

CPI-C for RUST on Linux
Implementation Guide

Communications Server for Data Center

Deployment

January, 2023

Authors:

Jeff L. Smith
jefsmith@us.ibm.com

Version 1.11

Table of Contents
1 Introduction ... 3
2 Example RUSTAPING program that initiates a conversation 5

2.1 RUST Cargo files ... 6
3 Example RUST_TP transaction program that receives a conversation 8

3.1 RUST Cargo files ... 10
4 CPI-C declaration for RUST in cpic.rs .. 11
5 Conclusion .. 12

History of changes:

Date Subject Owner
2022/07/21 Original Version Jeff Smith
2022/08/09 Minimum level of Communication Server for Data

Center Deployment V7.1 required
Jeff Smith

2023/01/17 Correct “rust_tp” key word requirement on Windows Jeff Smith

1 Introduction

The Common Programming Interface for Communications (CPI-C) is a portable
standard application programming interface for applications implementing APPC across
different platforms. The CPI-C API is widely utilized for transaction sessions mainframe
applications like CICS and IMS that track thousands of transactions per second. For
Linux and Windows platforms, the IBM Communications Server for Data Center
Deployment (CSDCD) provides CPI-C libraries in support of applications performing
transactions via sessions of LU6.2 peer to peer communications. In recent years, the
RUST programming language has been developed by an opensource community
targeting improvements to security, reduced vulnerabilities in memory management,
and efficiency.

RUST is closely compatible with C. The CPI-C for RUST implementation uses
std::os::raw::{c_int, c_char} references in the RUST code to declare some CPI-C
common variables and declare function entry points to the CPI-C libraries provided by
the CSDCD. On Linux and Windows, the cpic.rs include file declares what is needed to
make calls into CPI-C. Not all CPI-C interface calls are supported in the CPI-C for
RUST. There are some extensions to the CPI-C 2.0 standard interface implemented for
the CSDCD that are not available in RUST. For the most part, these extensions are not
required, and the information can be extracted through the common functions
supported.

The implementation of the CPI-C for Rust described in this guide closely mirrors the
CPI-C for Java implementation documented in the CPI-C Programmers manual that
accompanies the CSDCD. The current implementation examples provided in this guide
and descriptions are for Linux and Windows systems. The CSDCD also supports CPI-C
on AIX. When RUST is available on AIX, this guide will be updated to include details for
that platform.

The minimum level of CSDCD required to run CPI-C for Rust is V7.1.0.0. There are
some specific C interface calls that need mapping into the CPI-C for Rust and to
accommodate this, the 7.1 level must be the minimum level.

Transaction sessions require a pair of nodes, one is the sender and the other the
receiver. This guide provides the examples of CPI-C for Rust between a sending node
(RUSTAPING) and a receiving node (RUST_TP). The first example application,
RUSTAPING, sends “pings” over APPC, LU6.2, sessions to a receiving transaction
program on a SNA node. The Communications Server can be configured to allocate a
session to the APINGD transaction program which most SNA nodes support by default.
It can also be configured to allocate a session to RUST_TP transaction program, the
second example program provided. The RUST_TP example program, is a transaction
program that receives “pings” from RUSTAPING (or from the APING utility provide with
the Communications Server). The RUST_TP example logs the connection and the
amount of data pinged to a log file. The programs provided are examples of how an
application can be written to connect to a partner LU and send data back and forth and

then deallocate the session. This guide will also describe how to configure a SNA node
to dynamically invoke the RUST_TP transaction program.

2 Example RUSTAPING program that initiates a
conversation

The example program, RUSTAPING, demonstrates how to initiate an APPC session to
a partner LU, send and receive data from the partner LU and deallocate the session.
The program requires the symbolic name of a CPIC_Side_Info record that defines a
partner LU, TP name of the partner application and the mode characteristics for the
connection used. To define a CPIC_Side_Info record that allocates a session to the
RUST_TP example program, use the snaadmin command line tool:

 snaadmin define_cpic_side_info,sym_dest_name=RUSTTEST,
 partner_lu_name=USIBMNM.LTLWGN9, mode_name=#BATCH, tp_name=RUST_TP

