_st _explicit_defined_st (IN st_list: LIST OF
STATE, OUT status: INTEGER)

stm_r_st_generic_instance_st

Query: Generic instance states.

Purpose: Returns the states in the input list that are instances of
generic charts.

Syntax:

stm_r_st_generic_instance_st (IN st_list: LIST OF
STATE, OUT status: INTEGER)

stm_r_st_history_connector_st

Query: States containing a history connector.

Purpose: Returns the states in the input list that contain a history
connector.
Syntax:

stm_r_st_history_connector_st (IN st_list: LIST OF
STATE, OUT status: INTEGER)

stm_r_st_instance_of def st

Query: Instance states of a given definition state.

Purpose: Returns the instance states for definition states (top-level
states in a definition chart) in the input list.
Syntax:

stm_r_st_instance_of _def st (IN st_list: LIST OF
STATE, OUT status: INTEGER)

stm_r_st_instance_st

Query: Instance states.
Purpose: Returns those states in the input list that are instance states.

Syntax:

stm_r_st_instance_st (IN st_list: LIST OF STATE, OUT
status: INTEGER)

stm_r_st_logical_desc_of_st

Query: Logical descendants of a given state.

Purpose: Returns the logical descendants (children, grandchildren,
and so on) of states in the input list, taking into account the translation
of instances to their definition charts.

Syntax:

stm_r_st_logical_desc_of st (IN st_list: LIST OF
STATE, OUT status: INTEGER)

482

Documentor Reference Guide



List of Query Functions

stm_r_st_logical_parent_of_st Query: Logical parent states of a given state.

Purpose: Returns the logical parent states of the states in the input
list, taking into account the translation of instances to their definition
charts.

Note: This query provides similar output as stm_r_st_physical _
parent_of_st, but for states that are substates of a top-level state in
a definition chart, this query also returns the instance box.

Syntax:

stm_r_st_logical_parent_of st (IN st_list: LIST OF
STATE, OUT status: INTEGER)

stm_r_st_logical_sub_of_st Query: Logical substates of a given state.

Purpose: Returns the logical substates of the states in the input list,
taking into account the translation of instances to their definition charts.

Syntax:

stm_r_st _logical_sub_of_st (IN st_list: LIST OF
STATE, OUT status: INTEGER)

stm_r_st_name_of_st Query: States whose names match a given pattern

Purpose: Returns all the states whose names match the specified
pattern

Syntax:

stm_r_st _name_of_st (IN pattern: STRING, OUT
status: INTEGER)

stm_r_st_offpage_instance_st Query: Offpage instance states.

Purpose: Returns the states in the input list that are instances of
offpage charts.

Syntax:

stm_r_st_offpage_instance_st (IN st_list: LIST OF
STATE, OUT status: INTEGER)
stm_r_st_physical_desc_of_st Query: Physical descendants of a given state.

Purpose: Returns the physical descendants (those within the same
chart) for the states in the input list.

Syntax:

stm_r_st _physical_desc _of st (IN st_list: LIST OF
STATE, OUT status: INTEGER)
stm_r_st_physical_parent_of_st Query: Physical parent states of a given state.

Purpose: Returns the physical parent states (those within the same
chart) for the states in the input list.

Syntax:

stm_r_st _physical_parent_of_st (IN st_list: LIST OF
STATE, OUT status: INTEGER)

Rational Statemate 483



Query Functions

stm_r_st_physical_sub_of_st

Query: Physical substates of a given state.

Purpose: Returns the physical substates (those within the same chart)
for the states in the input list.
Syntax:

stm_r_st _physical_sub_of st (IN st_list: LIST OF
STATE, OUT status: INTEGER)

stm_r_st_reaction_activity_st

Query: States having reactions or activities.

Purpose: Returns the states from the input list that have static
reactions or activities performed within or throughout the state.
Syntax:

stm_r_st_reaction_activity_st (IN st_list: LIST OF
STATE, OUT status: INTEGER)

stm_r_st_synonym_of_st

Query: States whose synonyms match a given pattern

Purpose: Returns all the states whose synonyms match the specified
pattern
Syntax:

stm_r_st_synonym_of st (IN pattern: STRING, OUT
status: INTEGER)

stm_r_st _unresolved_st

Query: Unresolved states.
Purpose: Returns the unresolved states in the input list.
Syntax:

stm_r_st_unresolved_st (IN st_list: LIST OF STATE,
OUT status: INTEGER)

Input List Type: tr

stm_r_st_source_of_tr

Query: States that are sources of a given transition

Purpose: Returns the states that are sources of transitions in the input
list

Syntax:

stm_r_st_source_of _tr (IN tr_list: LIST OF
TRANSITION, OUT status: INTEGER)

stm_r_st_target_of_tr

Query: States that are targets of a given transition

Purpose: Returns the states that are targets of transitions in the input
list

Syntax:

stm_r_st_target_of _tr (IN tr_list: LIST OF
TRANSITION, OUT status: INTEGER)

484

Documentor Reference Guide



List of Query Functions

Timing Constraint (tc)

This section documents the query that returns a list of timing constraints.

Input List Type: ch

stm_r_tc_defined_in_ch Query: Timing constraints defined in a given chart

Purpose: Returns the timing constraints that are explicitly defined in
the charts of the input list
Syntax:

stm_r_tc_defined_in_ch (IN ch_Ist: LIST OF CHART,
OUT status: INTEGER)

Transitions (tr)

This section documents the queries that return a list of transitions.

Input List Type: cn

stm_r_tr_to_target_cn Query: Transitions whose target is a given connector

Purpose: Returns the transition in the input list whose target is a
termination or history connector
Syntax:

stm_r_tr_to_target_cn (IN cn_list: LIST OF
CONNECTOR,OUT status: INTEGER)

Rational Statemate 485



Query Functions

Input List Type: mx

stm_r_tr_affecting_mx Query: Transitions in which a given element is affected.

Purpose: Returns the transitions that affect (modify, generate, or
activate) the elements (for example, events, data-items, or activities)
in the input list.

Syntax:

stm_r_tr_affecting_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)
stm_r_tr_meaningly_affecting_mx Query: Transitions in which a given element is affected.

Purpose: Identical to stm_r_tr_affecting_mx, but when the input list

includes an ID of a record/union,
stm_r_tr_meaningly_affecting_mx will also return elements that affect

a field of the record/union, and not necessarily the whole record/union
element.

Syntax:

stm_r_tr_meaningly_affecting_mx (IN mx_list: LIST
OF ELEMENT,OUT status: INTEGER);

stm_r_tr_from_source_mx Query: Transitions whose source is a given element

Purpose: Returns transitions that originate at elements in the input
list

Syntax:

stm_r_tr_from_source_mx (IN mx_list: LIST OF
ELEMENT,OUT status: INTEGER)

stm_r_tr_to_target_mx Query: Transitions whose target is a given element

Purpose: Returns the transitions whose target is an element from the
input list

Syntax:

stm_r_tr_to_target_mx (IN mx_list: LIST OF
ELEMENT ,OUT status: INTEGER)

stm_r_tr_using_mx Query: Transitions in which a given element is used.

Purpose: Returns the transitions in labels that use (evaluate) the
elements (basic events, conditions, data-items, states, and activities)
in the input list.

Syntax:

stm_r_tr_using_mx (IN mx_list: LIST OF ELEMENT,OUT
status: INTEGER)

486 Documentor Reference Guide



List of Query Functions

stm_r_tr_meaningly_using_mx

Query: Transitions in which a given element is used.

Purpose: Identical to stm_r_tr_using_mx, but when the input list
includes an ID of a record/union,

stm_r_tr_meaningly_using_mx will also return elements that affect a
field of the record/union, and not necessarily the whole record/union
element.

Syntax:

stm_r_tr_meaningly_using_mx (IN mx_list: LIST OF
ELEMENT ,OUT status: INTEGER);

Input List Type: st

stm_r_tr_default_of_st

Query: Transitions that are the default entrance of a given state

Purpose: Returns the default entrances (compound transitions) of the
states in the input list
Syntax:

stm_r_tr_default_of_st (IN st_list: LIST OF
STATE,OUT status: INTEGER)

stm_r_tr_from_source_st

Query: Transitions whose source is the specified state

Purpose: Returns the transitions whose source is a state appearing in
the input list
Syntax:

stm_r_tr_from_source_st (IN st_list: LIST OF STATE,
OUT status: INTEGER)

stm_r_tr_to_target_st

Query: Transitions whose target is a given state

Purpose: Returns the transitions whose target is a state appearing in
the input list.
Syntax:

stm_r_tr_to_target_st (IN st_list: LIST OF STATE,
OUT status: INTEGER)

Input List Type: tr

stm_r_tr_default_tr

Query: Default transition

Purpose: Returns, of all the transitions in the input list that are default
transitions
Syntax:

stm_r_tr_default_tr (IN tr_list: LIST OF
TRANSITION,OUT status: INTEGER)

Rational Statemate

487



Query Functions

488 Documentor Reference Guide



Utility Functions

Utility functions enable you to manipulate lists. For example, you could use utility functions to
determine whether a particular element exists in a list of Statemate elements. Or, you could sort
these lists to make reports easier to read. You can also use utility functions to manipulate strings of
characters—to locate string patterns in a given string and to extract portions of strings. Most utility
functions for lists can manipulate lists of any item type, but are usually used for lists of Statemate
elements.

Utility functions do not extract information from the database; however, some utility functions use
database information to complete their operations. These functions enable you to manipulate the
information you have already retrieved using single-element or query functions.

In this appendix, the term item refers to any list member; the term element refers to a Statemate
element.

The topics are as follows:

¢ Calling Utility Functions

¢ Utility Function Input Arguments

¢ Examples of Utility Functions

¢ List of Utility Functions

Rational Statemate 489



Utility Functions

Calling Utility Functions

The calling sequence of the list functions is as follows:

stm_list_operation (list, status)

In this syntax:

+ stm_list—Designates the function as a Statemate list manipulation function

+ operation—The kind of list operation performed

¢ list—The list to be operated on

* status—The return function status code
The type of value returned by the function depends on the particular function. The returned value
can be a list, a Statemate element, a string, or an integer. For example:

stm_list_sort_by name (event_list, status)

This function alphabetically sorts the events in event_list according to their names. Function return
values for each utility function are listed in Single-Element Functions.

The following sections document the utility functions that use a different calling sequence.

Contains Element

The contains_element function returns a Boolean value of TRUE if the item of interest is
contained in the list (and FALSE if not contained).

The syntax is as follows:

stm_list_contains_element (list, item, status)

In this syntax:

¢ stm_list—Designates the function as a Statemate list manipulation function.

¢ contains_element—Signifies that this function checks to see whether the specified item is
a member of the list.

¢ list—Is the list in which to search for the specified item. 1ist can be any DGL list type
(for example, LIST OF ELEMENT).

¢ item—Is an item whose presence in the list you want to verify. The data type of the item
must be compatible with list’s data type.

+ status—Is the return function status code.

490

Documentor Reference Guide



Calling Utility Functions

For example:

stm_list_contains_element (state_list, state_id, status)

This function returns a value of TRUE if the state whose ID is state_id is a member of the list
state_list.

List Extraction by Type

The list_extraction_by_type function extracts the Statemate elements in the input list that are
of a particular data type.

The syntax is as follows:

stm_list_extraction_by type (element_type, list, status)
In this syntax:

+ stm_list—Designates the function as a Statemate list manipulation function.

+ extraction_by type—Signifies that this function extracts all Statemate elements of a
specified type from the input list.

+ element_type—Is a Statemate element type predefined constant.

+ list—Is the list in which to search for elements of the specified type. Iist can contain a
variety of Statemate elements (a mixed list).

¢ status—Is the return function status code.
For example:

stm_list_extraction_by type (stm_state, elmnt_list, status);

This call extracts all states from the list assigned to the variable elmnt_list. stm_state isone of
the predefined constants that designates an element type.

Rational Statemate 491



Utility Functions

List Extraction by Chart

The list_extraction_by_chart function extracts the Statemate elements in the input list that are
of a particular chart.

The syntax is as follows:

stm_list_extraction_by chart (chart_name, list, status)
In this syntax:

¢ stm_list—Designates the function as a Statemate list manipulation function.

¢ extraction_by chart—Signifies that this function extracts all Statemate elements defined
in a specific chart from the input list.

¢ chart_name—Is a string that represents the chart name.

¢ list—Is the list in which to search for elements of the specified chart. 1ist can contain a
variety of Statemate elements.

+ status—Is the return function status code.
For example:

stm_list_extraction_by chart (Cmy_chart”, elmnt_list, status);

This call extracts all elements from the list that defined in (or unresolved in) the chart my_chart.

Location of Pattern in a String

The index function returns the first location from the left (starting with 0), in which pattern
appears in the input string. It returns -1 when the pattern is not found.

The syntax is as follows:

stm_index (string, offset, pattern, status)
In this syntax:

+ stm_—The standard prefix of Statemate functions.
+ index—Signifies that the function looks for a location in the string.
+ string—The input string in which the pattern is searched.

+ offset—An integer greater than or equal to zero that represents the location at which the
search begins.

¢ pattern—The string to search for.

+ status—The return status code. The possible values are stm_success or
stm_nulI_string (when uninitialized strings are used as parameters).

492

Documentor Reference Guide



Calling Utility Functions

For example:

stm_index(*ABCA”,0,”C”,status) = 2
stm_index(”ABCA”,0,”AB”,status) = 0O
stm_index(”ABCA”,2,”A” ,status) = 3
stm_index(”ABCA”,0,”AC” ,status) = -1

Extract Portion of a String

The string_extract function extracts a portion of a string.
The syntax is as follows:

stm_string_extract (string, index, length, status)

In this syntax:

+ stm_string—Designates the function as a string manipulation function
+ extract—Signifies that the function extracts a portion of the input string
+ string—The input string

+ index—The integer location from which the output string portion starts
¢ length—The output string length (integer)

+ status—One of the following status codes: stm_success, stm_null_string,
stm_illegal_index, and stm_illegal_len

For example:
stm_string_extract(’ABCDE”,0,2,status) = ’AB”’
stm_string_extract(’ABCDE”,3,2,status) = °DE~

stm_string_extract(’ABCDE”,3,7,status)
and status = stm_illegal_len

Rational Statemate 493



Utility Functions

Utility Function Input Arguments

The following table lists the input arguments used by the utility functions.

Argument

Description

DGL Data Type

list

List of items upon which you want to perform a
logical or relational operation. The list’s data type
must be compatible with the particular utility
function in which it appears as an argument.

LIST OF...

item

An item whose presence in the list you want to
verify. The data type of the item must be
compatible with list's data type.

Any

element type

A Statemate element type predefined constant
(see Rational Statemate Element Types.)

Statemate element type

string The string on which to perform a string String
manipulation function.

offset The position (>= 0) in the string from which to start | Integer
the specified manipulation.

pattern The string portion searched for in the input string. | String

length The length of the string portion extracted from the | Integer

input string.

494

Documentor Reference Guide



Examples of Utility Functions

Examples of Utility Functions

This section shows how to use utility function calls to perform common tasks.

Utility Functions Example 1

The following example shows how to find the number of subactivities that exist for activity A1.

VARIABLE
ACTIVITY act_id, cntrl_act;
LIST OF ACTIVITY act_list, cntrl_act_list;
INTEGER status, list_length;

act_id := stm_r_ac (CA1l’, status);

act_list = stm_r_ac_physical_sub_of _ac ({act_id},

status);
list_length := stm_list_length (act_list, status);

The example uses a single-element function to determine the ID of A1, then uses a query function
to retrieve the list of A1’s subactivities. Finally, it assigns the number of A1’s subactivities to

list_length.

Utility Functions Example 2

The following example is a continuation of the previous example. If you know that only one of the
activities in the list act_list is a control activity and want to find out which activity it is, include the

following code in your template:

cntrl_act_iist = stm_r_ac_control_ac (act_list, status);
cntrl_act := stm_list_first_element (cntrl_act_list,

status);

The list cntrl_act_list consists of only one element. This code extracts the first element (in this
case, the only element) of the list and assigns this control activity’s ID to cntrl_act.

Rational Statemate 495



Utility Functions

Utility Functions Example 3

List

The following example shows how to find the software modules in a list of modules:

VARIABLE
MODULE md_id;
LIST OF STRING imp_type;
INTEGER status;

imp_type := stm_r_md_attr_val (md_id, ”IMPLEMENTATION”,
status);

IF stm_list_contains_string (imp_type, “SOFTWARE”,
status)
THEN

First, the code finds all the values for the IMPLEMENTATION attribute for the module, md_id. Among
these values, the code searches for the value SOFTWARE. (Multiple values can exist for a given
attribute.) If it is found, the statements following THEN are executed.

of Utility Functions

In general, all the stm_list utilities work on lists of Statemate elements except strings. Strings
have their own set of utilities, including:

stm_str_list_length (I_str, status)
stm_str_list_next_element (I_str, status)
stm_str_list_first_element (l_str, status)
stm_str_list_previous_element (I_str, status)
stm_str_list_last_element (l_str, status)
stm_list_contains_string (l_str, status)

The following pages document the utility functions. The functions are presented in alphabetical
order, as listed in the following table.

stm_action_of reaction Extracts the action part of the specified reaction

stm_delete_file Returns the definition type of the specified textual element
stm_dispose_memory Frees temporary memory used by the DOC system.
stm_dispose_memory Searches for the specified element in the list created by the search
stm_dispose_memory Looks for the specified pattern in the given string

stm_int Converts the specified real number to an integer
stm_int_to_string Returns the string representation of the specified (decimal) number
stm_r_is_statemate Returns TRUE if this is Statemate Classic
stm_list_contains_element Determines whether the specified item appears in the given list

496

Documentor Reference Guide



List of Utility Functions

stm_list_contains_string

Determines whether the specified string appears in the given list

stm_list_extraction

Extracts the elements from the input list

stm_list_extraction_by_chart

Extracts the elements from the input list that belong to the specified
chart

stm_list_extraction_by_type

Extracts elements of the specified type from the given list of
Statemate elements

stm_list_first_element

Returns the first element in the specified list

stm_list_last_element

Returns the last item in the specified list

stm_list_length

Returns the length of the specified list

stm_list_next_element

Returns the next element in the specified list

stm_plot_ext

Generates a plot file with the indicated parameters,

stm_list_previous_element

Returns the previous element in the specified list

stm_list_sort

Alphabetically sorts the specified list of strings

stm_list_sort_by_attr_value

Sorts the specified list of Statemate elements by the value of the
given attribute

stm_list_sort_by branches

Sorts the list of hierarchical Statemate elements by branch

stm_list_sort_by chart

Alphabetically sorts the input list of named Statemate elements by the
name of the chart to which they belong

stm_list_sort_by levels

Sorts the list of hierarchical Statemate elements by level

stm_list_sort_by name

Sorts the list of Statemate elements alphabetically by name

stm_list_sort_by synonym

Sorts the list of Statemate elements alphabetically by synonym

stm_list_sort_by type

Sorts the list of Statemate elements by type

stm_multiline_to_one

Converts the specified multiline string (with new lines) to a one-line
string (without new lines)

stm_multiline_to_strings

Converts the specified multiline expression to a list of strings

stm_plot

Generates a plot file with the indicated parameters, such as plot size,
output device, and so on

stm_plot_hyper_exp

Generates the hyperlinks in a sequence diagram

stm_plot_with_autonumber

Prints a sequence diagram with numbered scenarios

stm_plot_with_break

Breaks a sequence diagram across multiple pages

stm_plot_with_headerline

Prints a sequence diagram with the names of lifelines on every page

stm_replace_string

Replaces the specified pattern with a new pattern within a string

stm_replace_word

Replaces the specified word with a new word within a given string

stm_set_rpt_formator

Returns the static reactions defined for the specified state element.

stm_str_list_first_element

Returns the first item in the specified list of strings

stm_str_list_last_element

Returns the element ID of the last item appearing in the specified list
of strings

stm_str_list_length

Returns the number of items in the specified list of strings

stm_str_list next_element

Returns the next item in the specified list of strings

stm_str_list_previous_element

Returns the previous item in the specified list of strings

Rational Statemate

497




Utility Functions

stm_str_list_to_str Returns the string representation of the specified list of strings

stm_str_to_list Converts the specified string to a list of strings

stm_string_extract Extracts a portion of the specified string

stm_string_free Frees the memory used by the specified string

stm_string_to_int Returns an integer value of a decimal string representation of a
number

stm_string_retain Frees temporary memory used by the DOC system.

stm_strlen Returns the length of the specified string

stm_trigger_of_reaction Returns the trigger part of a reaction

498 Documentor Reference Guide



List of Utility Functions

stm_action_of reaction

Function type: STRING

Description

Extracts the action part of the specified reaction (the label of the transition or static reaction).
The syntax of a reaction is trigger/action.

