

Readme File for IBM® Spectrum Symphony RFE 97838

Readme file for: IBM® Spectrum Symphony
Product/Component Release: 7.1.2
Fix ID: sym-7.1.2-build450098-jpmc
Publication date: Nov 22, 2017

This enhancement provides three authentication APIs that enable you to implement your own
authentication logic and build a custom plug-in for authentication in a cluster where both IBM
Spectrum Symphony 7.1.2 and IBM Spectrum Conductor with Spark 2.2.0 are installed.

Readme File for RFE 97838

2

Scope .. 3
Installation .. 3

Prerequisites .. 3
Packages... 3
Developing, building and installing the custom plug-in .. 3
Uninstalling the plug-in ... 6

Configuration and usage ... 6
Configuring the authentication plug-in on management hosts ... 6
Configuring the authentication plug-in on compute and client hosts .. 7
Verifying authentication through the sample plug-in ... 7
Verifying authentication through the custom plug-in ... 9

Troubleshooting ... 9
Copyright and trademark information .. 9

Readme File for RFE 97838

3

Scope

Before you install this update to your cluster, note the following requirements:

Applicability

Operating system RHEL 6.7 or higher 64-bit

Product versions IBM Spectrum Symphony 7.1.2 and IBM Spectrum Conductor with
Spark 2.2.0

Installation

Follow the instructions in this section to download and install this enhancement on Linux hosts in your
cluster.

Prerequisites

IBM Spectrum Symphony 7.1.2 and IBM Spectrum Conductor with Spark 2.2.0 must be installed in your
cluster.

Packages

Name Description

sym-7.1.2.0_x86_64_cws-

2.2.0.0_x86_64_build450098-

sample.tar.gz

Package containing the sample plug-in. It's ready to

install for demo purpose.

sym-7.1.2.0_x86_64_cws-

2.2.0.0_x86_64_build450098.tar.gz

Package containing the source code(.c), the header

source file (.h), the Makefile, and the library (.a) for

building a custom plug-in.

Readme_build450098.pdf Readme file.

Developing, building and installing the custom plug-in

To implement your own logic for authentication to the cluster, build a custom plug-in with your own
authentication logic. You must first implement the three authentication APIs provided by this enhancement,
then build the custom plug-in.

Custom plug-in development

API description

The following table provides description for the three APIs exposed for customization:

API Input Output Return Value Additional Notes

int

customized_initialize()

N/A N/A Initialization result. Valid values

are SECE_OK and SECE_FAIL.

User can parse the

plug-in’s

Readme File for RFE 97838

4

If initialization succeeds, return

SECE_OK; otherwise, return

SECE_FAIL.

configuration file

inside this API;

they can define

the parameter

configuration

format. They can

also do other

initialization

related to their

authentication.

Note: The sample

will give a method

for parsing the

parameter

configured with

format

“key=value”

int customized_auth(

char *username,

char *password)

username

and

password

N/A Authentication result. Valid values are
AUTH_PASS,
AUTH_ERROR,and

AUTH_CONTINUE_DEFAULT

. If authentication succeeds, return

AUTH_PASS; if authentication

fails, return AUTH_ERROR; if

continue to do authentication

against EGO database, return

AUTH_CONTINUE_DEFAULT.

With this API,

user can

implement their

own logic to

authenticate the

passed-in

username and

password.

int

customized_finalize()

N/A N/A Finalization result. Valid values are

SECE_OK and SECE_FAIL. If

the finalization succeeds, return

SECE_OK; otherwise, return

SECE_FAIL.

With this API,

user can do their

own finalization

logic before server

exits. For

example: free

memory.

The outside logic

will not take any

action except log a

message if this

step fails.

Building the custom plug-in

a. Copy the sym-7.1.2.0_x86_64_cws-2.2.0.0_x86_64_build450098.tar.gz file to

your build host and decompress the package to a directory, which is hereafter referred to as
the “extract directory”.

You should see the following files and folders in the extract directory:

• sec_ego_ext_plugin.a: Static library used for building the custom plug-in.

• sec.h: Header file to be included by the customized source code file.