A similar CPIC_Side_Info record can be created to define a connection using APINGD
on any SNA node that will respond to RUSTAPING:

 snaadmin define_cpic_side_info,sym_dest_name=RUSTPING,
 partner_lu_name=APPN.X64LU62, mode_name=#BATCH, tp_name=APINGD

To view the CPI-C Side Info on a Communications Server for Linux, or AIX, you can
issue the following command:

 snaadmin query_cpic_side_info

Example output could look like the following:

list_options = FIRST_IN_LIST

sym_dest_name = RUSTPING
description = ""
partner_lu_name = APPN.X64LU62
tp_name_type = APPLICATION_TP
tp_name = APINGD
mode_name = #BATCH
conversation_security_type = NONE
security_user_id = ""
security_password = ""
lu_alias = ""

sym_dest_name = RUSTTEST
description = ""
partner_lu_name = USIBMNM.LTLWGN9
tp_name_type = APPLICATION_TP
tp_name = RUST_TP
mode_name = #BATCH
conversation_security_type = NONE
security_user_id = ""
security_password = ""
lu_alias = ""

There are optional parameters for RUSTAPING that specify the iteration (-i) count for
the number of “pings” to send, the count (-c) for the number of messages per ping to
send, the size (-s) of each message (maximum 32,000 bytes), and a flag to indicate a
line number (-#) when displaying output for each ping sent:

Windows:
 rustaping_win64 -i 10 -c 3 -s 250 -# RUSTTEST

Linux:
 ./rustaping_x86_64_bin -i 10 -c 3 -s 250 -# RUSTTEST

IBM aping for RUST version 1.0: APPC echo test with timings.
Allocate duration: 1.0 ms
 Local LU ALias: sls15sp2 connected to Partner LU: USIBMNM.LTLWGN9
Program startup and Confirm duration: 1.0 ms

 Connected to partner running on: RUST_TP for Linux 1.0
#1 Duration(ms): 0.3 Data Sent(bytes): 1500 Data Rate(KB/s) 1563.8 (Mb/s) 12.510
#2 Duration(ms): 0.3 Data Sent(bytes): 1500 Data Rate(KB/s) 1658.3 (Mb/s) 13.266
#3 Duration(ms): 0.3 Data Sent(bytes): 1500 Data Rate(KB/s) 1647.3 (Mb/s) 13.179
#4 Duration(ms): 0.3 Data Sent(bytes): 1500 Data Rate(KB/s) 1627.1 (Mb/s) 13.017
#5 Duration(ms): 0.3 Data Sent(bytes): 1500 Data Rate(KB/s) 1727.3 (Mb/s) 13.818
#6 Duration(ms): 0.3 Data Sent(bytes): 1500 Data Rate(KB/s) 1636.6 (Mb/s) 13.093
#7 Duration(ms): 0.3 Data Sent(bytes): 1500 Data Rate(KB/s) 1605.8 (Mb/s) 12.846
#8 Duration(ms): 0.3 Data Sent(bytes): 1500 Data Rate(KB/s) 1588.5 (Mb/s) 12.708
#9 Duration(ms): 0.3 Data Sent(bytes): 1500 Data Rate(KB/s) 1495.0 (Mb/s) 11.960
#10 Duration(ms): 0.3 Data Sent(bytes): 1500 Data Rate(KB/s) 1453.6 (Mb/s) 11.629
-- Totals:
Duration(ms): 3.1 Total Data (bytes): 15000 Data Rate(KB/s) 1596.6 (Mb/s) 12.773

The output provides the duration in milliseconds for the allocate, the Local LU alias and
partner LU names, the exchange identity flow time in milliseconds, and ping transaction
rates are displayed. The default parameters, if not specified, are to send 3 pings of 1000
bytes each using the CPIC_Side_Info record APINGD.

2.1 RUST Cargo files

The packages provided with this guide include RUST Cargo directory contents for
Windows and Linux platforms. The Linux on Intel (x86_64) package is different from the
Linux on Power (ppc64le) and Linux on IBM Z (s390x) package due to how characters
are defined in the RUST C libraries. Other than this, the packages all have similar build
scripts and source code.