Note the following:

¢ The reaction is achieved by the single-element function stm_r_st_reactions or
stm_r_tr_labels.

¢ The function returns an empty string when the action is missing.

Syntax

stm_action_of_reaction (reaction, status)

Arguments
Input/ _
Argument Output Type Description
reaction In STRING The reaction to decompose
status Out INTEGER The function status code

Status Codes

¢ stm success

Example

Assume that s1 has several static reactions and you want to list all the actions that are
triggered when in this state. Include the following statements in your template:

VARIABLE
STATE st_id;
INTEGER status;
LIST OF STRING reactions;
STRING rct;
st_id := stm_r_st (°S1’, status);
reactions := stm_r_st_reactions (st_id, status);

WRITE (C\n Actions of reactions in S1:7);
FOR rct IN reactions LOOP

WRITE (\n”, stm_action_of_reaction (rct, status));
END FOR;

Rational Statemate 499



Utility Functions

stm_delete file
Description:
Deletes the file.

Syntax

stm_delete_file (file_name_and_path, status)

Arguments
Argument Input/Output Type Description
file_name_and_path In STRING The file name and path.
status Out INTEGER The function status code

Status Codes

¢ stm_success

500

Documentor Reference Guide



List of Utility Functions

stm_dispose_memory
Description:

When used in a DOC template, STM_DISPOSE_MEMORY () frees temporary memory used by the
DOC system. If you want to avoid freeing a specific string, for example, general strings used
in the template, call STM_STRING_RETAIN(<str>) on that string before calling
STM_DISPOSE_MEMORY ().

Syntax

stm_dispose_memory()

Arguments
None

Status Codes
None

Example

Call the function with no parameters: STM_DISPOSE_MEMORY() ;

Rational Statemate 501



Utility Functions

stm_index

Function type: INTEGER
Description

Looks for the specified pattern in the given string. It returns the first occurrence, starting from
the offset position.

Note the following:

¢ The first position in the string is 0.
¢ |f the pattern is not found in the string, the function returns -1.

Syntax

stm_index (string, offset, pattern, status)

Arguments
Argument Input/Output Type Description
string In STRING The string to be searched
offset In INTEGER The starting position in the string
pattern In STRING The pattern to look for
status Out INTEGER The function status code

Status Codes

¢ stm success

¢  stm null_string
Example

stm_index(’AB@CB”,0,”B” ,status) 1
stm_index(’AB@CB”,3,”B” ,status) 4
stm_index(’AB@CB”,0,”XY”,status) = -1

502 Documentor Reference Guide



List of Utility Functions

stm_int

Function type: INTEGER

Description

Converts the specified real number to an integer.

Syntax
stm_int(fF)
Arguments
Argument Input/Output Type Description
L In FLOAT The floating-point number to convert

stm_int_to_string

Function type: STRING

Description

Returns the string representation of the specified (decimal) number.

Syntax

stm_int_to_string (int)

Arguments
Argument Input/Output Type Description
reaction In INTEGER The integer to be converted

Status Codes

¢ stm_success

Example

str

str is ’36”

stm_int_to_string (36);

Rational Statemate

503



Utility Functions

stm_r_is_statemate
Function type: BOOLEAN
Description
Returns TRUE if this is Statemate Classic.
Syntax

stm_r_is_statemate()

stm_list_contains_element

Function type: BOOLEAN
Description
Determines whether the specified item appears in the given list.
Syntax

stm_list_contains_element (list, item, status)

Arguments
Argument Input/ Type Description
9 Output yp P

list In LIST OF ELEMENT The list to search.

item In ELEMENT The item to look for.
This can be a member of any element except strings. For
strings, use stm_list_contains_string.
Note that the item’s data type must conform to the data
type of the list. For example, if listis declared to be LIST
OF STATE, item must be of type STATE (or ELEMENT).
When the list consists of Statemate elements, 1tem
contains the element’s ID.

status Out INTEGER The function status code.

504 Documentor Reference Guide



List of Utility Functions

Status Codes

¢ stm_success

¢ stm nil_list
Example

Suppose you want to check a list of statemate elements for the presence of activity A1. The
elements of interest are assigned to the list eImnt_list. Your template should contain the
following statements:

VARIABLE
ACTIVITY act_id;
LIST OF ELEMENT  elmnt_list;
INTEGER status;
act_id := stm_r_éc(’Al’, status);

IF stm_list_contéins_element (elmnt_list, act_id, status) THEN

If A1 appears in elmnt_list, the statements following the 1F statement are executed. Note that
the ID of A1 is passed to the function, not its name).

Rational Statemate 505



Utility Functions

stm_list_contains_string
Function type: BOOLEAN
Description
Determines whether the specified string appears in the given list.
Syntax

stm_list_contains_string (list, item, status)

Arguments
Argument Input/Output Type Description
list In LIST OF ELEMENT The list of strings to search
item In ELEMENT The string to look for
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm nil_list
Example

Suppose you want to check a list of strings for the presence of a specific string. Your template
should contain the following statements:

VARIABLE
ACTIVITY act_id;
LIST OF STRING string_list;

INTEGER status;

IF stm_list_contai ns;string
(string_list, “SPECIFICATION”, status) THEN

If >SPECIFICATION” appears in string_list, the statements following the IF statement are
executed.

506 Documentor Reference Guide



List of Utility Functions

stm_list_extraction

Function type: LIST OF ELEMENT

Description

Extracts the elements from the input list.

Syntax

stm_list_extraction (ex_type, el_list, status)

Arguments
Argument Input/Output Type Description

ex_type In INTEGER The type to extract
from the list

list In LIST OF ELEMENT The list of Statemate
elements

status Out INTEGER The function status
code

Status Codes

¢ stm_success

¢ stm_nil_list

Rational Statemate

507



Utility Functions

stm_list_extraction_by_chart
Function type: LIST OF ELEMENT
Description
Extracts the elements from the input list that belong to the specified chart.

Syntax

stm_list_extraction_by chart (chart_name, list, status)

Arguments

Argument Input/Output Type Description
chart_name In STRING The name of the chart

list In LIST OF ELEMENT The list of Statemate elements
status Out INTEGER The function status code

Status Codes
¢ stm_success
¢ stm nil_list
¢ stm_illegal_name
¢ stm_name_not_found

Example

To extract the list of all of statemate elements that belong to the statechart s8 from the input
list elem_list, use the following statements:

VARIABLE
LIST OF ELEMENT elem_list, S8 _elements;
INTEGER status;

S8_elements:=
stm_list_extraction_by chart(*S8”, elem_list, status);

508 Documentor Reference Guide



List of Utility Functions

stm_list_extraction_by chart _id

Function type: LIST OF ELEMENT
Description
Extracts the elements from the input list that belong to the specified chart.

Syntax

stm_list_extraction_by chart (chart_name, list,status)

Arguments
Argument Input/Output Type Description
chart_name In STRING The name of the chart
list In LIST OF ELEMENT The list of Statemate
elements
status Out INTEGER The function status
code

Status Codes
¢ stm success
¢ stm nil_list
¢ stm_illegal_name
¢ stm name_not_found

Example

To extract the list of all of Statemate elements that belong to the statechart sg from the input
list elem_list, use the following statements:

VARIABLE
LIST OF ELEMENT elem_list, S8 elements;
INTEGER status;

S8 _elements:=
stm_list_extraction_by chart(’S8”, elem_list, status);

Rational Statemate 509



Utility Functions

stm_list_extraction_by type

Function type: LIST OF ELEMENT

Description

Extracts elements of the specified type from the given list of Statemate elements.

Syntax

stm_list_extraction_by type (element_type, list, status)

Arguments
Argument Input/ Type Description
9 Output yp P
element_type In STRING The type to look for.

element_type is one of the possible values of the
enumerated type stm_element_type. The values of
this type usually take the form stm_element_type
(for example, stm_state, stm_event, and so on).

list

LIST OF ELEMENT

The list of elements (mixed types).

status

Out

INTEGER

The function status code.

Status Codes

¢ stm_success

¢ stm nil_list

¢ stm_illegal_extract_type

510

Documentor Reference Guide



List of Utility Functions

Example

Suppose you want to extract a list of all the activities appearing in a list of Statemate elements.

The input list is assigned to the variable elmnt_list. Your template should contain the
following statements:

VARIABLE
ACTIVITY act;
LIST OF ACTIVITY act_list;
LIST OF ELEMENT elmnt_list;
INTEGER status;

act_list = stm_list_extraction_by type (stm_activity,
elmnt_list, status);

WRITE (\n The activities in the list are:’);

FOR act IN act_list LOOP

WRITE (°\n”, stm_r_ac_name (act, status));
END LOOP;

The names of all the activities in eImnt_list are written to your document.

Rational Statemate 511



Utility Functions

stm_list_first_element

Function type: ELEMENT
Description

Returns the first element in the specified list. This function can be applied to a list of any DGL
data types.

Syntax

stm_list_first_element (list, status)

Arguments
Argument Input/Output Type Description
list In LIST OF ELEMENT The list of items.
Items in the input list can be of any element type
except string. For strings, see the function
stm_str_list_first_element
status Out INTEGER The function status code.

Status Codes

¢ stm_success
¢ stm nil_list

¢ stm_list_element_does_not_exist
Example

Assume you have a list of activities assigned to the variable act_list. You know that only
one of the activities in the list can be a control activity. To find out which activity this is,
include the following statements in your template:

cntrl_act_list = stm;ac_control_ac (act_list, status);
cntrl_act = stm_list_first_element (cntrl_act_list,
status);
These statements extract the first element (in this case, the only element) of the list and assign

this control activity’s ID to cntrl_act.

512 Documentor Reference Guide



List of Utility Functions

stm_list_last_element

Function type: ELEMENT
Description

Returns the last item in the specified list. This function can be applied to a list of any DGL
data type.

Syntax

stm_list_last_element (list, status)

Arguments
Argument Input/ Type Description
9 Output yp P

list In LIST OF ELEMENT The list of items.
Items in the input list can be of any element type
except string. For strings, see the function
stm_str_list_first_element.

status Out INTEGER The function status code.

Status Codes

¢ stm_success
¢ stm nil_list

¢ stm_list_element_does_not_exist
Example

Assume you have a list of states in the order S1, S2, s3 and s4. The list is assigned to the
variable state_list. To find the last item in this list (S4), use the following statements:

VARIABLE
STATE state_id;
LIST OF STATE state_list;
INTEGER status;
state_id := stm_list last_element (state_list, status);

WRITE (°\n The Tast state in the list is: 7,
stm_r_st_name (state_id, status));

Rational Statemate 513



Utility Functions

stm_list_length

Function type: INTEGER

Description

Returns the length of the specified list.

Syntax

stm_list_length (list, status)

Arguments
Argument Input/Output Type Description
list In LIST OF Items in the input list can ve of
ELEMENT any element type except string.
For strings, see to
stm_str_list_length.
status Out INTEGER The function status code.

Status Codes

¢ stm success

¢ stm nil_list

514

Documentor Reference Guide



List of Utility Functions

Example

Assume you extracted all the events from the database whose name begins with EV. Before
writing the list to your document, you want to make sure that it will not span more than 30
lines of text (one page length). Your template should contain the following statements:

VARIABLE

EVENT ev;

LIST OF EVENT ev_list;

INTEGER ev_list_len, status;
CONSTANT

INTEGER page_len := 30;

ev_list:-stm_re_ev_name_of_ev (CEV*’, status);
ev_list_len := stm_list_length (ev_list, status);
IF ev_list_len < page_len
WRITE (’\n List of Events: 7”);
FOR ev IN ev_list LOOP
WRITE (’\n”, stm_ev_name (ev, status));
END LOOP;
END IF

The list is written to the document if there are less than 30 events whose name begins with
“EV".

Rational Statemate 515



Utility Functions

stm_list_next_element

Function type: ELEMENT
Description

Returns the next item in the specified list. This function can be applied to a list of any DGL
data type.

Note that “next” refers to the item physically located after the current item in the list. The
“current” item is determined using the utility function stm_list_first_element.

Syntax

stm_list_next_element (list, status)

Arguments
Argument Input/Output Type Description
list In LIST OF ELEMENT The list of items.
Items in the input list can be of any element type
except string. For strings, see the function
stm_str_list_next_element.
status Out INTEGER The function status code.

Status Codes

¢ stm_success
¢ stm nil_list

¢ stm_list_element_does_not_exist

516 Documentor Reference Guide



List of Utility Functions

Example

Assume you have a list of states in the order S1, S2, s3 and s4. The list is assigned to the
variable state_list. You locate the state S1 by calling stm_list_first_element. S1
becomes the “current’ item. To find the next element in the list, use the following statements:

VARIABLE
LIST OF STATE state_list;
STATE state_id;
INTEGER status;
state_id := stm Iist_%irst_element (state_list, status);

WRITE (C\n The first state in the list is: ,
stm_r_st _name (state_id, status));
state_id := stm_list_next_element (state_list, status);
WRITE (’\n The second state in the list is: 7,
stm_r_st _name (state_id, status));

This function is often used in loop statements.

Rational Statemate 517



Utility Functions

stm_plot_ext

Function type:

Description

Generates a plot file with the indicated parameters, such as plot size, output device, and so on.
The plot parameters are the same for all the different plot types (statecharts, activity charts, or

module charts).

The output is designated for a particular device (one of the output devices defined in
Statemate). The destination of the plot output is specified by one of the parameters. If its
destination is not specified, the plot is included as part of the output segment file.

The function can generate the hyperlinks in the chart, print a sequence diagram with numbered
scenarios, break a sequence diagram across multiple pages and print a sequence diagram with

the names of lifelines on every page.

Syntax

stm_plot_ext (id, plot_file_name, width, height, device, data_position,
title_position, title, actual_h, pages_in_x, pages_in_y, page_index_x,
page_index_y, headerline_y, options)

Arguments
Argument Input/ Type Description
9 Output yp P
id IN Stamate The ID number of the Statemate chart to be plotted.
element

plot_file_name IN STRING The name of the file destination to which the plot is written.
The operating system pathname conventions are followed.
You can specify a full path name to any directory for which
you have write access.If you specify a simple file name, the
plot is written to your workarea. If you do not specify a value
("), the plot is included as part of the output segment

width IN FLOAT The maximum possible width of the plot (in inches).

height IN FLOAT The maximum possibl elength of the plot (in inches). If you
specify a plot size (width and height parameters) that is larger
than the paper size defined for the specific printer, the plot
simply uses the maximum allowable height and width defined
for that printer.

518

Documentor Reference Guide



List of Utility Functions

Argument

Input/
Output

Type

Description

device

STRING

Specifies the plotting device. This can be a supported
formatting language if the plot is to be handled by a
formatting processing system that has its own graphics
language.To configure a new plotter or printer, select Utilities
> Output Devices from the main Statemate window. Plots
created using the Word format in the Output Device dialog
are RTF files.

data_position

STRING

The position of the date. This is a string that indicates where
to place the plot date. The possible values are as follows:

e stm_plt_none - The date is not included.
« stm_plt_top - The date is placed at the top of the plot.

* stm_plt_bottom - The date is placed at the bottom of the
plot

title_position

STRING

The title position. This is a string that indicates where to plac
the plot title. The possible values are as follows:

e stm_plt_none - The title is not included.
e stm_plt_top - The title is placed at the top of the plot.

« stm_plt_bottom - The title is placed at the bottom of the
plot.

title

STRING

Specifies the title to be printed with the plot

actual_h

ouT

FLOAT

Specifies the actual height (in inches) of the plotted output.

pages_in_x

ouT

INTEGER

Specifies how many pages the tool attempted to break the
SD intoalong the x-axis. Note that if pages_in_x==0 and
pages_in_y==0, the tool calculates a break pages scheme
and assigns these variables so they can be read by the user
after the call.

pages_in_y

INTEGER

Specifies how many pages the tool attempted to break the
SD into along the y-axis.

page_index_in_x

INTEGER

Plots the ith page in the x-axis.

page_index_in_y

INTEGER

Plots the ith page in the y-axis.

headerline_y

FLOAT

Defines the vertical coordinate on the page of the header
line. This is usually 1.0.

options

A list of strings of the form 'key=value'. See notes below for
supported options

Rational Statemate

519



Utility Functions

Status Codes
This function may return one of the two following status codes:

¢ stm_success

¢ stm_can_not_open_Tfile
¢ stm_id_out_of _range

¢ stm_not_enough_memory
¢ stm_id_not_found

¢ stm_empty_chart

¢ stm_unknown_plotter

¢ stm_plot_failure

¢ stm_unresolved

¢ stm_illegal_parameter
¢ stm _plot_illegal_option_key

¢ stm _plot_illegal_option_val

520 Documentor Reference Guide



List of Utility Functions

Notes

The following are valid values for the ‘options' argument:

¢ stm _plot_option_hyperlink_ext_act_to_graphics

a. For External-Activity:

When this option is 'no’, the External_activity is hyperlinked to the 'Dictionary'
description, if it exists, of the Activity it resolves to. When the 'Dictionary’
description is empty, no link is created.

When this option is 'yes', the External-Activity is hyperlinked to the chart in which
the Activity it resolves to is in. If the resolved Activity is an Off-Page Activity, the
link is to the off-page chart. If the resolved Activity is an Instance of generic, the link
is to the generic chart. If the External-Activity resolves to a higher-level unresolved
External-Activity, then the link is to the Chart where the Upper most instance of this

External-Activity. If the External-Activity does not resolve to any Activity, no
hyperlink is created.

b. For External-Router:

When this options is 'no', External_router is hyperlinked to the 'Dictionary'
description, if it exists, of the Router it resolves to. When the 'Dictionary’ description

is empty, no link is created, When this option is 'yes', External-Router is hyperlinked
to the chart that the Router it resolves to is in.

¢ hyperlink_lifeline_to_graphics

When this option is 'no’, Lifelines are hyperlinked to the 'Dictionary’ description, if it
exists, of the Activity they resolve to. When this option is 'yes', Lifelines are
hyperlinked to the chart that the Activity they resolve to are in. If the resolved
Activity is an Off-Page Activity, the link is to the off-page chart. If the resolved
Activity is an Instance of generic, the link is to the generic chart. If the Lifeline
resolves to an unresolved External- Activity, no link is created. If the Lifeline does
not resolve to any Activity, no hyperlink is created.