• sample/sec_customize_auth.c: Sample source code file.

Readme File for RFE 97838

5

• sample/Makefile: Sample make file.

b. Place the customized source code file and make file in the extract directory and build the
custom plug-in.

The following steps how to build sample plug-in; use these steps as a reference to build your
custom plug-in:

• Copy the sample source code file and sample make file from the subdirectory
“sample/” to the extract directory.

• Edit the Makefile in the extract directory and set the GCC value to the full path of your
GCC. For example:

Define the value of GCC to your own gcc full path, use

GCC4.8.2

GCC=/usr/bin/gcc

• In the extract directory, run the “make” command to build the plug-in:

make

You have now built the plug-in, named sec_ego_ext_custom.so.

c. Ensure that file ownership for sec_ego_ext_custom.so is set to the cluster administrator

account and file permissions are set to 644.

Installing the custom plug-in

a. Log on to the master host as the cluster administrator, disable Symphony applications, and
shut down the cluster:

$ soamcontrol app disable all

$ egosh service stop all

$ egosh ego shutdown all

b. Log on to all management hosts as the cluster administrator and copy the custom plug-in
that you built previously (sec_ego_ext_custom.so) to the $EGO_LIBDIR directory.

c. Configure the custom plug-in as the authentication plug-in for your cluster as described in
the “Configuration and usage” section.

d. Start your cluster and enable Symphony applications:

$ egosh ego start all

$ soamcontrol app enable <appName>

Installing the sample plug-in

This enhancement provides a sample plug-in that is built with sample authentication logic. This sample
plug-in demonstrates usage of the three authentication APIs and can be used for testing purposes.

Description for the authentication logic in the sample plug-in:
The authentication will always succeed for the user that has been defined as “pass” in the configuration
file customauth.conf(see “Configuration and usage” section):

The authentication will always fail for the user that has been defined as “fail”;
The authentication will continue with EGO authentication for the user that wasn’t defined or defined with
another value in the configuration file.

Follow these steps to install the sample plug-in that you can use for authentication to your cluster:

a. Log on to the master host as the cluster administrator, disable Symphony applications, and

Readme File for RFE 97838

6

shut down the cluster:

$ soamcontrol app disable all

$ egosh service stop all

$ egosh ego shutdown all

b. Copy the sym-7.1.2.0_x86_64_cws-2.2.0.0_x86_64_build450098-

sample.tar.gz file to the $EGO_TOP directory on all management hosts, and decompress

the package.

c. Configure the sample plug-in as the authentication plug-in for your cluster as described in
the “Configuration and usage” section.

d. Start your cluster and enable Symphony applications:

$ egosh ego start all

$ soamcontrol app enable <appName>

Uninstalling the plug-in

If required, follow these steps to remove the custom or sample plug-in as the authentication plug-in for
your cluster:

1. Log on to the master host as the cluster administrator, disable Symphony applications, and shut down
the cluster:

$ soamcontrol app disable all

$ egosh service stop all

$ egosh ego shutdown all

2. On all hosts, recover the ego.conf file that you previously backed up in the “Configuration and

usage” section.

3. Start your cluster and enable Symphony applications:

$ egosh ego start all

$ soamcontrol app enable <appName>

Configuration and usage

Configuring the authentication plug-in on management hosts

1. On each management host, back up the $EGO_CONFDIR/ego.conf file.

2. Edit the following parameters in the $EGO_CONFDIR/ego.conf file:

• EGO_SEC_PLUGIN: Specify the name of the authentication plug-in (sec_ego_ext_custom):

EGO_SEC_PLUGIN=sec_ego_ext_custom

• EGO_SEC_CONF: Specify the plug-in configuration in the format

"path_to_plugin_conf_dir,created_ttl,plugin_log_level,path_to_plugin_lo

g_dir", where:

o path_to_plugin_conf_dir(required): Specifies the absolute path to $EGO_CONFDIR,

where the plug-in configuration file is located. See step 2 for details on creating the
configuration file.

o created_ttl(optional): Specifies a time-to-live duration for the authentication token

Readme File for RFE 97838

7

sent from the client to the server. Valid values are 0 or empty (indicating that the default
value of 10 hours must be used).

o plugin_log_level(optional): Specifies the log level for the plug-in. Valid values are

DEBUG, INFO, WARN, and ERROR. As a best practice, set the log level as ERROR or
WARN. A lower level causes too many messages to be logged, making it harder to
troubleshoot if required.

o path_to_plugin_log_dir(optional): Specifies the absolute path to the directory

where the plug-in's logs are located.