RUST uses a build utility, cargo, to compile and link the application to Rust and C
libraries. The example packages provided contain the cargo directory for “rustaping”.
There is a build script that shows how to define the require environment variables and
parameters to build the rustaping program. There is a “src” directory with 3 source files.
All RUST programs require a main.rs file for an executable program. The cpic.rs file is
the CPI-C include file that defines the API calls. The lib.rs has generic routines for
reading in parameters passed in on the command line and printing usage information:

Package files:
 rustaping/
 build_rustaping_cmd (build_rustaping.bat on Windows)
 src/
 cpic.rs
 lib.rs
 main.rs

To build the rustaping program, run the build script provided. For rustaping, the default
build script will create a debug version under a “target/debug” directory. To build a non-
debug, or release version, change the “cargo build --verbose” command in the build
script to “cargo build –release”. The release build will create a “target/release” directory
where the rustaping program (rustaping.exe on Windows) will be found.

3 Example RUST_TP transaction program that receives a
conversation

The example program RUST_TP is a transaction program that can be configured to be
invoked dynamically by Communications Server when an allocate message is received
from a partner SNA node. The partner application would be running the RUSTAPING
program or APING. The RUST_TP first makes a call to CPI-C to register itself as the
transaction program “RUST_TP”. This acts like a specific queue for allocation request to
this TP program. The program then issues an “accept conversation” call to receive any
incoming request to start a conversation. The configuration definition for the TP can
specify how long the queue can remain open with no allocate requests before timing
out.

Once the conversation is accepted, the transaction program extracts the local LU and
partner LU information to log to the file /tmp/rust_tp.txt. This file logs the times that
allocate requests are processed between the LU-LU pair and the size of the data sent
back and forth, in number of bytes. Example of the log file:

 cat /tmp/rust_tp.txt
IBM aping for RUST version 1.0: APPC echo test with timings.

Local time is: 2021-10-27 16:05:00.963584436 -04:00
 Local LU ALias: ltlwgn9 connected to Parnter LU: USIBMNM.LTLWJLS
 Program startup and Confirm complete
 \x01\x02,\x02RUSTAPING for Linux 1.0
 Total bytes received from partner: 5000

Local time is: 2021-10-27 16:05:43.312382087 -04:00
 Local LU ALias: ltlwgn9 connected to Parnter LU: USIBMNM.LTLWJLS
 Program startup and Confirm complete
 \x01\x02,\x02RUSTAPING for Linux 1.0
 Total bytes received from partner: 5000

error at calling point CMACCP call: : 25

The last entry above is the timeout response, error code 25, when there are no more
allocates to process after the configured number of seconds for the TP.

Linux:

On Linux, the TP configuration can be defined using a utility command, snatpinstall. The
command syntax is as follows:

snatpinstall -a rust_tp.tps

You can query the TP definitions for the Linux system by issuing:

snatpinstall -q

The rust_tp.tps file on Linux will have these parameters:

[RUST_TP]
PATH=/usr/local/bin/rust_tp
ENV=APPCTPN=RUST_TP
USERID=bin
GROUP=sna
TIMEOUT=60
TYPE=QUEUED

Windows:

On Windows, the TP configuration can be defined using the utility tpinst32.exe. The
command would be

tpinst32 -a rust_tp.tps

To see the TP definitions for the Windows platform, issue:

tpinst32 -q

The rust_tp.tps file on Windows will should these parameters:

[RUST_TP]
PATH=C:\temp\rust_tp.exe
ENV=APPCTPN=RUST_TP
TIMEOUT=60
TYPE=QUEUED
SHOW=NORMAL
SECURITY_TYPE=APPLICATION
USERID=ADMINISTRATOR

Where the USERID must be set to the User who would have permissions to
send/recelve SNA CPI-C messages. The TIMEOUT can be 1 to 65535 seconds, or -1 to
mean no timeout. A value of 60 means that after the rust_tp issues a CMACCP() call to
accept an Allocate message from a partner LU, the Remote API client will wait 60
seconds before timing out of no Allocate message is received for the TP. The PATH
variable must point to the path where the RUST_TP executable resides. The
SECURITY_TYPE must be APPLICATION for the rust_tp program.