Rational Statemate 521



Utility Functions

stm_list_previous_element

Function type: ELEMENT
Description

Returns the previous element in the specified list. This function can be applied to a list of any
DGL data type.

Note that “previous” refers to the item physically located before the current item in the list.
The “current” item is determined using the utility function stm_list_last_element.

Syntax

stm_list_previous_element (list, status)

Arguments
Argument Input/Output Type Description
list In LIST OF ELEMENT The list of items.
Items in the input list can be of any element type
except string. For strings, see
stm_str_list_previous_element.
status Out INTEGER The function status code.

Status Codes

¢ stm success
¢ stm nil_list

¢ stm list_element_does not_exist

522 Documentor Reference Guide



List of Utility Functions

Example

Assume you have a list of states in the order S1, S2, S3 and S4. The list is assigned to the
variable state_list. You locate the state s4 by calling stm_list_last_element. S4 becomes
the “current” item. To find the previous element in the list, use the following statements:

VARIABLE
LIST OF STATE state_list;
STATE state_id;
INTEGER status;
state_id := stm_list_last _element (state_list, status);
state_id := stm_list_previous_element (state_list,
status);

WRITE (C\n State of interest is: 7,
stm_r_st_name (state_id, status));

This function is often used in loop statements.

Rational Statemate 523



Utility Functions

stm_list_sort
Function type: LIST OF STRING
Description

Alphabetically sorts the specified list of strings.

Syntax

stm_list_sort (list, status)

Arguments
Argument Input/Output Type Description
list In LIST OF ELEMENT The list of strings to be
sorted
status Out INTEGER The function status code
Status Codes
3

stm_success

¢ stm_nil_list
Example

Assume you generated a list of attributes for the state WAIT using single-element functions.

This list is assigned to the variable attr_list. To sort the list items and write them to your
document, use the following statements:

VARIABLE
STRING item;
LIST OF STRING attr_list, ord _attr_list;
INTEGER status;

WRITE (C\n WAIT’s attributes are:”);
ord_attr_list := stm_list_sort (attr_list, status);
FOR item IN ord_attr_list LOOP
WRITE (\n 7, item);
END LOOP;

524 Documentor Reference Guide



List of Utility Functions

stm_list_sort_by attr_value

Function type: LIST OF ELEMENT
Description
Sorts the specified list of Statemate elements by the value of the given attribute.
Note that the function receives and returns a list of element IDs, not a list of element names.
Syntax

stm_list_sort_by attr_value (list, attr_name, status)

Arguments
Argument Input/Output Type Description
list In LIST OF ELEMENT The list of Statemate element IDs to be sorted.
attr_name In STRING The attribute to use as the sorting key.
status Out INTEGER The function status code.

The function returns the status code
stm_elements_without_attributes if you
apply this function to a list of elements that do not
have the specified attribute.

Status Codes
¢ stm_success
¢ stm nil_list

¢ stm_elements_without_attributes

Rational Statemate 525



Utility Functions

Example

Suppose you want to write a particular list of activities from the database to your document.
You extract the activities of interest using single-element and query functions and build a list
of such activities. This list is assigned to the variable act_list. To sort the activities by the
value of an attribute called “code”, your template should contain the following function calls:

VARIABLE
LIST OF ACTIVITY act_list, ord_act_list;
ACTIVITY activ;
INTEGER status;

ord_act_list := étm_list_sort_by_attr_value (act_list,

code”, status);
WRITE (C\n Ordered list of activities:’);
FOR activ IN ord_act_list LOOP
WRITE (\n”, stm_r_ac_name (activ, status));
END LOOP;

526 Documentor Reference Guide



List of Utility Functions

stm_list_sort_by branches

Function type: LIST OF ELEMENT

Description

Sorts the specified list of hierarchical Statemate elements by branches.

Note the following:

*

Syntax

This function is relevant only for a list of hierarchical elements. If the function is

applied to a list of non-hierarchical elements, status receives the value
stm_elements_not_hierarchical.

The order in which branches appear in the output is arbitrary. However, the order
of states appearing within each branch are ordered from top to bottom.

stm_list_sort_by branches (list, status)

Arguments

Argument Input/Output Type Description
list In LIST OF ELEMENT The list of Statemate elements
status Out INTEGER The function status code

Status Codes

¢ stm success

¢ stm nil_list

¢ stm_elements_not_hierarchical

Rational Statemate

527



Utility Functions

stm_list_sort_by chart

Function type: LIST OF ELEMENT
Description

Alphabetically sorts the input list of named Statemate elements, by the name of the chart to
which they belong. The input list consists of Statemate elements.

Note that this function receives and returns a list of element IDs, not a list of element names.
Syntax

stm_list_sort_by_chart (el_list, status)

Arguments

Argument Input/Output Type Description
el_list In LIST OF ELEMENT The list of Statemate box elements
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm nil_list

528 Documentor Reference Guide



List of Utility Functions

stm_list_sort_by levels

Function type: LIST OF ELEMENT

Description

Sorts a list of hierarchical Statemate elements by level.

Note that this function is relevant only for a list of hierarchical elements. If the function is

applied to a list of non-hierarchical elements, status receives the value

stm_elements_not_hierarchical.

Syntax

stm_list_sort_by_ levels (list, status)

Arguments

Argument Input/Output Type Description
list In LIST OF ELEMENT The list of Statemate box elements
status Out INTEGER The function status code

Status Codes
¢ stm_success
¢ stm nil_list

¢ stm_elements_not_hierarchical

Rational Statemate

529



Utility Functions

Example

Hierarchical elements in a chart can be ordered by levels. See the following statechart:

\

S1

si1 S2

Hierarchically, the states can be drawn as shown as follows:

The set of elements, {S1,S2}, comprise a level. Assume you perform a “sort_by_level”
function on the states in statechart s. The sorted order would be s, s1, s2, S11.

Note

The order of elements within the same level appear in an arbitrary order in the output. For
example, s2 might appear before s1 because they are of the same level. However, the order
of levels is “top-to-bottom” (here, S precedes S1 or S2).

530 Documentor Reference Guide



List of Utility Functions

stm_list_sort_by name

Function type: LIST OF ELEMENT

Description

Sorts the specified list of Statemate elements alphabetically by name.
Note the following:

¢ The function returns the status code stm_elements_without_name When you
attempt to apply this function to a list that contains unnamed elements.

The function receives and returns a list of element IDs, not a list of element
names.

Syntax

stm_list_sort_by name (list, status)

Arguments
Argument Input/Output Type Description
list In LIST OF ELEMENT The list of Statemate elements to be sorted. This
input lists consists of element IDs.
status Out INTEGER The function status code.

Status Codes

¢ stm_success
¢ stm_nil_list

¢ stm_elements_without_name

Rational Statemate 531



Utility Functions

Example

Suppose you want to write a particular list of activities from the database to your document.
You extract the activities of interest using single-element and query functions and build a list
of such activities. This list is assigned to the variable act_list. To alphabetically sort the
activities by their names, your template should contain the following statements:

VARIABLE
LIST OF ACTIVITY act_list, ord_act_list;
ACTIVITY activ;
INTEGER status;
ord_act_list := stﬁ_list_sort_by_name (act_list, status);

WRITE (C\n Ordered list of activities:’);
FOR activ IN ord_act_list LOOP

WRITE (\n”, stm_r_ac_name (activ, status));
END LOOP;

532 Documentor Reference Guide



List of Utility Functions

stm_list_sort_by synonym
Function type: LIST OF ELEMENT

Description

Sorts the specified list of Statemate elements alphabetically by their synonyms.

Note the following:

¢ The function returns the status code stm_elements_without_name When you
attempt to apply this function to a list that contains unnamed elements.

The function receives and returns a list of element IDs, not a list of element
names.

Syntax

stm_list_sort_by synonym (list, status)

Arguments
Argument Input/Output Type Description
list In LIST OF ELEMENT The list of Statemate
elements to be sorted.
This input lists consists of
element IDs.
status Out INTEGER The function status code.

Status Codes

¢ stm_success

¢ stm nil_list

¢ stm_elements_without_synonym

Rational Statemate 533



Utility Functions

Example

Suppose you want to write a particular list of activities from the database to your document.
You extract the activities of interest using single-element and query functions and build a list
of such activities. This list is assigned to the variable act_list. To alphabetically sort the
activities by their synonyms, your template should contain the following statements:

VARIABLE
LIST OF ACTIVITY act_list, ord_act_list;
MODULE act;

INTEGER status;

ord_act_list = stm_list_sort_by synonym (act_list,
status);
WRITE (C\n Ordered list of activities:’);
FOR act IN ord_act_list LOOP
WRITE (°\n”, stm_r_ac_synonym (act, status), ’\t’,
stm_r_ac_name (act, status));
END LOOP;

534 Documentor Reference Guide



List of Utility Functions

stm_list_sort_by type

Function type: LIST OF ELEMENT

Description

Sorts the specified list of Statemate elements by type.

Note that the function receives and returns a list of element IDs, not a list of element names.

Syntax

stm_list_sort_by type (el_list, status)

Arguments
Argument Input/Output Type Description
el _list In LIST OF ELEMENT The list of Statemate
element IDs to be sorted
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm nil_list

Rational Statemate

535



Utility Functions

stm_multiline_to_one

Function type: STRING
Description

Converts the specified multiline string (with new lines) to a one-line string (without the new
lines).

Syntax

stm_multiline_to_one (string)

Arguments
Argument Input/Output Type Description
string In STRING The multiline string

stm_multiline_to_strings
Function type: LIST OF STRING
Description
Converts the specified multiline expression to a list of strings.

Syntax

stm_multiline_to_strings (string)

Arguments
Argument Input/Output Type Description
string In STRING The multiline expression

536 Documentor Reference Guide



List of Utility Functions

stm_plot

Function type: INTEGER
Description

Generates a plot file with the indicated parameters, such as plot size, output device, and so on.
The plot parameters are the same for all the different plot types (statecharts, activity charts, or
module charts).

The output is designated for a particular device (one of the output devices defined in
Statemate). The destination of the plot output is specified by one of the parameters. If its
destination is not specified, the plot is included as part of the output segment file.

Syntax

stm_plot (id, plot_file, width, height, with_labels, with_names, with_notes,
device, date position, title_position, title, do_rotate, with_file_header,
actual_height)

Example

Consider a template that contains the following statements:

VARIABLE
CHART ch_id;
INTEGER status;
FLOAT real_ht;

ch_id:= stm_r_ch ("XL25”, status);

stm_plot (ch_id, */sam/p_xI125”, 5.0, 7.0, true, true,
false, POSTSCRIPT”, stm _plt_top,
>SystemXL25”, true, true , real_ht);

Rational Statemate 537



Utility Functions

stm_plot_hyper_exp
Function type: INTEGER
Description
Generates the hyperlinks in a sequence diagram.

Syntax

stm_plot_hyper_exp (id, plot_file, width, height, with_labels, with_names,
with_notes, with_hyperlink, device, date_position, title_position, title,
do_rotate, with_file_header, actual_height, with_breakpages, pages_in_x,
pages_in_y, page_index_in_x, page_index_in_y, with_hyperlink_exp)

Arguments

Argument Type Description

id In Statemate The ID number of the Statemate chart to be plotted.
element

plot_file In STRING The name of the file destination to which the plot is
written. The operating system path name
conventions are followed. You can specify a full path
name to any directory for which you have write
access.

If you specify a simple file name, the plot is written to
your workarea. If you do not specify a value (*), the
plot is included as part of the output segment file.

width In FLOAT The maximum possible width of the plot (in inches).

height In FLOAT The maximum possible length of the plot (in inches).

If you specify a plot size (width and height
parameters) that is larger than the paper size
defined for the specific printer, the plot simply uses
the maximum allowable height and width defined for
that printer.

with_labels In BOOLEAN Determines whether labels are plotted (TRUE) or not
(FALSE).

with_names In BOOLEAN Determines whether names are plotted (TRUE) or
not (FALSE).

with_notes In BOOLEAN Determines whether notes are plotted (TRUE) or not
(FALSE).

with_hyperlink In BOOLEAN Specifies whether to generate hyperlinks for lifelines
and referenced sequence diagrams (TRUE).

538 Documentor Reference Guide



List of Utility Functions

Input/

Argument Output

Type Description

device In STRING Specifies the plotting device. This can be a
supported formatting language if the plot is to be
handled by a formatting processing system that has
its own graphics language.

To configure a new plotter or printer, select Utilities
> Output Devices from the main Statemate
window.

Plots created using the Word format in the Output
Devie diaglog are RTF files.
date_position In STRING The position of the date.

This is a string that indicates where to place the plot
date. The possible values are as follows:

e stm_plt_none—The date is not included.

« stm_plt_top—The date is placed at the top of
the plot.

« stm_plt_bottom—The date is placed at the
bottom of the plot.
title_position In STRING The title position.

This is a string that indicates where to place the plot
title. The possible values are as follows:

e stm_plt_none—The title is not included.

« stm_plt_top—The title is placed at the top of
the plot.

« stm_plt_bottom—The title is placed at the
bottom of the plot.

title In STRING Specifies the title to be printed with the plot.

do_rotate In BOOLEAN Determines whether the orientation of the plot is
landscape (TRUE) or portrait (FALSE).

with_file_header In BOOLEAN Indicates whether a header is added to the file

(TRUE). Use this option if you do not want the plot
as part of the document (FALSE).

actual_height Out FLOAT Specifies the actual height (in inches) of the plotted
output.
with_breakpages In BOOLEAN Specifies whether to break the SD across multiple

pages (true).

pages_in_x Out INTEGER Specifies how many pages the tool attempted to
break the SD into along the x-axis.

Note that if pages_in_x==0 and pages_in_y==0,
the tool calculates a break pages scheme and
assigns these variables so they can be read by the
user after the call.

Rational Statemate 539



Utility Functions

Argument (I)'LF,::L/,[ Type Description
pages_in_y Out INTEGER Specifies how many pages the tool attempted to
break the SD into along the y-axis.
page_index_in_x In INTEGER Plots the ith page in the x-axis.
page_index_in_y In INTEGER Plots the ith page in the y-axis.
with_hyperlink_exp | In BOOLEAN Specifies whether to generate hyperlinks for

message labels (true).

Status Codes

¢ stm_success

¢ stm_can_not_open_Tfile

¢ stm_id_out of _range

¢ stm_not_enough_memory

¢ stm_id_not_found

¢ stm_empty chart

¢ stm_unknown_plotter

¢ stm_plot_failure

¢ stm_unresolved

¢ stm_illegal_parameter

540

Documentor Reference Guide




List of Utility Functions

stm_plot_with_autonumber

Function type: Integer
Description
Prints a sequence diagram with numbered scenarios.

Syntax

stm_plot_with_autonumber (id, plot_file, width, height, with_labels,
with_names, with_notes, with_hyperlink, plot_type, date_position,
title_position, title, do_rotate, with_file_header, actual_height,
with_breakpages, pages_in_x, pages_in_y, page_index_in_x, page_index_in_y,
with_hyperlink_exp, with_headerline, headerline_y, with_autonumber)

Arguments

Argument Description

Output Type
id In Statemate The ID number of the Statemate chart to be plotted.
element

plot_file In STRING The name of the file destination to which the plot is
written. The operating system path name conventions
are followed. You can specify a full path name to any
directory for which you have write access.

If you specify a simple file name, the plot is written to

your workarea. If you do not specify a value (), the
plot is included as part of the output segment file.

width In FLOAT The maximum possible width of the plot (in inches).

height In FLOAT The maximum possible length of the plot (in inches).

If you specify a plot size (width and height
parameters) that is larger than the paper size defined
for the specific printer, the plot simply uses the
maximum allowable height and width defined for that
printer.

with_labels In BOOLEAN Determines whether labels are plotted (true) or not
(false).

with_names In BOOLEAN Determines whether names are plotted (true) or not
(false).

with_notes In BOOLEAN Determines whether notes are plotted (true) or not
(false).

with_hyperlink In BOOLEAN Specifies whether to generate hyperlinks for lifelines
and referenced sequence diagrams (true).

Rational Statemate 541



Utility Functions

Argument

Input/
Output

Type

Description

plot_type

STRING

Specifies the plotting device. This can be a supported
formatting language if the plot is to be handled by a
formatting processing system that has its own
graphics language.

To configure a new plotter or printer, select Utilities >
Output Devices from the main Statemate window.

Plots created using the Word format in the Output
Device dialog are RTF files.

date_position

STRING

The date position.

This is a string that indicates where to place the plot
date. The possible values are as follows:

e stm_plt_none—The date is not included.

« stm_plt_top—The date is placed at the top of
the plot.

e stm_plt_bottom—The date is placed at the
bottom of the plot.

title_position

STRING

The title position.

This is a string that indicates where to place the plot
title. The possible vlues are as follows:

« stm_plt_none—The title is not included.

« stm_plt_top—The title is placed at the top of
the plot.

» stm_plt_bottom—The title is placed at the
bottom of the plot.

title

STRING

Specifies the title to be printed with the plot.

do_rotate

BOOLEAN

Determines whether the orientation of the plot is
landscape (true) or portrait (false).

with_file_header

BOOLEAN

Indicates whether a header is added to the file (true).
Use this option if you do not want the plot as part of
the document (false).

actual_height

FLOAT

Specifies the actual height (in inches) of the plotted
output.

with_breakpages

BOOLEAN

Specifies whether to break the SD across multiple
pages (true).

pages_in_x

INTEGER

Specifies how many pages the tool attempted to break
the SD into along the x-axis.

Note that if pages_in_x==0 and pages_in_y==0,
the tool calculates a break pages scheme and assigns
these variables so they can be read by the user after
the call.

pages_in_y

Out

INTEGER

Specifies how many pages the tool attempted to break
the SD into along the y-axis.

page_index_in_x

INTEGER

Plots the ith page in the x-axis.

542

Documentor Reference Guide



List of Utility Functions

Input/ N
Argument Output Type Description

page_index_in_y In INTEGER Plots the ith page in the y-axis.

with_hyperlink_exp | In BOOLEAN Specifies whether to generate hyperlinks for message
labels (true).

with_headerline In BOOLEAN Specifies whether to print the names of the lifelines on
every page (true).

headerline_y In FLOAT Defines the vertical coordinate on the page of the
headerline. This is usually 1.0.

with_autonumber In BOOLEAN Specifies whether to print the SD scenario numbers

(true).

Status Codes

¢ stm_success

¢ stm_can_not_open_Tfile

¢ stm_id_out_of _range

¢ stm_not_enough_memory

¢ stm_id_not_found

¢ stm_empty_chart

¢ stm_unknown_plotter

¢ stm_plot_failure

¢ stm_unresolved

¢ stm_illegal_parameter

Rational Statemate

543



Utility Functions

stm_plot_with_break

Function type: INTEGER
Description
Breaks a sequence diagram across multiple pages.
Syntax

stm_plot_with_break (id, plot_file, width, height, with_labels, with_names,
with_notes, with_hyperlink, plot_type, date_position, title_position, title,
do_rotate, with_file_header, actual_height, with_breakpages, pages_in_x,
pages_in_y, page_index_in_x, page_index_in_y)

Arguments

Argument Description

Output Type

id In Statemate The ID number of the Statemate chart to be plotted.
element

plot_file In STRING The name of the file destination to which the plot is
written. The operating system path name
conventions are followed. You can specify a full path
name to any directory for which you have write
access.

If you specify a simple file name, the plot is written to
your workarea.If you do not specify a value (*), the
plot is included as part of the output segment file.

width In FLOAT The maximum possible width of the plot (in inches).

height In FLOAT The maximum possible length of the plot (in inches).

If you specify a plot size (width and height
parameters) that is larger than the paper size defined
for the specific printer, the plot simply uses the
maximum allowable height and width defined for that
printer.

with_labels In BOOLEAN Determines whether labels are plotted (TRUE) or not
(FALSE).

with_names In BOOLEAN Determines whether names are plotted (TRUE) or
not (FALSE).

with_notes In BOOLEAN Determines whether notes are plotted (TRUE) or not
(FALSE).

with_hyperlink In BOOLEAN Specifies whether to generate hyperlinks for lifelines
and referenced sequence diagrams (TRUE).

544 Documentor Reference Guide



List of Utility Functions

Argument

Input/
Output

Type

Description

plot_type

STRING

Specifies the plot type. This can be a supported
formatting language if the plot is to be handled by a
formatting processing system that has its own
graphics language.

To configure a new plotter or printer, select Utilities >
Output Devices from the main Statemate window.

Plots created using the Word format in the Output
Device dialog are RTF files.

date_position

STRING

The date position.

This is a string that indicates where to place the plot
date. The possible values are as follows:

« stm_plt_none—The date is not included.

» stm_plt_top—The date is placed at the top of
the plot.

» stm_plt_bottom—The date is placed at the
bottom of the plot.

title_position

STRING

The title position.

This is a string that indicates where to place the plot
title. The possible values are as follows:

« stm_plt_none—The title is not included.

» stm_plt_top—The title is placed at the top of
the plot.

» stm_plt_bottom—The title is placed at the
bottom of the plot.

title

STRING

Specifies the title to be printed with the plot.

do_rotate

BOOLEAN

Determines whether the orientation of the plot is
landscape (TRUE) or portrait (FALSE).

with_file_header

BOOLEAN

Indicates whether a header is added to the file
(TRUE). Use this option if you do not want the plot
as part of the document (FALSE).

actual_height

FLOAT

Specifies the actual height (in inches) of the plotted
output.

with_breakpages

BOOLEAN

Specifies whether to break the SD across multiple
pages (TRUE).

pages_in_x

INTEGER

Specifies how many pages the tool attempted to
break the SD into along the x-axis.

Note that if pages_in_x==0 and pages_in_y==0,
the tool calculates a break pages scheme and
assigns these variables so they can be read by the
user after the call.

Rational Statemate

545



Utility Functions

Argument gb‘i;ltjlt Type Description
pages_in_y Out INTEGER Specifies how many pages the tool attempted to
break the SD into along the y-axis.
page_index_in_x In INTEGER Plots the ith page in the x-axis.
page_index_in_y In INTEGER Plots the ith page in the y-axis.

Status Codes

¢ stm_success

¢ stm_can_not_open_Tfile

¢ stm_id_out_of _range

¢ stm_not_enough_memory

¢ stm_id_not_found

¢ stm_empty_chart

¢ stm_unknown_plotter

¢ stm_plot_failure

¢ stm_unresolved

¢ stm_illegal_parameter

546

Documentor Reference Guide




List of Utility Functions

Notes
Function parameters are as follows:

boolean with_hyperlink (IN) /* generate hyperlinks */
boolean with_breakpages (IN) /* enable break pages */
integer pages_in_x (OUT) /* try to break to # of pages in x axis */
integer pages_in_y (OUT) /* try to break to # of pages in y axis */

If pages_in_x == 0 and pages_in_y==0, the tool calculates a break pages scheme and
assigns these variables so they can be read by the user after the call.

integer page_index_in_x (IN) /*plot the ith page in x axis */
integer page_index_in_y (IN) /*plot the ith page in y axis */

Call the function STM_PLOT_SET_DATA() before plotting a sequence diagram using
STM_PLOT_WITH_BREAK. Call the function STM_PLOT_RESET_DATA() after finishing the
sequence diagram multiple pages plot.

Rational Statemate 547



Utility Functions

stm_plot_with_headerline

Function type: Integer

Description

Prints a sequence diagram with the names of lifelines on every page.

Syntax

stm_plot_with_headerline (id, plot_file, width, height, with_labels,
with_names, with_notes, with_hyperlink, plot_type, date_position,
title_position, title, do_rotate, with_file_header, actual_height,
with_breakpages, pages_in_x, pages_in_y, page_index_in_x, page_index_in_y,
with_hyperlink_exp, with_headerline, headerline_y,)

Arguments
Argument Input/ Type Description
9 Output yp P
id In Statmate The ID number of the Statemate chart to be plotted.
element

plot_file In STRING The name of the file destination to which the plot is
written. The operating system path name conventions
are followed. You can specify a full path name to any
directory for which you have write access.
If you specify a simple file name, the plot is written to
your workarea. If you do not specify a value (*), the
plot is included as part of the output segment file.

width In FLOAT The maximum possible width of the plot (in inches).

height In FLOAT The maximum possible length of the plot (in inches).
If you specify a plot size (width and height
parameters) that is larger than the paper size defined
for the specific printer, the plot simply uses the
maximum allowable height and width defined for that
printer.

with_labels In BOOLEAN Determines whether labels are plotted (TRUE) or not
(FALSE).

with_names In BOOLEAN Determines whether names are plotted (TRUE) or not
(FALSE).

with_notes In BOOLEAN Determines whether notes are plotted (TRUE) or not
(FALSE).

with_hyperlink In BOOLEAN Specifies whether to generate hyperlinks for lifelines

and referenced sequence diagrams (TRUE).

548

Documentor Reference Guide




List of Utility Functions

Argument

Input/
Output

Type

Description

plot_type

STRING

Specifies the plot type. This can be a supported
formatting language if the plot is to be handled by a
formatting processing system that has its own
graphics language.

To configure a new plotter or printer, select Utilities >
Output Devices from the main Statemate window.

Plots created using the Word format in the Output
Device dialog are RTF files.

date_position

STRING

The date position.

This is a string that indicates where to place the plot
date. The possible values are as follows:

e stm_plt_none—The date is not included.

e stm_plt_top—The date is placed at the top of
the plot.

« stm_plt_bottom—The date is placed at the
bottom of the plot.

title_position

STRING

The title position.

This is a string that indicates where to place the plot
title. The possible values are as follows:

e stm_plt_none—The title is not included.

e stm_plt_top—The title is placed at the top of
the plot.

« stm_plt_bottom—The title is placed at the
bottom of the plot.

title

STRING

Specifies the title to be printed with the plot.

do_rotate

BOOLEAN

Determines whether the orientation of the plot is
landscape (TRUE) or portrait (FALSE).

with_file_header

BOOLEAN

Indicates whether a header is added to the file
(TRUE). Use this option if you do not want the plot as
part of the document (FALSE).

actual_height

FLOAT

Specifies the actual height (in inches) of the plotted
output.

with_breakpages

BOOLEAN

Specifies whether to break the SD across multiple
pages (TRUE).

pages_in_x

INTEGER

Specifies how many pages the tool attempted to break
the SD into along the x-axis.

Note that if pages_in_x==0 and pages_in_y==0,

the tool calculates a break pages scheme and assigns
these variables so they can be read by the user after

the call.

pages_in_y

INTEGER

Specifies how many pages the tool attempted to break
the SD into along the y-axis.

page_index_in_x

INTEGER

Plots the ith page in the x-axis.

page_index_in_y

INTEGER

Plots the ith page in the y-axis.

Rational Statemate

549




Utility Functions

Input/ -
Argument Output Type Description
with_hyperlink_exp | In BOOLEAN Specifies whether to generate hyperlinks for message
labels (TRUE).
with_headerline In BOOLEAN Specifies whether to print the names of the lifelines on
every page (TRUE).
headerline_y In FLOAT Defines the vertical coordinate on the page of the

headerline. This is usually 1.0.

Status Codes

*

stm_success

stm_can_not_open_Tfile

stm_id_out_of_range

stm_not_enough_memory

stm_id_not_found

stm_empty_chart

stm_unknown_plotter

stm_plot_Tfailure

stm_unresolved

stm_illegal_parameter

550

Documentor Reference Guide




List of Utility Functions

stm_replace_string

Function type: STRING

Description

Replaces the specified pattern with a new pattern within a string.

Syntax

stm_replace_string (orig_str, find_str, repl_str)

Arguments
Argument Input/Output Type Description
orig_str In STRING The string within which to
search and replace
find_str In STRING The pattern to search for
repl_str In STRING The replacement pattern

Rational Statemate

551



Utility Functions

stm_replace_word

Function type: STRING
Description

Replaces the specified word with a new word within a given string. A word has whitespace
before and after it, preventing substitution where there is a partial match for the find_str
parameter.

Syntax

stm_replace_word (orig_str, find_str, repl_str, delimiters, format,
replace_in_comment, is_identifier)

Arguments
Argument Input/ Type Description
9 Output yp P
orig_str In STRING The string within which to search and replace
find_str In STRING The word to search for
repl_str In STRING The replacement word
delimiters In STRING A delimter to add whitespace
format In STRING FrameMaker or Word
replace_in_comment In BOOLEAN Specifies whether to replace the word in
commented regions of the action language or
user code
is_identifier In BOOLEAN Specifies whether find_str is the name of a
Statemate element

552 Documentor Reference Guide



List of Utility Functions

stm_set_rpt_formator

Function type: INTEGER

Description

Sets the formatter to use for Statemate reports. The possible values are FRAMEMAKER and

WORD.

Syntax

stm_set_rpt_formator (formatter)

Arguments
Argument Input/Output Type Description
formatter In INTEGER The formatter to use
for reports

Rational Statemate

553



Utility Functions

stm_string_retain

Description:

When used in a DOC template, STM_DISPOSE_MEMORY () frees temporary memory used by the
DOC system. If you want to avoid freeing a specific string, for example, general strings used

in the template, call STM_STRING_RETAIN(<str>) on that string before calling
STM_DISPOSE_MEMORY ().

Syntax

stm_string_retain(string)

Arguments
Argument Input/ Type Description
9 Output yp P
string In STRING The string to be retained in memory after
performing STM_DISPOSE_MEMORY ()

Status Codes
None
Example

STRING str;
STM_STRING_RETAIN(str)

554 Documentor Reference Guide



List of Utility Functions

stm_str_list_first_element

Function type: STRING
Description
Returns the first item in the specified list of strings.

Syntax

stm_str_list_first_element (list, status)

Arguments
Argument Input/Output Type Description
list In LIST OF STRING The list of strings
status Out INTEGER The function status code

Status Codes
¢ stm success

¢ stm nil_list

¢ stm list_element_does not_exist
Example

Assume you have a list of strings s1, s2, s3, and s4 assigned to the variable str_list. You
locate the string s1 by calling stm_str_list_first_element. S1 becomes the current item.
Your template should contain the following statements:

VARIABLE
LIST OF STRING str_list;
STRING str;
INTEGER status;

str = stm_str_list_first_element (str_list, status);
WRITE (’\n The first string in the list is: 7, str);
str = stm_str_list_next_element (str_list, status);

WRITE (\n The second string in the list is: ”, str);

Rational Statemate 555



Utility Functions

stm_str_list_last_element

Function type: STRING
Description
Returns the element ID of the last item appearing in the specified list of strings.
Note the following:

¢ The first position in the string is 0.
¢ If the function fails, it returns an empty string.

Syntax

stm_str_list_last_element (list, status)

Arguments
Argument Input/Output Type Description
string In LIST OF STRING The list of strings
status Out INTEGER The function status code

Status Codes
¢ stm success
¢ stm nil_list

¢ stm list_element_does not_exist
Example

Assume there is a list of strings (S1, S2, S3, and S4) assigned to the variable str_list. You
locate the string s4 by calling stm_str_list_last_element. S4 becomes the “current” item.
Your template should contain the following statements:

VARIABLE
LIST OF STRING str_list;
STRING str;
INTEGER status;
str = stm_str_list_last_element (str_list, status);
WRITE (C\n The last string in the list is: 7, str);
str = stm_str_list_previous_element (str_list, status);

WRITE (°\n The third string in the list is: ”, str);

556 Documentor Reference Guide



List of Utility Functions

stm_str_list_length
Function type: INTEGER
Description

Returns the number of items in the specified list of strings.
Syntax

stm_str_list_length (list, status)

Arguments
Argument Input/Output Type Description
list In LIST OF STRING The list of strings whose
length you want
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm nil_list
Example
Assume you have extracted all the static reactions in state ST1 from the database. Before

writing the list of strings to your document, you want to make sure that it will not span more
than 30 lines of text (one page length). Your template should contain the following statements:

VARIABLE
STATE st;
STRING str;
LIST OF STRING str_list;
INTEGER str_list_len, status;

CONSTANT INTEGER page_len := 30;

st:=stm_r_st (’STl;,status);
str_list:=stm_r_st_static_reactions (st, status);

str_list_len := stm_str_list_length (st, status);
IF str_list_len < page_len
WRITE (’\n List of Reactions: ”);
FOR str IN str_list LOOP
WRITE (°\n”, str);
END LOOP;
END IF

Rational Statemate 557



Utility Functions

stm_str_list_next_element

Function type: STRING
Description
Returns the next item in the specified list of strings.

Note that “next” refers to the item physically located after the current item in the list of strings.
The “current” item is determined using the utility function stm_str_list_first_element.

Syntax

stm_str_list_next_element (list, status)

Arguments
Argument Input/Output Type Description
list In LIST OF STRING The list of strings
status Out INTEGER The function status code

Status Codes

¢ stm_success
¢ stm nil_list

¢ stm_list_element_does_not_exist

Example

Assume we have a list of strings s1, S2, S3, and S4 assigned to the variable str_list. You
locate the string s1 by calling stm_str_list_first_element. S1 becomes the current item.
To find the next element in the list, use the following statements:

VARIABLE
LIST OF STRING str_list;
STRING str;

INTEGER status;

str = stm_str_list_first_element (str_list, status);
WRITE (\n The first string in the list is: 7, str);
str := stm_str_list_next_element (str_list, status);
WRITE (’\n The second string in the list is: ”,str);

This function is often used in loop statements.

558 Documentor Reference Guide



List of Utility Functions

stm_str_list_previous_element

Function type: STRING

Description

Returns the previous item in the specified list of strings.

Note that “previous” refers to the item physically located before the current item in the list of
strings. The “current” item is determined using the utility function
stm_str_list _last_element.

Syntax

stm_str_list_previous_element (list, status)

Arguments
Argument Input/Output Type Description
list In LIST OF STRING The list of strings
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm nil_list

¢ stm_list_element_does_not_exist

Rational Statemate

559



Utility Functions

Example

Assume you have a list of strings S1, s2, S3, and s4 assigned to the variable str_list. You
locate the string s4 by calling stm_str_list_last_element. S4 becomes the current item.
Your template should contain the following statements:

VARIABLE
LIST OF STRING str_list;
STRING str;
INTEGER status;
str = stm_str_list_last_element (str_list, status);
WRITE (’\n The last string in the list is: 7, str);
str = stm_str_list_previous_element (str_list, status);

WRITE (°\n The third string in the list is: >, str);

This function is often used in loop statements.

560 Documentor Reference Guide



List of Utility Functions

stm_str_list_to_str

Function type: STRING

Description

Returns the string representation of the specified list of strings.

Syntax

stm_str_list_to_str (s_list)

Arguments
Argument Input/Output Type Description
s_list In LIST OF STRING The list of strings to be
converted

Status Codes

¢ stm_success

Rational Statemate

561



Utility Functions

stm_str_to_list

Function type: LIST OF STRING

Description

Converts the specified string to a list of strings.

Syntax

stm_str_to_list (s, delimiter)

Arguments
Argument Input/Output Type Description
S In STRING The string to convert
delimiter In STRING A delimiter for whitespace

562

Documentor Reference Guide



List of Utility Functions

stm_string_extract

Function type: STRING

Description

Extracts a portion of the specified string. The extracted portion starts at the index position and
its length is len.

Syntax

stm_string_extract (string, index, len, status)

Arguments
Argument Input/Output Type Description
string In STRING The entire string
index In INTEGER The starting point of the
extraction
len In INTEGER The number of characters
to extract from the string
status Out INTEGER The function status code
Status Codes

¢ stm_success
¢  stm_null_string
¢  stm_illegal_index

¢ stm_illegal_len

Example
stm_string_extract (ABCDE’,0,2,status) = *AB’
stm_string_extract (’ABCDE”,3,2,status) = ’DE’

stm_string_extract (*ABCDE”,0,7,status)
and status = stm_illegal_len

Rational Statemate 563



Utility Functions

stm_string_free

Function type: INTEGER

Description

Frees the memory used by the specified string.

Syntax

stm_string_free (s)

Arguments
Argument Input/Output Type Description
S In STRING The string whose memory
you want to free

564

Documentor Reference Guide



List of Utility Functions

stm_string_retain
Description:

When used in a DOC template, STM_DISPOSE_MEMORY () frees temporary memory used by the
DOC system. If you want to avoid freeing a specific string, for example, general strings used
in the template, call STM_STRING_RETAIN(<str>) on that string before calling
STM_DISPOSE_MEMORY ().

Syntax

stm_string_retain(string)

Arguments
Argument Input/ Type Description
9 Output yp P
string In STRING The string to be retained in memory after
performing STM_DISPOSE_MEMORY ()

Status Codes
None
Example

STRING str;
STM_STRING_RETAIN(strO

Rational Statemate 565



Utility Functions

stm_string_to_int

Function type: INTEGER

Description

Returns an integer value of a decimal string representation of a number.

Syntax

stm_string_to_int (string)

Arguments
Argument Input/Output Type Description
string In STRING The string to be converted

Status Codes

¢ stm_success

566

Documentor Reference Guide



List of Utility Functions

stm_strlen

Function type: INTEGER

Description

Returns the length of the specified string.

Syntax

stm_strlen (string)

Arguments
Argument Input/Output Type Description
string In STRING The string whose length
you want

Status Codes

¢ stm_success

Example

len := stm_strlen (CABC?);

len is 3.

Rational Statemate

567



Utility Functions

stm_trigger_of reaction

Function type: STRING
Description

Returns the trigger part of a reaction (label of transition or static reaction). The syntax of the
reaction is trigger/action.

Note the following:

¢ The reaction is achieved by the following single-element functions:
— stm_r_st_reactions
— stm_r_tr_labels

¢ The function returns an empty string when the trigger is missing.

Syntax
stm_trigger_of_reaction (reaction, status)
Arguments
Argument Input/Output Type Description
reaction In STRING The reaction to decompose
status Out STRING The function status code

Status Codes

¢ stm_success

Example

To list all events that have influence on s1, which has several static reactions, use the
following statements in your template:

Variable
STATE st_id;
INTEGER status;
LIST OF STRING reactions;
STRING rct;

st_id:=stm_r_st(’S1’,status);
reactions:=stm_r_st_reactions (st_id, status);
WRITE (°\n Triggers of reaction is S1:7);
FOR rct IN reactions LOOP

WRITE (\n”, stm_trigger_of _reaction (rct, status));
END FOR;

568 Documentor Reference Guide



Project Management

This appendix describes special project management functions. For each function, the following
information is provided:

+ Description

¢ Syntax

* Arguments

+ Status codes
The following table lists the project management functions.