For transaction programs on Windows receiving Allocate messages, the Remote API
client requires that variable APPCTPN be defined in a TP name record under the SNA
client section in the Windows Registry. To do this, use the following script to define the
TP name in the Windows Registry entry for the configuration parameter for the SNA
client:

REM
REM Set the TP executable name (without the .exe) as a key parameter and
APPCTPN to RUST_TP as a sub-key
REM
reg add "HKLM\SOFTWARE\SNA Client\SxClient\Parameters\rust_tp"
REM
reg add "HKLM\SOFTWARE\SNA Client\SxClient\Parameters\rust_tp" /v APPCTPN
/t REG_SZ /f /d RUST_TP

With the “rust_tp” key word defined as a TP program name to the Remote API client
and in the Windows Registry, the program will now be invoked when incoming Allocate
messages are received for that TP.

3.1 RUST Cargo files

The Cargo directory for the rust_tp build package is provided as an example of writing a
Transaction Program. RUST uses a build utility, cargo, to compile and link the
application to Rust and C libraries. The example packages provided contain the cargo
directory for “rust_tp”. There is a build script that shows how to define the require
environment variables and parameters to build the rustaping program. There is a “src”
directory with 2 source files.
All RUST programs require a main.rs file for an executable program. The cpic.rs file is
the CPI-C include file that defines the API calls.

Package files:
 rust_tp/
 build_rust_tp_cmd (build_rust_tp.bat on Windows)
 src/
 cpic.rs
 main.rs

To build the rust_tp program, run the build script provided. For rust_tp, the default build
script will create a release version under a “target/release” directory. To build a debug,
version, change the “cargo build --release” command in the build script to “cargo build –
verbose”. The release build will create a “target/debug” directory where the rust_tp
program (rust_tp.exe on Windows) will be found. You must copy the rust_tp.exe to the
file path specified in the RUST_TP definition set using the tpinst32.exe utiltity.

4 CPI-C declaration for RUST in cpic.rs

RUST includes modules similar to how C includes header files. The statement in RUST
to include CPI-C declarations is:

mod cpic;

This statement should be one of the first statements in the main.rs file used for RUST.
The cpic.rs file would reside in the src directory under the name of the program,
rustaping, or rust_tp.

The cpic.rs file contains the definitions for the CPI-C interface return codes, session
states, and C function routines found in the libcpic.so file. The APPC, NOF and sna_r
(multi-threaded SNA routines) library files that are required to complete CPI-C calls.
The CPI-C interface is a higher level interface that calls APPC verbs underneath. The
libraries are listed in the cpic.rs file in this manner, where the name will be prefixed by
“lib” and appended with “.so” to list the dynamically loaded library file (libcpic.so for
instance):

#[link(name = "cpic")]
#[link(name = "appc")]
#[link(name = "nof")]
#[link(name = "sna_r")]

The RUST application links the C libraries at build time using the RUSTFLAGS keyword
to pass the link option to the compiler. It is important to build the product with the
following exported environment variables that define to the executable where the
dynamically loadable libraries reside:

Linux:

export LD_LIBRARY_PATH=/opt/ibm/sna/lib64:/usr/lib64
export LD_RUN_PATH=/opt/ibm/sna/lib64:/usr/lib64
RUSTFLAGS='-L /opt/ibm/sna/lib64' cargo build --release

Windows:

set LIB=C:\ibmcs\W64CLI\sdk64

When invoking the “cargo build” command to build the Rust executable, the “--release”
option is needed to build a non-debug version of the application. If this parameter is
omitted, then a debug version of the executable is built in the target/debug directory.
The release version will be located in the directory target/release.

5 Conclusion

CPI-C is a standard API for issuing transactions over SNA for large database
applications. Critical business applications like IBM CICS and IMS use CPI-C APIs to
guarantee transactions at a high rates. There are still many legacy COBAL applications
running on the mainframe that use CPI-C APIs as a means for performing transactions.

Rust is a powerful abstract language with security and performance built into the design
of the code. Strong type definitions, strict rules for memory management , and
increasing deployment of platform integration make Rust very attractive to developers
today.

The examples provided in this package are to help a Rust developer use the legacy API
for SNA transactions that come with the distributed Communications Server products.
CPI-C is a standard API for making development across platforms simpler. Rust already
has cross platform implementations with many operating system compatible Cargo
packages.

References:

Library for the Communications Server for Data Center Deployment on Linux:

https://www.ibm.com/support/pages/communications-server-data-center-deployment-linux-library

Good resources on Rust:

Chapter 23: Foreign Functions – Programming Rust, 2nd Edition

https://www.oreilly.com/library/view/programming-rust-2nd/9781492052586/