Function Description
stm_r_pm_member_workareas Returns the workareas of the specified user
stm_r_pm_operator_projects Returns a list of all the projects in which the specified user is a
member

stm_r_pm_project_databank Returns the databank name of the specified project in the project
management database

stm_r_pm_project_manager Returns the manager of the specified project in the project
management database

stm_r_pm_project_members Returns a list of all the members of the specified project in the
project management database

stm_r_pm_projects Returns a list of all the projects in the project management
database

Rational Statemate 569



Project Management

stm_r _pm_member_workareas

Function type: LIST OF STRING

Description

Returns the workareas of the specified user.

Syntax

stm_r_pm_member_workareas (o_name, p_name, status)

Arguments
Argument Input/Output Type Description
oname In STRING The name of the user
pname In STRING The name of the project
status Out INTEGER The function status code

Status Codes

¢ stm success

¢ stm_nonexistent_project

¢ stm_not_member_of project

570

Documentor Reference Guide



stm_r_pm_operator_projects

stm_r_pm_operator_projects

Function type: LIST OF STRING

Description

Returns a list of all the projects in which the specified user is a member.

Syntax

stm_r_pm_operator_projects (oname, status)

Arguments
Argument Input/Output Type Description
oname In STRING The name of the user
status Out STRING The function status code

Status Codes

¢ stm_success

¢ stm_no_projects

Rational Statemate

571



Project Management

stm_r _pm_project_databank

Function type: STRING

Description

Returns the databank name of the specified project in the project management database.

Syntax

stm_r_pm_project_databank (pname, status)

Arguments
Argument Input/Output Type Description
pname In STRING The name of the project
status Out INTEGER The function status code

Status Codes

¢ stm success

¢ stm_nonexistent_project

572

Documentor Reference Guide



stm_r_pm_project_manager

stm_r_pm_project_manager

Function type: STRING

Description
Returns the manager of the specified project in the project management database.
Syntax

stm_r_pm_project_manager (pname, status)

Arguments
Argument Input/Output Type Description
pname In STRING The name of the project
status Out INTEGER The function status code

Status Codes

¢ stm success

¢ stm_nonexistent_project

Rational Statemate 573



Project Management

stm_r _pm_project_members

Function type: LIST OF STRING

Description

Returns a list of all the members of the specified project in the project management database.

Syntax

stm_r_pm_project_members (pname, status)

Arguments
Argument Input/Output Type Description
pname In STRING The name of the project
status Out INTEGER The function status code

Status Codes

¢ stm_success

¢ stm_nonexistent_project

574

Documentor Reference Guide



stm_r_pm_projects

stm_r_pm_projects

Function type: LIST OF STRING
Description
Returns a list of all the projects in the project management database.
Syntax

stm_r_pm_projects (status)

Arguments
Argument Input/Output Type Description
status Out INTEGER | The function status code

Status Codes

¢ stm success

¢ stm_no_projects

Rational Statemate 575



Project Management

576 Documentor Reference Guide



Function Status Codes

Status codes have three severity levels:

* S for success
* W for warning
¢ E forerror

When a warning or error status is returned, attempts to execute statements using the return value of
the function can produce erroneous or unexpected results. Therefore, you should check the return
status codes to ensure that your function call is successful before using the returned values.

The following table lists the status codes and their severity levels.

Code Status Name Severity
Level

-4 stm_no_stm_root E
UNIX: The STM_ROOT environment variable is not defined.
VMS: The STM$ROOT or STM$PM logical name does not exist.

-3 stm_obsolete_function E
Irrelevant function for the current version.

-2 stm_missing_elements_in_list W
Input elements do not exist in the database.

-1 stm_list_type_mismatch E
Incorrect element type used in the query.

0 stm_success S
The function call was successful.

1 stm_id_out_of_range E
The specified ID is not valid for this element type.

2 stm_id_not_found E
An element with the specified ID does not exist.

3 stm_illegal_name E
The specified name is not legal.

4 stm_name_not_found E
The specified name does not exist.

Rational Statemate 577



Function Status Codes

5 stm_name_not_unique E
There is more than one element with the specified name, so a specific path name is
required.

6 stm_missing_name W
The specified element has no name.

7 stm_missing_synonym W
The specified element has no synonym.

8 stm_missing_short_description w
The specified element has no short description.

9 stm_missing_long_description W
The specified element has no long description.

10 stm_attribute_name_not_found W
The specified element has no attribute name.

11 stm_starting_keyword_not_found W
The long description of the specified element does not contain the given starting
keyword.

12 stm_ending_keyword_not_found w
The long description of the specified element does not contain the given ending
keyword.

13 stm_primitive_element W
The element is primitive.

14 stm_can_not_open_Tfile E
The operating system cannot open the file with the specified name.

15 stm_illegal_address E
The pointer address is illegal.

16 stm_not_an_and_state W

This state is not supposed to contain and-lines.

17 stm_no_and_lines_in_and_state E
This and-state is missing and-lines.

18 stm_missing_graphic_data E
Graphic data is missing from the element.
19 stm_nil_list E

There is no input list.

20 stm_list_element _does not_exist w
The specified element does not exist.

21 stm_cannot_compare_lists E
The lists cannot be compared because the list types are different, or the lists are not
initialized.

22 stm_elements_without_name E

The list cannot be sorted because its elements have no names.

23 stm_elements_without_synonym E
The list cannot be sorted because its elements have no synonyms.

578 Documentor Reference Guide



24 stm_elements_not_hierarchical
The list cannot be sorted because it is not hierarchical.
25 stm_illegal_extract_type
You cannot extract this element type.
26 stm_no_such_list
No such list exists
27 stm_not_diagram_connector
There is no value in a connector that is not a diagram connector.
28 stm_implicit_element
The element is defined implicitly—it is an internally defined entity.
29 stm_missing_label
The element has no label.
30 stm_unknown_plotter
The plotter type is unknown.
31 stm_unresolved
The element is unresolved.
32 stm_elements_without_attributes
The list cannot be sorted because its elements have no attributes.
33 stm_not_instance
The element is not an instance.
34 stm_no_updated_pmdb
The workarea database is not updated to the current version.
35 stm_no_updated_projdb
The installation database is not updated to the current version.
36 stm_no_legal_operator
The user is not authorized as a Statemate operator.
37 stm_deadlock
Deadlock situation.
38 stm_not_member_of_project
The user is not a member of the specified project.
39 stm_nonexistent_project
The specified project does not exist.
40 stm_not_enough_memory
The plot cannot be produced because there is not enough memory.
41 stm_empty_chart
The plot file cannot be produced because the chart is empty.
42 stm_plot_failure
The plot file was not produced because of a system error.
43 stm_no_file_of_licensed_host
The file containing the name of the licensed host does not exist.

Rational Statemate

579



Function Status Codes

44 stm_empty_file_of _licensed_host E
The file containing the name of the licensed host is empty.

45 stm_cannot_chdir_to_work_area E
Could not change directory to the workarea.

46 stm_cannot_write_to_file E
No space is left on device for writing a file.

47 stm_illegal_parameter E
An illegal parameter value was supplied.

50 stm_null_string E
The input string is null.

51 stm_illegal_len E
The length value is illegal.

52 stm_illegal_index E
The index value is illegal.

53 stm_cannot_read_file E
Cannot read from a file that was not opened.

54 stm_end_of_file E
Reached the end-of-file.

55 stm_not_a_parameter E
The specified ID is not a parameter.

56 stm_param_not_compatible W
The actual and formal parameters are not compatible.

57 stm_error_in_Tfile E
There is an error in the requirement file.

58 stm_missing_field w
A field is missing in the requirement record.

59 stm_missing_user_type E
The specified element has no user-defined type.

61 stm_illegal_attribute_value E
The attribute value is too long.

62 stm_duplicate_attribute_pair E
The specified attribute name/value pair already exists.

63 stm_not_in_rw_transaction E
Attempt to modify the database when not in a read/write transaction.

64 stm_missing_of_enum_type W
The specified element has no enumerated type associated with its array type
definition.

65 stm_missing_user_code w
The specified element has no user code.

66 stm_missing_subroutine_params W
The specified element has no subroutine parameters.

580

Documentor Reference Guide



67 stm_missing_local_data
The specified element has no local data.
68 stm_missing_global_data
The specified element has no global data.
69 stm_no_connected_chart
The specified element is not connected to a chart.
70 stm_attribute_cannot_be deleted
The specified element’s attribute cannot be deleted.
71 stm_missing_cbk_binding
The specified element has no callback binding.
72 stm_missing_subroutine_binding
The specified element has no subroutine binding.
73 stm_missing_statemate_action_Jlang
The specified element has no action language.
74 stm_no_projects
There are no projects in the project management database.
121 stm_illegal_expression_n_chart
There is an illegal expression in the loaded chart.
122 stm_error_in_chart
There is an error in the loaded chart.
123 stm_cannot_open_chart_file
Cannot open the chart file to be loaded.
124 stm_exceeded_max_id_number
There are more than 1023 IDs in the workarea.
125 stm_chart_not_in_database
Cannot find a chart in the database to be saved or unloaded.
126 stm_file_not_in_work-area
Cannot find a file in the workarea to be saved or unloaded.
127 stm_cannot_copy_File
Cannot copy a file during a save or load operation.
128 stm_cannot_create_file
Cannot create an auxiliary file during a load to the workarea.
129 stm_illegal_version
An illegal version was specified for the load operation.
130 stm_file_not_found
Cannot find a source file in the load operation.
131 stm_not_loaded_because_modified
A modified version of loaded chart or file exists in the workarea.
132 stm_not_loaded_because_new
A new version of the loaded chart or file exists in the workarea.

Rational Statemate

581



Function Status Codes

133 stm_not_unloaded_modified E
The chart or file to be unloaded is modified.

134 stm_not_unloaded_new E
The chart or file to be unloaded is new.

135 stm_chart_is_active E
The chart to be unloaded is currently being edited by a graphics editor.

136 stm_error_in_save_operation E
There was a write to disk error during the save operation.

137 stm_illegal_load_mode E
An illegal mode was specified for the load operation.

138 stm_not_loaded_because_type E
A chart with the same name, but of another type, exists in the workarea.

139 stm_illegal_type E
An illegal type of configuration item was specified.

140 stm_illegal_parameters E
An illegal parameter to the load function was specified.

141 stm_illegal_bindings E
There is an error in the loaded chart file.

142 stm_too_long_line E
There is a line too long in the loaded chart file.

143 stm_instance_type_conflict E
There is an instance type conflict in the loaded chart file.

144 stm_usage_conflict E
There is a usage conflict in the loaded chart file.

145 stm_unrecognized_format E
The loaded chart file contains an unrecognized conflict.

146 stm_double_chart_parameters E
There is an error in the loaded chart file.

147 stm_double_chart_bindings E

There is an error in the loaded chart file.

582 Documentor Reference Guide



DGL Reserved Words

The following table lists the keywords reserved for specific DGL use. Do not use these words as
names in your document templates.

ACTION
ACTIVITY
AND

ANY

ARRAY
A_FLOW_LINE
BEGIN
BOOLEAN
CLOSE
CONDITION
CONNECTOR
CONSTANT
DATA_ITEM
DATA_STORE
DATA_TYPE
ELEMENT
ELSE

END

EVENT
EXECUTE
EXIT

FALSE

FIELD
FILE

FIRST

FLOAT

FOR
FUNCTION

IF

IN

INCLUDE
INFORMATION_FLOW
INPUT
INTEGER
LIST

LOOP
MODULE
M_FLOW_LINE
NOT

NULL

OF

OPEN

OR

OTHERWISE
OUTPUT
PARAMETER
PROCEDURE
PROGRAM
READ
RETURN
SEGMENT
SELECT
STATE

STOP
STRING
TEMPLATE
THEN
TRANSITION
TRUE

TYPE
VARIABLE
WHEN
WHILE
WRITE

Rational Statemate

583



DGL Reserved Words

584 Documentor Reference Guide



BNF Syntax

This section lists the conventions for a widely used notational scheme for formal languages known
as BNF, which stands for Bakus-Naur Form (formerly Bakus Normal Form). BNF was introduced
in 1963 as a technique for defining programing languages.

In the statemate documentation, a variation of the BNF notation is used to formally describe the
DGL statements.

BNF Structure and Conventions

BNF grammar follows the following general structure:

nonterminal_symbol ? terminal_and/or_nonterminal _
symbols

For example:

write_expression ? numeric_expression |string_expression

Symbols are delimited by spaces; underscores are frequently used for longer names.

Symbol Types

Terminal symbols are basic symbols that are not parsed further to derive their meaning.
Nonterminal symbols can be further broken down by parsing.

Examples of terminal symbols are:

* Integer numbers intrinsically recognized as a numerical value

+ Language keywords recognized by the system as representing some particular operation or
function.

In BNF for DGL Statements, terminal symbols that are written exactly as they appear (for example,

keywords of Statemate), are shown in all uppercase. Non-alphabetic characters not belonging to the
BNF notation are also part of the syntax:

+ Nonterminal symbols are written in lowercase or mixed case letters.
+ Nonterminal symbols that are self-evident are not broken down further.

Rational Statemate 585



BNF Syntax

BNF Notations

The | indicates a mutually exclusive choice between symbols in a nonterminal symbol definition.
For example:
variable_name | numeric_constant |Jinteger | function_name

The ? separates the nonterminal symbol on the left from its definition on the right and can be read
as “is defined as...”. For example:

relational _operator ? = | <> | < | <= | >=
Square brackets ([1) indicate that the symbols within the brackets are optional. For example:

[directory_name] filename

Curly braces ({3}) indicate that the symbols within the braces are optional and can be repeated. For
example:

begin {statement} end;

BNF for DGL Statements

This section lists the formal syntax (in BNF) for DGL. For ease of use, the DGL statements are
presented in alphabetical order.

DGL Statement

BNF

abs_integer_literal

{digit}

abs numeric_literal

abs_integer_literal | abs_real_literal

abs_real_literal

{digit}. [{digit}] | [{digit}]. {digit}

alpha_letter

A to Z, a to zy

assignment_statement

variable := expression;

boolean_expression

boolean_term |
boolean_expression OR boolean_term

boolean_function_call

function_call

boolean_identifier

boolean_parameter | boolean_constant |
boolean_variable

boolean_literal

TRUE | FALSE

boolean_primary

boolean_literal | boolean_identifier |

expression relation_operation expression |

NOT boolean_primary |
boolean_function_call |
(boolean_expression)

586

Documentor Reference Guide




BNF for DGL Statements

boolean_term

boolean_primary |
boolean_term AND boolean_primary

calling_sequence

string_expression

constant_declaration

CONSTANT {const_object_specification}

const_ident_spec

identifier :=literal

const_ident_spec_list

const_ident_spec [{,const_ident_spec}]

constant_object_specification

type const_ident_spec_list

const_var_declaration

constant declaration 1 variable declaration

control_flow_statement

if_statement | select_statement |
for_statement | while_statement |
exit_statement | stop_statement

copy_text_statement

/@ text @/

close_statement

CLOSE (file_identifier);

element_expression

element_variable | element_function_call

element_function_call

function_call

execute_call

EXECUTE (calling_sequence);

exit_statement

EXIT;

expression

integer_expression | real_expression |
boolean_expression | string_expression |
element_expression | list_expression

file_description

file_name |
file_identifier

file_identifier

file_variable

file_name

string_expression

file_statement

open_statement |
close_statement |
read_statement

for_statement

FOR variable IN list_expression
LOOP statements END LOOP;

function_call

id (expressions [{, expression}])

global_par [parameter_declaration]
[const_var_declaration] BEGIN [statements] END;
ident_spec identifier [:= literal]

ident_spec_list

ident_spec [{,ident_spec}]

identifier

alpha_letter [{identifier_letter}]

identifier_letter

Ato Z, atoz, O0to9, and _

if_statement

IF boolean_expression THEN statements
[ELSE statements] END IF;

Rational Statemate

587



BNF Syntax

include_statement

INCLUDE (File_description
[,integer_variable]);

integer_expression

numeric_expression

integer_identifier

integer_parameter | integer_constant |
integer_variable

integer_literal

[+ | -Jabs_integer_literal

list_component
integer_expression

expression | integer_expression..

list_component_literal

literal | integer_literal.. integer_literal

list_expression

list_term | & |
list_expression + list_term |
list_expression - list_term |
list_expression & list_term

list_identifier

list _parameter | list_constant | list_variable

list_of_components

slist_component ["{", list_component'}
See Note.

list_term list_literal | list_identifier |
“{"" list_of_components "}" 1|
list_term * list_term |
(list_expression)

literal integer_literal | real_literal |

boolean_literal |
string_literal | list_literal

numeric_expression

numeric_term |
numeric_expression + numeric_term]
numeric_expression - numeric_term

numeric_factor

numeric_factor ** numeric_primary]|
numeric_primary

numeric_function_call

function_call

numeric_identifier

integer_identifier | real_identifier

numeric_primary

abs_numeric_literal | numeric_identifier |
nurneric_function_call |
(numeric_expression)

numeric_term

numeric_factor |

numeric_term * numeric_factor |
numeric_term / numeric_factor |

+ numeric_factor | -- numeric_factor |

object_specification

type ident_spec_list;

open_mode

INPUT I OUTPUT

open_statement

OPEN (file_identifier, file_name,
open_mode[, integer_variable]);

588

Documentor Reference Guide



BNF for DGL Statements

output_statement

copy_text_statement |
write_statement |
include_statement |
special_procedure_call |
file_statement

parameter_declaration

PARAMETER object_specification

plot_call

function_call

procedure (call)

PROCEDURE procedure_nhame [return type];
[{parameter_object_declaration}]
[{variable_declaration}]

BEGIN

[statements]

END;

procedure (name)

procedure proc_name

read_statement

READ (File_identifier {, simple_variable})

real_expression

numeric_expression

real_identifier

real_parameter | real_constant |
real_variable

real_literal

[+ | -]abs_real_literal

relation_operation

=] <>]>1]1>]<=]¢<

report_call

function_call

segment

SEGMENT segment_name;
[{const_var declaration}]
BEGIN

[statements]

END;

segment_name

identifier

select_statement

SELECT [FIRST | ANY]
[{when_construct_with_any}]
when_construct

[OTHERWISE = > statements]
END SELECT;

simple_type

INTEGER | REAL | BOOLEAN | STRING | FILE
statemate_element

simple_variable

integer_variable |
real_variable |
string_variable

special_procedure_call

execute_call |
report_call |
plot_call |
table_call

Rational Statemate

589



BNF Syntax

statemate_element ELEMENT | STATE | ACTIVITY |

DATA_STORE | MODULE | TRANSITION |
A_FLOW_LINE | M_FLOW_LINE | EVENT]
DATA_TYPE_FIELD | CONDITION | CONNECTOR |
DATA_ITEM | ACTION | INFORMATION_FLOW

statement assignment_statement | output_statement |
control_flow_statement |

stop_statement STOP;

string_expression string_literal |

string_identifier |
string_function_call |
string_expression + string_expression

string_function_call function_call

string_identifier string_parameter | string_constant |
string_variable

string_literal “{\n]\t]printable character}’

structured_type LIST OF simple_type

table_call function_call

template template_header global_part {segment}

{procedure}
template_header TEMPLATE template_name;
template_name identifier
type simple_type | structured_type
variable_declaration VARIABLE {object specification}
when_construct {when sentence}

[WHEN ANY => statements]
when_construct_with_any {when sentence}

[WHEN ANY => statements]
when_sentence WHEN boolean_expression => statement
while_statement [WHILE boolean_expression]

LOOP statements END LOOP;
write_expression expression [:integer_expression]
write_statement WRITE ([Ffile_identifier,]

{write_expression});

Note

The quotation marks indicate that the braces here are not BNF notation, but are the actual
brace characters themselves.

590 Documentor Reference Guide



Index

A

Abbreviation, element type 75
act_interface

report 97

template 92
Action

extracting from reaction 499

retrieving list of 372
Activity

interface report 91

retrieving list of 352
A-flow-line

retrieving lists of 365
Assignment 294

statement 38, 51, 294

statements 38
Attribute

report 321

sorting by value 525
attribute report 61
Autonumber 541

B

BEGIN statement 295
begin/end statement 46, 47
binary operations 42
BNF 35

conventions 585

notations 586

structure 585

symbol types 585
Boolean comparisons 43
Boolean expressions 43
Branch, sorting by 527

C

calling external programs 37
Calling, convention for functions 75
Chart
extracting elements by 508
retrieving list of 375
CLOSE statement 297
close statement 52

Codes, status 78
Commands, formatting 5
Comment 298
comment statement 46
Compile template 18
Condition, retrieving list of 386
Connector
retrieving list of 384
CONSTANT statement 299
constant statement 49
constants 39
control flow statements 38, 68
exit statement 71
for/loop statement 70
if/then/else statement 68
select/when statement 68
stop statement 72
while/loop statement 71
conventional types 39
Convert
integer to string 503
multiline to list of strings 536
multiline to single string 536
string to integer 566
Create template 14

D

Database extraction function
calling conventions 75
overview 73
status codes, list of 577
types 73
using 74
utility 489

database extractions 37

Data-item, retrieving list of 390

Data-store
retrieving list of 398

data-types 39

declaration statement, parameter statement 48

declaration statements 38, 48
constant statement 49
variable statement 50

DGL 33
calling external programs 37

Rational Statemate

591



Index

database extractions 37

extensions 37

features 37

include files 37

include reports and plots 37

overview 3

syntax rules 35

template structure 33

verbatim inclusion 37
DGL statements 46

assignment 38, 294

begin 295

begin/end statement 46, 47

close 297

comment 298

comment statements 46, 47

constant 299

constant statement 49

control flow statements 38

declaration statements 38, 48

end 301

execute 302

exit 303

file handling statements 38

for/loop 304

if/then/else 306

include 308

open 310

output statements 38

parameter 312

procedure 314

procedure statement 46, 47

read 318

report 319

segment 327

segment statement 46

select/when 328

stop 331

structure statements 38, 46

table 332

template 335

template statement 46

variable 336

verbatim 338

verbatim statement 53

while/loop 340

write 342
dictionary report 59
Document Generation Language, see DGL 3
Document segments

definition 3

editing 26

producing 22

regenerating 27

unformatted 22
Documentor tool

creating templates 14

DGL 3
production process 13
reusing templates 8

E

Edit option 26
Element
firstin list 512
last in string 556
mixed, retrieving list of 440
next in list 516
previous in list 522
previous in string 559
searching in list 504
type abbreviations 75
element expressions 44
END statement 301
Entry heading 87
enumerated types 39, 45
Error code 577
Event, retrieving list of 408
EXECUTE statement 302
execute statement 57
EXIT statement 303
exit statement 71
expressions 39, 42
extensions to DGL 37
calling external programs 37
include files 37
include reports and plots 37
verbatim inclusion 37
Extract
action from reaction 499
elements, by chart 508
elements, by type 510
string 563

F

Field, retrieving list of 411
File
access 9
interleaf_glob 32
file handling statements 38
close statement 52
open statement 51
read statement 52
First element
in list 512
in string 555
float values 39
FOR/LOOP statement 304
using 86
for/loop statement 70
Format option 8
Formatter

592

Documentor Reference Guide



Index

definition 3

invoking 11
Function

arguments 78

names 75

retrieving list of 417

return status codes 78

return status codes, list of 577

return values 79

types 73

using 74

G

Generate entry heading 87

H

Hyperlink
stm_plot_hyper_exp 538
stm_r_an_expr_hyper 170

IF/THEN/ELSE statement 306
if/then/else statement 68
Import option 9
Include file
access 9
Documentor GUI 19
option 19
using 8
include files 37
include plots statement 63
include reports statement 57
attribute report 61
dictionary report 59
include plots statement 63
include table statement 66
interface report 61
list report 59
N2 chart report 62
protocol report 59
resolution report 63
structure report 59
tree report 59
INCLUDE statement 308
using the Documentor GUI 19
include statement 56
include table statement 66
Index, searching for 502
Information-flow, retrieving list of 418
Initiation section 84
Input argument, to database extraction functions 78
integer values 39
Integer, converting to a string 503

Interface report 322
interface report 61
Interleaf 32
templates 102
interleaf_glob file 32
Invoke formatter 11

K
Keyword 89

L

Last element
in string 556
Length
of list 514
of list of strings 557
of string 567
Level
sort list by 529
Lifeline
printing in plot 548
List
extracting elements, by chart 508
extracting elements, by type 510
first element 512
length 514
of list of strings 557
next element 516
previous element 522
report 323
searching for a given element 504
searching for a given string 506
sort 524
by attribute value 525
by branches 527
sort by name 531
sorting
by levels 529
list expressions 44
list item 44
list report 59

M

meaningly 457
Message, producing using WRITE 344
M-flow-line, retrieving list of 423
Mixed element
retrieving list of 440
Module
retrieving lists of 433
Multiline expression
converting to list of strings 536
converting to single string 536

Rational Statemate

593



Index

N

N2 chart report 62, 323
Name

function 75

sorting by 531
Nested for loop 88
Next element

in list 516

in string 558
nroff 32

templates 98
numeric expressions 42

O

OPEN statement 310
and INCLUDE 308

open statement 51, 56

Output mode 308

output mode 56

output statements 38
execute statement 57
include reports statement 57
include statement 56
verbatim statement 53
write statement 54

P

Parameter statement 48, 312
parameters 39
Pattern, searching for 502
Plot

headerlines 548

hyperlinks 538

page breaks 544
Previous element

in list 522

in string 559
Procedure

parameters 312

statement 314
procedure statement 46, 47
produce messages

using write 56
Property report

example 81

syntax 321
Protocol report 324
protocol report 59

Q

Query function
arguments 349

calling 346

examples 350

list of fields 411

list of states 478

list of subroutines 472
Query functions 37

list of activities 352

list of a-flow-lines 365

list of charts 375

list of conditions 386

list of connectors 384

list of data-items 390

list of data-stores 398

list of events 408

list of functions 417

list of information-flow 418

list of m-flow-lines 423

list of mixed elements 440

list of modules 433

list of timing constraints 485

list of transitions 485

list of user-defined types 401
Query functions, list of actions 372

R

Reaction

trigger of 568
READ statement 318
read statement 52
Regenerate option 27
Report

attribute 321

heading 86

passing files 10

predefined 10

property example 81
Report statement 319

attribute report 321

interface report 322

list report 323

N2 chart report 323

property report 321

protocol report 324

resolution report 325

structure report 325

syntax 319
reports, syntax 57
Resolution report 325
resolution report 63
Return status code 78
Return value 79

of enumerated types 80

of filename 79

of type ELEMENT 79
Reuse templates 8

594

Documentor Reference Guide



Index

S

Search
for element in list 504
Segment
definition 3
section 85
statement 327
segment statement 46
SELECT/WHEN statement 328
using 87
select/when statement 68
Sequence diagram
autonumbering 541
breaking across pages 544
simple_type list 41
Single-element function
arguments 109
calling 108
examples 110
list of 111
Single-element functions
stm_r_xx_cbk_binding_expression_hyper 180
single-element functions 37
stm_r_rt_note 212
Sort
by attribute value 525
by branches 527

by level 529

by name 531

by synonym 533

list 524
Standard template 9
State

retrieving list of 478
Statemate

element

abbreviations 75
Statemate element types 40
Statements 38
Status

codes 78

list of 577
stm_action_of reaction 499
stm_delete_file 500
stm_dispose_memory 501, 554
stm_index 502
stm_int 503
stm_int_to_string 503
stm_is_identifier 504
stm_list_contains_element 504
stm_list_contains_string 506
stm_list_extraction 507
stm_list_extraction_by chart 508
stm_list_extraction_by type 510
stm_list_first_element 512
stm_list_last_element 513

stm_list_length 514
stm_list_next_element 516
stm_list_previous_element 522
stm_list_sort 524

stm_list_sort_by attr_value 525
stm_list_sort_by branches 527
stm_list_sort_by chart 527
stm_list_sort_by levels 529
stm_list_sort_by name 531
stm_list_sort_by synonym 533
stm_list_sort_by type 535
stm_multiline_to_one 536
stm_multiline_to_strings 536
stm_plot_hyper_exp 538
stm_plot_with_autonumber 541
stm_plot_with_break 544
stm_plot_with_headerline 548
stm_r_ac_actor_ac 358
stm_r_ac_affecting_mx 363
stm_r_ac_associates_uc 352
stm_r_ac_basic_ac 352
stm_r_ac_boundary_box_ac 358
stm_r_ac_by attributes_ac 352
stm_r_ac_callback_binding_ac 352
stm_r_ac_carried_out_by md 362
stm_r_ac_component_instance_ac 353
stm_r_ac_continuous_instance_ac 353
stm_r_ac_control_ac 353
stm_r_ac_control_terminated_ac 353
stm_r_ac_data_store_ac 353
stm_r_ac_def of instance_ac 353
stm_r_ac_def or_unres_in_ch 361
stm_r_ac_defined_environment_ac 353
stm_r_ac_defined_in_ch 361
stm_r_ac_described by ch 361
stm_r_ac_explicit_defined_ac 354
stm_r_ac_ext_Il_ac 358
stm_r_ac_external_ac 354
stm_r_ac_external_router_ac 358
stm_r_ac_generic_instance_ac 354
stm_r_ac_imp_best_match_ac 354
stm_r_ac_imp_mini_spec_ac 354
stm_r_ac_imp_none_ac 354
stm_r_ac_imp_sb_bind_ac 354
stm_r_ac_imp_truth_table_ac 355
stm_r_ac_instance_ac 355
stm_r_ac_instance_of ch 361
stm_r_ac_instance_of def ac 355
stm_r_ac_internal_ac 355
stm_r_ac_is_occurrence_of ac 355
stm_r_ac_is_principal_of_ac 355
stm_r_ac_lifeline_ac 358
stm_r_ac_logical_desc_of ac 355
stm_r_ac_logical_parent_of_ac 356
stm_r_ac_logical _sub_of ac 356
stm_r_ac_meaningly affecting_mx 363
stm_r_ac_meaningly_using_mx 363

Rational Statemate

595



Index

stm_r_ac_mini_spec_ac 356
stm_r_ac_mini_spec_hyper 205
stm_r_ac_name_of ac 356
stm_r_ac_offpage_instance_ac 356
stm_r_ac_parent_of ds 362
stm_r_ac_parent_of_router 363
stm_r_ac_physical_desc_of ac 356
stm_r_ac_physical_parent_of ac 356
stm_r_ac_physical_sub_of ac 357
stm_r_ac_procedure_like_ac 357
stm_r_ac_resolved to_ext _ac 357
stm_r_ac_root_in_ch 361
stm_r_ac_router_ac 358
stm_r_ac_self _terminated_ac 357
stm_r_ac_source_of af 360
stm_r_ac_subroutine_bind 250
stm_r_ac_subroutine_bind_enable 251
stm_r_ac_subroutine_bind_expr 252
stm_r_ac_subroutine_binding_ac 357
stm_r_ac_synonym_of_ac 357
stm_r_ac_target_of af 360
stm_r_ac_termination 255
stm_r_ac_throughout_st 364
stm_r_ac_top_level_in_ch 361
stm_r_ac_unresolved_ac 357
stm_r_ac_unresolved_in_ch 362
stm_r_ac_use_case_ac 358
stm_r_ac_using_mx 363
stm_r_ac_within_st 364
stm_r_actor_explicit_defined_actor 442
stm_r_actual_parameter_exp 122
stm_r_actual_parameter_type 123
stm_r_af containing_ba 366, 445
stm_r_af containing_laf 368
stm_r_af from_source_ac 365
stm_r_af from_source ds 367
stm_r_af from_source_mx 369
stm_r_af from_source_router 369
stm_r_af_input_to_ac 365
stm_r_af output_from_ac 365
stm_r_af to target ac 365
stm_r_af to_target _ds 367
stm_r_af to_target_mx 369
stm_r_af_to_target_router 369
stm_r_af within_flows_co 366
stm_r_af_within_flows_di 366
stm_r_af_within_flows_ev 367
stm_r_af_within_flows_if 368
stm_r_af within_flows_mx 369
stm_r_af within_labels_co 366
stm_r_af within_labels_di 366
stm_r_af within_labels_ev 367
stm_r_af within_labels_if 368
stm_r_af within_labels_mx 369
stm_r_an_by_attributes_an 372
stm_r_an_def or_unres_in_ch 374
stm_r_an_defined_in_ch 374

stm_r_an_explicit_defined_an 372
stm_r_an_imp_best_match_an 372
stm_r_an_imp_definition_an 373
stm_r_an_imp_none_an 373
stm_r_an_imp_truth_table_an 373
stm_r_an_name_of an 373
stm_r_an_synonym_of _an 373
stm_r_an_unresolved_an 373
stm_r_an_unresolved_in_ch 374
stm_r_ba_contained_in_af 360
stm_r_ba_defined_in_ch 359
stm_r_ba_enter_an 359
stm_r_ba_enter_cn 359
stm_r_ba_enter_ds 359
stm_r_ba_exit_from_ac 359
stm_r_ba_exit_from_cn 360
stm_r_ba_exit_from_ds 359
stm_r_bb_explicit_defined_bb 444
stm_r_bf_from_source_mx 425
stm_r_bf to_target_mx 425
stm_r_bf within_flows co 423
stm_r_bf within_flows_di 423
stm_r_bf within_flows_ev 424
stm_r_bf within_flows_if 424
stm_r_bf_within_flows_mx 425
stm_r_bf_within_labels_co 423
stm_r_bf within_labels_di 423
stm_r_bf_within_labels_ev 424
stm_r_bf_within_labels_if 424
stm_r_bf_within_labels_mx 425
stm_r_bm_enter_cn 446
stm_r_bm_enter_md 446
stm_r_bm_exit_from_cn 446
stm_r_bm_exit_from_md 446
stm_r_bm_exit_from_om 447
stm_r_bt_defined_in_ch 445
stm_r_bt_enter_cn 445
stm_r_bt enter_st 445
stm_r_bt_exit_from_cn 445
stm_r_bt_exit_from_st 444
stm_r_cd_info 187
stm_r_ch_activitychart_ch 376
stm_r_ch_ancestors_of ch 376
stm_r_ch_by attributes_ch 376
stm_r_ch_connected to_sb 383
stm_r_ch_define_ac 375
stm_r_ch_define_an 375
stm_r_ch_define_co 378
stm_r_ch_define_di 379
stm_r_ch_define_ds 379
stm_r_ch_define_dt 379
stm_r_ch_define_ev 380
stm_r_ch_define_fd 380
stm_r_ch_define_if 380
stm_r_ch_define_md 381
stm_r_ch_define_mx 382
stm_r_ch_define_router 382

596

Documentor Reference Guide



Index

stm_r_ch_define_sb 383
stm_r_ch_define_st 383
stm_r_ch_defining_ac 375
stm_r_ch_defining_md 381
stm_r_ch_defining_mx 382
stm_r_ch_defining_st 383
stm_r_ch_descendants_of ch 376
stm_r_ch_describing_ac 375
stm_r_ch_describing_md 381
stm_r_ch_describing_mx 382
stm_r_ch_dictionary_ch 376
stm_r_ch_explicit_defined_ch 376
stm_r_ch_generic_ch 376
stm_r_ch_modification_date 207
stm_r_ch_modulechart_ch 377
stm_r_ch_name_of ch 377
stm_r_ch_offpage_ch 377
stm_r_ch_parent_ch 377
stm_r_ch_procedural_sch_ch 377
stm_r_ch_referenced_all by ch 377
stm_r_ch_referenced_by ch 377
stm_r_ch_root_ch 378
stm_r_ch_statechart _ch 378
stm_r_ch_subchart_ch 378
stm_r_ch_unresolved_ch 378
stm_r_ch_usage type 268
stm_r_ch_version 271
stm_r_cn_deep_history _cn 384
stm_r_cn_history _cn 384
stm_r_cn_history_or_term_in_st 385
stm_r_cn_source_of ba 385
stm_r_cn_source_of bm 384
stm_r_cn_source_of bt 384
stm_r_cn_source_of tr 386
stm_r_cn_target of ba 385
stm_r_cn_target_of bm 384
stm_r_cn_target_of bt 385
stm_r_cn_target of tr 386
stm_r_cn_termination_cn 384
stm_r_co_array_co 387
stm_r_co_by attributes_co 387
stm_r_co_by_structure_type_co 388
stm_r_co_callback _binding_co 388
stm_r_co_contained_in_di 389
stm_r_co_contained_in_if 389
stm_r_co_def_or_unres_in_ch 387
stm_r_co_defined_in_ch 387
stm_r_co_expliicit_defined _co 388
stm_r_co_flowing_through_af 386
stm_r_co_flowing_through_mf 389
stm_r_co_labeling_af 386
stm_r_co_labeling_mf 389
stm_r_co_name_of co 388
stm_r_co_single_co 388
stm_r_co_synonym_of _co 388
stm_r_co_unresolved_co 388
stm_r_co_unresolved_in_ch 387

stm_r_di_array_di 391
stm_r_di_array_missing_di 391
stm_r_di_basic_di 391
stm_r_di_bit_di 391
stm_r_di_bit_queue_di 392
stm_r_di_bits_array_di 392
stm_r_di_bits_di 392
stm_r_di_bits_queue_di 392
stm_r_di_by attributes_di 392

stm_r_di_by structure_type_di 392
stm_r_di_callback_binding_di 392
stm_r_di_contained_in_if 397
stm_r_di_containing_co 391
stm_r_di_containing_fd 396
stm_r_di_def or_unres_in_ch 390
stm_r_di_defined_in_ch 390
stm_r_di_explicit_defined_di 393
stm_r_di_flowing_through_af 390
stm_r_di_flowing_through_mf 397
stm_r_di_integer_array di 393
stm_r_di_integer_di 393
stm_r_di_integer_queue_di 393
stm_r_di_labeling_af 390
stm_r_di_labeling_mf 397
stm_r_di_missing_di 393
stm_r_di_name_of di 393
stm_r_di_parent_of di 393
stm_r_di_queue_di 394
stm_r_di_queue_missing_di 394
stm_r_di_real_array_di 394
stm_r_di_real_di 394
stm_r_di_real_queue_di 394
stm_r_di_record_array_di 394
stm_r_di_record_di 394
stm_r_di_single di 395
stm_r_di_string_array_di 395
stm_r_di_string_di 395
stm_r_di_string_queue_di 395
stm_r_di_subdata_item_of di 395
stm_r_di_synonym_of di 395
stm_r_di_union_array_di 395
stm_r_di_union_di 396
stm_r_di_unresolved_di 396
stm_r_di_unresolved_in_ch 390
stm_r_di_user_type array di 396
stm_r_di_user_type_di 396
stm_r_di_user_type_queue_di 396
stm_r_ds_by attributes_ds 399
stm_r_ds_contained_in_ac 398
stm_r_ds _def or_unres_in_ch 399
stm_r_ds_defined_in_ch 399
stm_r_ds_explicit_defined_ds 399
stm_r_ds_in_ac 398
stm_r_ds_is_occurrence_of ds 400
stm_r_ds_is_principal_of_ds 400
stm_r_ds _name_of ds 400
stm_r_ds_resides_in_md 400

Rational Statemate

597



Index

stm_r_ds_source_of_af 398
stm_r_ds_synonym_of ds 400
stm_r_ds_target_of af 398
stm_r_ds_unresolved_ds 400
stm_r_ds_unresolved_in_ch 399
stm_r_dt_array dt 402
stm_r_dt_array_missing_dt 402
stm_r_dt_bit_dt 402
stm_r_dt_bit_queue_dt 402
stm_r_dt_bits_array_dt 402
stm_r_dt_bits_dt 402
stm_r_dt_bits_queue_dt 403
stm_r_dt by attributes_dt 403
stm_r_dt by structure_type dt 403
stm_r_dt_condition_array dt 403
stm_r_dt_condition_dt 403
stm_r_dt_condition_queue_dt 403
stm_r_dt_containing_fd 407
stm_r_dt_def_or_unres_in_ch 401
stm_r_dt defined_in_ch 401
stm_r_dt enums_dt 403
stm_r_dt_explicit_defined_dt 404
stm_r_dt integer_array dt 404
stm_r_dt_integer_dt 404
stm_r_dt_integer_queue_dt 404
stm_r_dt missing_dt 404
stm_r_dt name_of dt 404
stm_r_dt_queue_dt 404

stm_r_dt queue_missing_dt 405
stm_r_dt real_array_dt 405
stm_r_dt real_dt 405

stm_r_dt real_queue_dt 405
stm_r_dt record_array_dt 405
stm_r_dt_record_dt 405

stm_r_dt single dt 405
stm_r_dt_string_array_dt 406
stm_r_dt_string_dt 406

stm_r_dt string_queue_dt 406
stm_r_dt synonym_of dt 406
stm_r_dt_union_array_dt 406
stm_r_dt_union_dt 406
stm_r_dt_unresolved_dt 406
stm_r_dt_unresolved_in_ch 401
stm_r_dt user_type array_dt 407
stm_r_dt user_type_dt 407
stm_r_dt_user_type_queue_dt 407
stm_r_elem_in_ddb_list 124
stm_r_en_parent 227
stm_r_ev_array_ev 409
stm_r_ev_by attributes_ev 409
stm_r_ev_by_structure_type_ev 409
stm_r_ev_callback _binding_ev 409
stm_r_ev_contained_in_if 410
stm_r_ev_def or_unres_in_ch 408
stm_r_ev_defined_in_ch 408
stm_r_ev_explicit_defined ev 409
stm_r_ev_flowing_through_af 408

stm_r_ev_flowing_through_mf 411
stm_r_ev_labeling_af 408
stm_r_ev_labeling_mf 411
stm_r_ev_name_of ev 409
stm_r_ev_single_ev 410
stm_r_ev_synonym_of ev 410
stm_r_ev_unresolved_ev 410
stm_r_ev_unresolved_in_ch 408
stm_r_fch_connected to_sb 478
stm_r_fd array _fd 412
stm_r_fd_array_missing_fd 412
stm_r_fd bit fd 412
stm_r_fd_bit_queue_fd 412
stm_r_fd_bits array fd 412
stm_r_fd_bits fd 413
stm_r_fd_bits_queue_fd 413
stm_r_fd by attributes fd 413

stm_r_fd_by structure_type_fd 413
stm_r_fd_condition_array_fd 413
stm_r_fd_condition_fd 413
stm_r_fd_condition_queue_fd 413
stm_r_fd_contained_in_di 411
stm_r_fd contained_in_dt 412
stm_r_fd contained_in_mx 416
stm_r_fd_defined_in_ch 411
stm_r_fd_explicit_defined _fd 414
stm_r_fd_integer_array fd 414
stm_r_fd_integer_fd 414
stm_r_fd_integer_queue_fd 414
stm_r_fd_missing_fd 414
stm_r_fd_name_of fd 414
stm_r_fd_queue_fd 414
stm_r_fd_queue_missing_fd 415
stm_r_fd real _array fd 415
stm_r_fd real fd 415
stm_r_fd_real_queue_fd 415
stm_r_fd_string_array_fd 415
stm_r_fd_string_fd 415
stm_r_fd_string_queue_fd 416
stm_r_fd user_type_array fd 416
stm_r_fd user_type fd 416
stm_r_fd_user_type_queue fd 416
stm_r_fn_name_of fn 417
stm_r_fn_unresolved_in_ch 417
stm_r_formal_parameter_names 176
stm_r_gds_visibility_ mode 272
stm_r_global_interface_report 179
stm_r_hyper_key 183
stm_r_if_basic_flowing_af 418
stm_r_if basic_flowing_mf 422
stm_r_if_basic_if 421
stm_r_if by _attributes_if 421
stm_r_if contained_in_if 421
stm_r_if_containing_co 419
stm_r_if_containing_di 420
stm_r_if_containing_ev 420
stm_r_if containing_if 421

598

Documentor Reference Guide



Index

stm_r_if_defined_in_ch 419
stm_r_if_explicit_defined_if 421
stm_r_if_flowing_through_af 418
stm_r_if_flowing_through_mf 422
stm_r_if_labeling_af 418

stm_r_if _labeling_mf 422
stm_r_if_name_of if 421
stm_r_if_or_unres_in_ch 419
stm_r_if_synonym_of_if 422
stm_r_if_unresolved_if 422
stm_r_if_unresolved_in_ch 419
stm_r_included_gds 185
stm_r_inherited_gds 188
stm_r_is_statemate 191

stm_r_laf contained_in_af 370
stm_r_laf_containing_ba 360
stm_r_laf_from_source_ac 370
stm_r_laf _from_source ds 371
stm_r_laf_from_source_mx 371
stm_r_laf_from_source_router 372
stm_r_laf_input_to_ac 370
stm_r_laf_output_from_ac 370
stm_r_laf to_target ac 370
stm_r_laf to_target ds 371
stm_r_laf to_target_ mx 371
stm_r_laf to_target router 372
stm_r_Imf _contained_in_mf 428
stm_r_Imf_containing_bm 427
stm_r_Imf_from_source_md 427
stm_r_Imf_input_to_md 427
stm_r_Imf_output_from_md 427
stm_r_Imf to target md 427, 431
stm_r_local_interface_report 198
stm_r_md_basic_md 435
stm_r_md_bus_md 435
stm_r_md_by attributes_md 435
stm_r_md_carrying_out_ac 433
stm_r_md_contains_ds 434
stm_r_md_contains_router 439
stm_r_md_control_md 435
stm_r_md_def of instance_md 435
stm_r_md_def or_unres_in_ch 433
stm_r_md_defined_environment_md 435
stm_r_md_defined_in_ch 433
stm_r_md_described_by ch 433
stm_r_md_environment_md 436
stm_r_md_explicit_defined_md 436
stm_r_md_external_md 436
stm_r_md_generic_instance_md 436
stm_r_md_implementation 184
stm_r_md_instance_md 436
stm_r_md_instance_of _ch 434
stm_r_md_instance_of_def_md 436
stm_r_md_library_md 436
stm_r_md_logical_desc_of md 437
stm_r_md_logical_parent_of md 437
stm_r_md_logical_sub_of_md 437

stm_r_md_name_of md 437
stm_r_md_offpage_instance_md 437
stm_r_md_physical_desc_of md 437
stm_r_md_physical_parent_of md 438
stm_r_md_physical sub_of md 438
stm_r_md_purpose 230
stm_r_md_regular_md 438
stm_r_md_resolved to _ext md 438
stm_r_md_root_in_ch 434
stm_r_md_source_of mf 439
stm_r_md_storage_md 438
stm_r_md_synonym_of md 438
stm_r_md_target_of mf 439
stm_r_md _top_level in_ch 434
stm_r_md_unresolved in_ch 434
stm_r_md_unresolved_md 438
stm_r_mf_containing_bm 385
stm_r_mf_containing_Imf 430
stm_r_mf_from_source_md 431
stm_r_mf input_to_md 431
stm_r_mf_output_from_md 431
stm_r_mf _to_target md 431
stm_r_mf_within_flows_co 428
stm_r_mf _within_flows_di 429
stm_r_mf_within_flows_ev 429
stm_r_mf_within_flows_if 430
stm_r_mf_within_flows_mx 432
stm_r_mf_within_labels_co 428
stm_r_mf_within_labels_di 429
stm_r_mf_within_labels_ev 429
stm_r_mf_within_labels_if 430
stm_r_mf_within_labels_mx 432
stm_r_msg_included_in_ord_insig 186
stm_r_msg_where_tc_begins 273
stm_r_msg_where_tc_ends 274
stm_r_mx_affected_by ac 441
stm_r_mx_affected_by mx 457
stm_r_mx_affected_by st 466
stm_r_mx_affected_by tr 468
stm_r_mx_affecting_mx 457
stm_r_mx_by attributes mx 457
stm_r_mx_callback_binding_mx 457
stm_r_mx_comb_elements_mx 458
stm_r_mx_constant_parameter_ch 447
stm_r_mx_containing_fd 453
stm_r_mx_def_of instance_mx 458
stm_r_mx_def_or_unres_in_ch 447
stm_r_mx_defined_in_ch 447
stm_r_mx_explicit_defined_mx 458
stm_r_mx_flowing_from_router 465
stm_r_mx_flowing_through_af 440
stm_r_mx_flowing_through_mf 456
stm_r_mx_flowing_to_router 465
stm_r_mx_generic_instance_mx 458
stm_r_mx_in_definition_of _an 443
stm_r_mx_in_definition_of co 449
stm_r_mx_in_definition_of_di 450

Rational Statemate

599



Index

stm_r_mx_in_definition_of dt 451
stm_r_mx_in_definition_of ev 452
stm_r_mx_in_definition_of fd 453
stm_r_mx_in_definition_of if 454
stm_r_mx_in_definition_of mx 458
stm_r_mx_in_parameter_ch 447
stm_r_mx_influence_ac 441
stm_r_mx_influence_md 455
stm_r_mx_influence_st 466
stm_r_mx_influence_value_of an 443
stm_r_mx_influence_value_of ch 447
stm_r_mx_influence_value_of co 449
stm_r_mx_influence_value_of di 450
stm_r_mx_influence_value_of dt 451
stm_r_mx_influence_value_of ev 452
stm_r_mx_influence_value_of fd 453
stm_r_mx_influence_value_of if 454
stm_r_mx_influence_value_of mx 458
stm_r_mx_influenced_by ac 441
stm_r_mx_influenced by an 443
stm_r_mx_influenced_by co 450
stm_r_mx_influenced_by di 450
stm_r_mx_influenced by dt 452
stm_r_mx_influenced_by_ev 452
stm_r_mx_influenced_by fd 453
stm_r_mx_influenced_by fn 454
stm_r_mx_influenced_by_if 455
stm_r_mx_influenced_by md 455
stm_r_mx_influenced_by mx 459
stm_r_mx_influenced_by sb 466
stm_r_mx_influenced_by st 467
stm_r_mx_inout_parameter_ch 448
stm_r_mx_instance_mx 459
stm_r_mx_instance_of ch 448
stm_r_mx_instance_of def mx 459
stm_r_mx_labeling_af 440
stm_r_mx_labeling_mf 456
stm_r_mx_labeling_msg 456
stm_r_mx_labeling_tr 468
stm_r_mx_logical_desc_of mx 459
stm_r_mx_logical_parent_of mx 459
stm_r_mx_logical_sub_of mx 459
stm_r_mx_meaningly_affecting_mx 457
stm_r_mx_meaningly_using_mx 461
stm_r_mx_name_of_mx 460
stm_r_mx_offpage_instance_mx 460
stm_r_mx_out_parameter_ch 448
stm_r_mx_parameter_mx 460
stm_r_mx_parameter_of ch 448
stm_r_mx_physical_desc_of mx 460
stm_r_mx_physical_parent_of_mx 460
stm_r_mx_physical_sub_of _mx 460
stm_r_mx_refer_to_ac 441
stm_r_mx_refer_to_an 443
stm_r_mx_refer_to_co 450
stm_r_mx_refer_to_di 451
stm_r_mx_refer_to_ds 451

stm_r_mx_refer_to_dt 452
stm_r_mx_refer_to_ev 453
stm_r_mx_refer to fd 453
stm_r_mx_refer_to_fn 454
stm_r_mx_refer_to_if 455
stm_r_mx_refer to_md 455
stm_r_mx_refer_to_mx 460
stm_r_mx_refer_to_router 465
stm_r_mx_refer to sb 466
stm_r_mx_refer_to_st 467
stm_r_mx_referenced by ac 442
stm_r_mx_referenced_by ch 448
stm_r_mx_referenced_by md 456
stm_r_mx_referenced by st 467
stm_r_mx_resolved to ext ac 442
stm_r_mx_resolved to_ext_ md 456
stm_r_mx_resolved to_ext mx 461
stm_r_mx_resolved to ext router 465
stm_r_mx_root_in_ch 448
stm_r_mx_source_of af 440
stm_r_mx_source_of ba 440
stm_r_mx_source_of bm 446
stm_r_mx_source_of bt 444
stm_r_mx_source_of_tr 468
stm_r_mx_synonym_of _mx 461
stm_r_mx_target_of af 440
stm_r_mx_target_of ba 440, 441
stm_r_mx_target_of bm 446
stm_r_mx_target_of tr 468
stm_r_mx_text def unres in_ch 448
stm_r_mx_text_unresolved_in_ch 449
stm_r_mx_textual_defined_in_ch 449
stm_r_mx_unresolved in_ch 449
stm_r_mx_unresolved_mx 461
stm_r_mx_used_by ac 442
stm_r_mx_used_by mx 461
stm_r_mx_used_by st 467
stm_r_mx_used_by tr 468
stm_r_mx_using_mx 461
stm_r_mx_with_combinationals_mx 462
stm_r_next_msg 211
stm_r_ord_insig_defined_in_ch 223
stm_r_parameter_binding 224
stm_r_parameter_mode 225
stm_r_pm_operator_projects 571
stm_r_pm_project_databank 572
stm_r_pm_project_manager 573
stm_r_pm_project_members 574
stm_r_pm_project_workareas 570
stm_r_pm_projects 575
stm_r_previous_msg 228
stm_r_router_by_attr_router 471
stm_r_router_contained_in_ac 469
stm_r_router_def or_unres_in_ch 470
stm_r_router_defined_in_ch 470
stm_r_router_exp_def router 471
stm_r_router_in_ac 469

600

Documentor Reference Guide



Index

stm_r_router_name_of _router 471
stm_r_router_res_to_ext_router 471
stm_r_router_resides_in_md 471
stm_r_router_source_of af 470
stm_r_router_synonym_of_router 472
stm_r_router_target_of af 470
stm_r_router_unresolved_in_ch 470
stm_r_router_unresolved_router 472
stm_r_sb_action_lang 119
stm_r_sb_action_lang_expression 120
stm_r_sh_action_lang_local data 121
stm_r _sb_ada sb 473
stm_r_sb_ada_user_code 125
stm_r_sbh_ansi_c_sbh 473

stm_r _sb_ansi_c_user_code 126
stm_r_sb_bit sb 473
stm_r_sh_bits_sb 473

stm_r_sb_by attributes_sb 473
stm_r_sb_connected_statechart 289
stm_r_sh_connected_to_ch 472
stm_r_sb_def or_unres_in_ch 472
stm_r_sb_defined_in_ch 472
stm_r_sh_explicit_defined_sb 473
stm_r_sb_fn_with _side effect sb 474
stm_r_sb_function_sb 474
stm_r_sh_global_data 177
stm_r_sb_globals_usage sb 474
stm_r_sb_imp_action_lang_sb 474
stm_r_sbh_imp_ada_code_sh 474
stm_r_sb_imp_ansi_c_code_sb 474
stm_r_sb_imp_best_match_sb 475
stm_r_sbh_imp_kr_c_code_sb 475
stm_r_sb_imp_none_sb 475
stm_r_sb_imp_procedural_sch_sbh 475
stm_r_sbh_imp_truth_table_sb 475
stm_r_sb_integer_sb 475
stm_r_sb_kr_c_sb 476
stm_r_sh_kr_c_user_code 194
stm_r_sb_missing_sb 476
stm_r_sb_name_of sb 476
stm_r_sb_parameters 226
stm_r_sh_parameters_sh 476
stm_r_sb_proc_sch_local_data 229
stm_r_sh_procedural_fch_sb 477
stm_r_sb_procedural_sch_sh 476
stm_r_sb_procedure_sb 476
stm_r_sh_real sbh 476
stm_r_sh_return_type 235
stm_r_sb_return_user_type 236
stm_r_sb_return_user_type_name 237
stm_r_sh_statemate_action_sb 477
stm_r_sb_string_sb 477
stm_r_sb_synonym_of sb 477
stm_r_sh_task sh 477
stm_r_sb_truth_table_local_data 259
stm_r_sbh_unresolved_in_ch 472
stm_r_sb_unresolved_sb 477

stm_r_sb_user_type_sb 477
stm_r_sch_connected to_sb 478
stm_r_sd_scope 243
stm_r_set_rpt_formatter 244
stm_r_single fd 415
stm_r_st_affecting_mx 480
stm_r_st_and_st 481
stm_r_st_basic_st 481
stm_r_st by attributes_st 481
stm_r_st_callback_binding_st 481
stm_r_st_combinationals 127
stm_r_st_containing_cn 480
stm_r_st_def of instance_st 481
stm_r_st def or_unres_in_ch 479
stm_r_st_default_entry to st 481
stm_r_st_defined_in_ch 479
stm_r_st done_throughout_ac 478
stm_r_st_done_within_ac 478
stm_r_st_explicit_defined_st 482
stm_r_st_generic_instance_st 482
stm_r_st_history_connector_st 482
stm_r_st_instance_of _ch 479
stm_r_st_instance_of def st 482
stm_r_st_instance_st 482
stm_r_st_logical_desc_of st 482
stm_r_st logical parent_of st 483
stm_r_st_logical_sub_of st 483
stm_r_st_meaningly_affecting_mx 480
stm_r_st_meaningly_using_mx 480
stm_r_st _name_of st 483
stm_r_st_offpage_instance_st 483
stm_r_st_physical_desc_of st 483
stm_r_st_physical_parent_of st 483
stm_r_st_physical_sub_of st 484
stm_r_st_reaction_activity st 484
stm_r_st_root_in_ch 479
stm_r_st_source_of tr 484
stm_r_st static_reactions 245
stm_r_st static_reactions_hyper 246
stm_r_st_synonym_of st 484
stm_r_st target of tr 484
stm_r_st top_level in_ch 479
stm_r_st_unresolved_in_ch 479
stm_r_st_unresolved_st 484
stm_r_st_using_mx 480
stm_r_tc_defined_in_ch 485
stm_r_tr_affecting_mx 486
stm_r_tr_by attributes_tr 462
stm_r_tr_containing_bt 444
stm_r_tr_default_of st 487
stm_r_tr_default_tr 487
stm_r_tr_from_source_mx 486
stm_r_tr_from_source_st 487
stm_r_tr_to_target_cn 485

stm_r_tr_to_target_mx 486

stm_r_tr_to_target_st 487

stm_r_tr_using_mx 486

Rational Statemate

601



Index

stm_r_tt_num_of col 214
stm_r_tt_ num_of in 215
stm_r_tt num_of out 216
stm_r_tt_ num_of _row 217
stm_r_tt_row 238
stm_r_uc_associates_uc 469
stm_r_uc_explicit_defined_uc 469
stm_r_uc_ext_point_def 175
stm_r_uc_num_of _scen 218
stm_r_uc_scen 239
stm_r_uc_scen_attr_name 240
stm_r_uc_scen_attr_val 241
stm_r_xx 117
stm_r_xx_array_lindex 128
stm_r_xx_array_rindex 129
stm_r_xx_attr_enforced 130
stm_r_xx_attr_name 132
stm_r_xx_attr_val 134

stm_r_xx_cbk_binding_expression_hyper 180

stm_r_xx_expression 171
stm_r_xx_ext link 173
stm_r_xx_instance_name 189
stm_r_xx_keyword 191
stm_r_xx_labels 195
stm_r_xx_labels_hyper 197
stm_r_xx_longdes 199
stm_r_xx_max_val 202
stm_r_xx_min_val 203
stm_r_Xx_mini_spec 204
stm_r_xx_mode 206
stm_r_xx_name 208
stm_r_xx_notes 212
stm_r_xx_number_of bits 219
stm_r_xx_of _enum_type 220
stm_r_xx_of_enum_type_name_type 221
stm_r_xx_reactions 231
stm_r_xx_select_implementation 244
stm_r_xx_string_length 247
stm_r_xx_structure_type 248
stm_r_xx_synonym 253
stm_r_xx_truth_table 257
stm_r_xx_truth_table_expression 258
stm_r_xx_type 260
stm_r_xx_type_expression 264
stm_r_xx_uniquename 265
stm_r_xx_user_type 268
stm_r_xx_user_type_name_type 270
stm_replace_string 551
stm_replace_word 552
stm_rpt_attribute 321
stm_rpt_dictionary 321
stm_rpt_interface 322

stm_rpt_list 323

stm_rpt_n2chart 323
stm_rpt_protocol 324
stm_rpt_resolution 325
stm_rpt_structure 325

stm_sort_by levels 529
stm_str_list_first_element 555
stm_str_list_last_element 556
stm_str_list_length 557
stm_str_list_next_element 558
stm_str_list_previous_element 559
stm_str_list_to_str 561
stm_str_to_list 562
stm_string_extract 563
stm_string_retain 565
stm_string_to_int 566
stm_strlen 567
stm_table_simple 332
stm_trigger_of reaction 568
STOP statement 331
stop statement 72
String
convert to integer 566
extraction 563
first element 555
first in list 555
last element 556
length 567
next element 558
next in list 558
previous element 559
searching for a given pattern 502
searching for in list 506
string expressions 43
string values 39
Structure report 325
structure report 59
structure statements 38, 46
begin/end statement 46, 47
comment statement 46
procedure statement 46, 47
segment statement 46
template statement 46
Subroutine, retrieving lists of 472
SUD specifications 73
Synonym, sorting by 533

T

Table statement 332
Template
act_interface 92
compiling 18
creating 14
data-item properties 81
embedding instructions 10
file access 9
formatting commands 5
icon 14
Interleaf 102
parameters 312
reusing 8

602

Documentor Reference Guide



Index

sample 5
segment section 85
standard 9
statement 335
structure 84
template statement 46
Timing constraint
retrieving list of 485
Transition, retrieving list of 485
tree report 59
Trigger
of reaction 568
Type
extracting elements by 510
Statemate 75

U

unary operations 42
Unformatted segment 22
User-defined type

retrieving list of 401
Utility function

calling 490

examples 495

input arguments 494

list of 496

overview 489
Utility functions 37

Vv

Value

return 79
Variable

statement 336
variable statement 50
variables 39
verbatim inclusion 37
Verbatim statement 53, 338

W

WHILE/LOOP statement 71, 340

WRITE statement 54, 342
producing messages 344

write statement

using write to produce messages 56

Rational Statemate

603



Index

604 Documentor Reference Guide



	Overview of Documentor
	Basic Concepts
	Document Generation Language (DGL)
	DGL Template
	DGL Segments
	Document Assembly


	Designing a Document Using Templates
	Generating the Document
	Formatting Commands
	Sample Template

	Template Sections
	Executing the Template
	Output Files
	Final Assembly

	Reusing Templates
	Include Files
	File Access

	Documentor Interface with Formatting Systems
	Embedding Formatting Instructions
	Predefined Reports
	Plots
	Invoking a Formatter from Within the Documentor


	Using Documentor
	Document Production Process
	Starting Documentor
	Producing the Document Template
	Creating and Manipulating Templates
	Creating a Template
	Editing a Template
	Deleting a Template
	Copying a Template
	Exporting a Template
	Compiling a Template
	Printing a Template

	Using Include Files
	Creating and Manipulating Include Files
	Creating an Include File
	Editing an Include File
	Deleting an Include File
	Copying an Include File
	Exporting an Include File
	Printing an Include File

	Producing the Document Segments
	Creating and Manipulating Documents
	Creating a Document
	Editing a Document
	Deleting a Document
	Regenerating Document Segments

	Producing the Final Document
	Printing a Document
	Exporting a Document
	Formatting a Document

	Working with Different Formatters
	Using nroff and troff
	Using Interleaf


	Document Templates
	Principles of DGL
	DGL Template Structure
	DGL Syntax Rules
	Special Features of DGL
	Extensions to Conventional Programming Constructs
	Database Extractions

	Overview of DGL Statements

	Data-types and Expressions
	Data-types
	Conventional Types found in Other Programming Languages
	Rational Statemate Element Types
	LIST OF simple_type

	Expressions
	Numeric Expressions
	Boolean Expressions
	String Expressions
	Rational Statemate Element Expressions
	List Expressions

	Enumerated Types-Predefined Constants

	DGL Statements
	Structure Statements
	TEMPLATE Statement
	SEGMENT Statement
	PROCEDURE Statement
	BEGIN/END Statement
	Comment Statement

	Declaration Statements
	PARAMETER Statement
	CONSTANT Statement
	VARIABLE Statement

	Assignment Statement
	File Handling Statements
	OPEN Statement
	CLOSE Statement
	READ Statement

	Output Statements
	Verbatim Statement
	WRITE Statement
	Using WRITE to Produce Messages
	INCLUDE Statement
	EXECUTE Statement
	Include Reports Statement
	Include Plots Statement
	Include Table Statement

	Control Flow Statements
	IF/THEN/ELSE Statement
	SELECT/WHEN Statement
	FOR/LOOP Statement
	WHILE/LOOP Statement
	EXIT Statement
	STOP Statement



	Documentor Functions
	Overview of the Extraction Functions
	Function Structure
	Using Database Extraction Functions

	Calling Conventions
	Function Names
	Element Type Abbreviations
	Arrow Elements

	Function Input Arguments
	Status Codes
	Function Return Values
	Return Values of Type ELEMENT
	Return Values of Filename
	Return Values of Enumerated Types



	Model Templates
	Properties
	Properties Template Structure
	Properties Initiation Section
	Declaration Part
	Body

	Properties Segment Section
	Generating the Report Heading
	Iteration: Using the FOR/LOOP Statement
	Generating the Entry Heading
	Extracting and Printing Information from the Data-Item Form
	Description and Synonym
	Using the SELECT/WHEN Construct
	Using Nested FOR Loops to Extract Attribute Names and Values
	Using Keywords to Write Portions of the Long Description

	Final Output for Data-item Properties

	Activity Interface Report
	act_interface Template
	Activity Interface Report Initiation Section
	Activity Interface Report Segment Section
	Declarations
	Producing the Headings
	Building Element Lists
	Alphabetizing and Sorting the List
	Writing the Input Elements

	Final Output for Act_Interface Report

	Template for nroff
	Template with nroff Commands
	Initiation Section (nroff)
	Segment 1: Heading and Report Overview (nroff)
	Including Global Declarations
	Producing the Heading and Overview (nroff)

	Segment 2: Activity-Chart Plot and Property Report (nroff)

	Template for Interleaf
	Initiation Section (Interleaf)
	Segment 1: Heading and Report Overview (Interleaf)
	Producing the Heading and Overview (Interleaf)

	Segment 2: Activity-Chart Plot and Property Report (Interleaf)


	Single-Element Functions
	Calling Single-Element Functions
	Single-Element Function Input Arguments
	Examples of Single-Element Function Calls
	Single-Element Function Example 1
	Single-Element Function Example 2
	Single-Element Function Example 3


	List of Functions
	stm_r_xx
	stm_r_sb_action_lang
	stm_r_sb_action_lang_expression
	stm_r_sb_action_lang_local_data
	stm_r_actual_parameter_exp
	stm_r_actual_parameter_type
	stm_r_elem_in_ddb_list
	stm_r_sb_ada_user_code
	stm_r_sb_ansi_c_user_code
	stm_r_st_combinationals
	stm_r_xx_array_lindex
	stm_r_xx_array_rindex
	stm_r_xx_attr_enforced
	stm_r_xx_attr_name
	stm_r_xx_attr_val
	stm_r_xx_bit_array_lindex
	stm_r_xx_bit_array_rindex
	stm_r_xx_cbk_binding
	stm_r_xx_cbk_binding_enable
	stm_r_xx_cbk_binding_expression
	stm_r_xx_cbk_binding_expression_hyper
	stm_r_tt_cell
	stm_r_tt_cell_type
	stm_r_changes_log
	stm_r_xx_chart
	stm_r_xx_combinationals
	stm_r_sb_connected_chart
	stm_r_xx_containing_fields
	stm_r_ch_creation_date
	stm_r_ch_creator
	stm_r_xx_data_type
	stm_r_rt_date
	stm_r_xx_definition_type
	stm_r_xx_desc_file
	stm_r_xx_description
	stm_r_design_attr
	stm_r_xx_displayed_name
	stm_r_ddb_list_names
	stm_r_element_type
	stm_r_xx_expr_hyper
	stm_r_xx_expression
	stm_r_xx_ext_link
	stm_r_uc_ext_point_def
	stm_r_formal_parameter_names
	stm_r_sb_global_data
	stm_r_sb_global_data_mode
	stm_r_global_interface_report
	stm_r_xx_cbk_binding_expression_hyper
	stm_r_xx_graphic
	stm_r_hyper_key
	stm_r_md_implementation
	stm_r_included_gds
	stm_r_msg_included_in_ord_insig
	stm_r_cd_info
	stm_r_inherited_gds
	stm_r_xx_instance_name
	stm_r_xx_keyword
	stm_r_sb_kr_c_user_code
	stm_r_xx_labels
	stm_r_xx_labels_hyper
	stm_r_local_interface_report
	stm_r_xx_longdes
	stm_r_lookup_table_header
	stm_r_xx_max_val
	stm_r_xx_min_val
	stm_r_xx_mini_spec
	stm_r_ac_mini_spec_hyper
	stm_r_xx_mode
	stm_r_ch_modification_date
	stm_r_xx_name
	stm_r_next_msg
	stm_r_xx_note
	stm_r_xx_notes
	stm_r_tt_num_of_col
	stm_r_tt_num_of_in
	stm_r_tt_num_of_out
	stm_r_tt_num_of_row
	stm_r_uc_num_of_scen
	stm_r_xx_number_of_bits
	stm_r_xx_of_enum_type
	stm_r_xx_of_enum_type_name_type
	stm_r_ord_insig_defined_in_ch
	stm_r_parameter_binding
	stm_r_parameter_mode
	stm_r_sb_parameters
	stm_r_en_parent
	stm_r_previous_msg
	stm_r_sb_proc_sch_local_data
	stm_r_md_purpose
	stm_r_xx_reactions
	stm_r_param_binding_hyper
	stm_r_param_binding_id
	stm_r_sb_return_type
	stm_r_sb_return_user_type
	stm_r_sb_return_user_type_name
	stm_r_tt_row
	stm_r_uc_scen
	stm_r_uc_scen_attr_name
	stm_r_uc_scen_attr_val
	stm_r_sd_scope
	stm_r_xx_select_implementation
	stm_r_st_static_reactions
	stm_r_st_static_reactions_hyper
	stm_r_xx_string_length
	stm_r_xx_structure_type
	stm_r_ac_subroutine_bind
	stm_r_ac_subroutine_bind_enable
	stm_r_ac_subroutine_bind_expr
	stm_r_xx_synonym
	stm_r_ac_termination
	stm_r_xx_truth_table
	stm_r_xx_truth_table_expression
	stm_r_sb_truth_table_local_data
	stm_r_xx_type
	stm_r_xx_type_expression
	stm_r_xx_uniquename
	stm_r_ch_usage_type
	stm_r_xx_user_type
	stm_r_xx_user_type_name_type
	stm_r_ch_version
	stm_r_gds_visibility_mode
	stm_r_msg_where_tc_begins
	stm_r_msg_where_tc_ends
	stm_r_sb_connected_statechart
	stm_r_sb_connected_flowchart
	stm_r_sb_proc_fch_local_data
	stm_r_xx_des_attr_val
	stm_r_xx_des_attr_name
	stm_r_tt_cell_hyper
	stm_r_tt_row_hyper
	stm_r_xx_default_val
	stm_r_component_param_binding
	stm_r_component_param_mode
	stm_r_stubs_names
	stm_r_information_stub_names
	stm_r_sb_connected_statechart
	stm_r_sb_connected_flowchart


	DGL Statement Reference
	ASSIGNMENT
	BEGIN
	CLOSE
	COMMENT
	CONSTANT
	END
	EXECUTE
	EXIT
	FOR/LOOP
	IF/THEN/ELSE
	INCLUDE
	OPEN
	PARAMETER
	PROCEDURE
	READ
	REPORT
	Attribute Report
	Property Report
	Interface Report
	List Report
	N2 Chart Report
	Protocol Report
	Resolution Report
	Structure Report
	Tree Report

	SEGMENT
	SELECT/WHEN
	STOP
	TABLE
	TEMPLATE
	VARIABLE
	VERBATIM
	WHILE/LOOP
	WRITE

	Query Functions
	Calling Query Functions
	By Attributes
	By Structure Type
	Name and Synonym Patterns

	Query Function Input Arguments
	Examples of Query Functions
	Query Function Example 1
	Query Function Example 2
	Query Function Example 3

	List of Query Functions
	Activities (ac)
	Input List Type: ac
	Input List Type: af
	Input List Type: ch
	Input List Type: ds
	Input List Type: md
	Input List Type: mx
	Input List Type: router
	Input List Type: st

	A-Flow-Lines (af, ba, laf)
	Output List Type: af
	Output List Type: laf

	Actions (an)
	Input List Type: an
	Input List Type: ch

	Charts (ch)
	Input List Type: ac
	Input List Type: an
	Input List Type: ch
	Input List Type: co
	Input List Type: di
	Input List Type: ds
	Input List Type: dt
	Input List Type: ev
	Input List Type: fd
	Input List Type: if
	Input List Type: md
	Input List Type: mx
	Input List Type: router
	Input List Type: sb
	Input List Type: st

	Connectors (cn)
	Input List Type: cn
	Input List Type: st
	Input List Type:bm
	Input List Type: tr

	Conditions (co)
	Input List Type: af
	Input List Type: ch
	Input List Type: co
	Input List Type: di
	Input List Type: if
	Input List Type: mf

	Data-Items (di)
	Input List Type: af
	Input List Type: ch
	Input List Type: co
	Input List Type: di
	Input List Type: fd
	Input List Type: if
	Input List Type: mf

	Data-Stores (ds)
	Input List Type: ac
	Input List Type: af
	Input List Type: ch
	Input List Type: ds
	Input List Type: md

	User-Defined Types (dt)
	Input List Type: ch
	Input List Type: dt
	Input List Type: fd

	Events (ev)
	Input List Type: af
	Input List Type: ch
	Input List Type: ev
	Input List Type: if
	Input List Type: mf

	Fields (fd)
	Input List Type: ch
	Input List Type: di
	Input List Type: dt
	Input List Type: fd
	Input List Type: mx

	Functions (fn)
	Input List Type: ch

	Information-Flows (if)
	Input List Type: af
	Input List Type: ch
	Input List Type: co
	Input List Type: di
	Input List Type: ev
	Input List Type: if
	Input List Type: mf

	M-Flow-Lines (bf, bm, lmf, mf)
	Output List Type: bf
	Output List Type: bm
	Output List Type: lmf
	Output List Type: mf

	Modules (md)
	Input List Type: ac
	Input List Type: ch
	Input List Type: ds
	Input List Type: md
	Input List Type: mf
	Input List Type: router

	Mixed (mx)
	Input List Type: af
	Input List Type: ac
	Input List Type: actor
	Input List Type: an
	Input List Type: bb
	Input List Type: bt
	Input List Type: bm
	Input List Type: ch
	Input List Type: co
	Input List Type: di
	Input List Type: ds
	Input List Type: dt
	Input List Type: ev
	Input List Type: fd
	Input List Type: fn
	Input List Type: if
	Input List Type: md
	Input List Type: mf
	Input List Type: msg
	Input List Type: mx
	Input List Type: router
	Input List Type: sb
	Input List Type: st
	Input List Type: tr
	Input List Type: uc

	Routers (router)
	Input List Type: ac
	Input List Type: af
	Input List Type: ch
	Input List Type: md
	Input List Type: router

	Subroutines (sb)
	Input List Type: ch
	Input List Type: sb

	States (st)
	Input List Type: ac
	Input List Type: ch
	Input List Type: cn
	Input List Type: mx
	Input List Type: st
	Input List Type: tr

	Timing Constraint (tc)
	Input List Type: ch

	Transitions (tr)
	Input List Type: cn
	Input List Type: mx
	Input List Type: st
	Input List Type: tr



	Utility Functions
	Calling Utility Functions
	Contains Element
	List Extraction by Type
	List Extraction by Chart
	Location of Pattern in a String
	Extract Portion of a String

	Utility Function Input Arguments
	Examples of Utility Functions
	Utility Functions Example 1
	Utility Functions Example 2
	Utility Functions Example 3

	List of Utility Functions
	stm_action_of_reaction
	stm_delete_file
	stm_dispose_memory
	stm_index
	stm_int
	stm_int_to_string
	stm_r_is_statemate
	stm_list_contains_element
	stm_list_contains_string
	stm_list_extraction
	stm_list_extraction_by_chart
	stm_list_extraction_by_chart_id
	stm_list_extraction_by_type
	stm_list_first_element
	stm_list_last_element
	stm_list_length
	stm_list_next_element
	stm_plot_ext
	stm_list_previous_element
	stm_list_sort
	stm_list_sort_by_attr_value
	stm_list_sort_by_branches
	stm_list_sort_by_chart
	stm_list_sort_by_levels
	stm_list_sort_by_name
	stm_list_sort_by_synonym
	stm_list_sort_by_type
	stm_multiline_to_one
	stm_multiline_to_strings
	stm_plot
	stm_plot_hyper_exp
	stm_plot_with_autonumber
	stm_plot_with_break
	stm_plot_with_headerline
	stm_replace_string
	stm_replace_word
	stm_set_rpt_formator
	stm_string_retain
	stm_str_list_first_element
	stm_str_list_last_element
	stm_str_list_length
	stm_str_list_next_element
	stm_str_list_previous_element
	stm_str_list_to_str
	stm_str_to_list
	stm_string_extract
	stm_string_free
	stm_string_retain
	stm_string_to_int
	stm_strlen
	stm_trigger_of_reaction


	Project Management
	stm_r_pm_member_workareas
	stm_r_pm_operator_projects
	stm_r_pm_project_databank
	stm_r_pm_project_manager
	stm_r_pm_project_members
	stm_r_pm_projects

	Function Status Codes
	DGL Reserved Words
	BNF Syntax
	BNF Structure and Conventions
	Symbol Types
	BNF Notations

	BNF for DGL Statements

	Index