For example:

EGO_SEC_CONF=”/opt/egoshare/kernel/conf,0,ERROR,/opt/cluster/MH/kernel/

log”

3. Define a new configuration file for the plug-in, create the file under $EGO_CONFDIR on all

management hosts and configure its parameters.

For example, it’s required to finish the step below for the sample plug-in.
Create the customauth.conf file under $EGO_CONFDIR and configure users in the file, for example,

define two test users to demonstrate the enhancement via the sample plug-in as follows:
test_user1=pass

test_user2=fail

We will use the these test users in the “Verifying authentication through the sample plug-in”
section”.

Configuring the authentication plug-in on compute and client hosts

1. Back up the ego.conf file, which is located on all compute hosts at $EGO_CONFDIR and on all client

hosts at $SOAM_HOME/conf/.

2. Modify the EGO_SEC_PLUGIN parameter in the $EGO_CONFDIR/ego.conf file on all compute hosts

or $SOAM_HOME/conf/ego.conf file on all client hosts as follows:

EGO_SEC_PLUGIN=sec_ego_ext_co

Verifying authentication through the sample plug-in

If you used the sample plug-in, follow these steps to verify authentication to your cluster assuming the
test_user1 and test_user2 are defined in $EGO_CONFDIR/customauth.conf:

1. Log on to the cluster as the “Admin” cluster administrator. For example:

$ egosh user logon -u Admin -x Admin

Logged on successfully

2. Add three test users to the EGO database and assign the “CLUSTER_READONLY_ADMIN” role for
these users. For example:

$ egosh user add -u test_user1 -x 1

 User account <test_user1> added successfully

$ egosh user add -u test_user2 -x 2

 User account <test_user2> added successfully

$ egosh user add -u test_user3 -x 3

 User account <test_user3> added successfully

Readme File for RFE 97838

8

$ egosh user assignrole -u test_user1 -r CLUSTER_READONLY_ADMIN

 Role <Cluster Admin (Read only)> is assigned to user <test_user1>.

$ egosh user assignrole -u test_user2 -r CLUSTER_READONLY_ADMIN

 Role <Cluster Admin (Read only)> is assigned to user <test_user2>.

$ egosh user assignrole -u test_user3 -r CLUSTER_READONLY_ADMIN

 Role <Cluster Admin (Read only)> is assigned to user <test_user3>.

3. Log on as user “test_user1” with any password, then run some commands to verify. For example:

$ egosh user logon -u test_user1 -x randompass

 Logged on successfully

$ egosh rg

$ soamview app

Authentication must succeed.

4. Log on as user “test_user2” with any password. For example:

$ egosh user logon -u test_user2 -x 2

 Cannot logon. Authentication failed.

Authentication must fail.

Find the ERROR log in the plug-in’s server log ego_ext_plugin_server.log in the folder

specified by the EGO_SEC_CONF parameter. For example:

Thu Apr 13 16:32:46 2017 ERROR [1083608] server_start(): The

customized_auth() function returns AUTH_ERROR. Check the custom

authentication log for detailed reason.

Thu Apr 13 16:32:46 2017 ERROR [1083608] server_start(): Auth failed,

**out=F

5. Log on as user “test_user3” with its password “3”, authentication must succeed. With any other
password, authentication must fail. For example:

$ egosh user logon -u test_user3 -x 3

 Logged on successfully

$ egosh user logon -u test_user3 -x reandompass

 Cannot logon. Authentication failed.

Find messages in the plug-in’s server log ego_ext_plugin_server.log (DEBUG level

configured). For example:

Thu Apr 13 17:36:13 2017 DEBUG [1137064] customized_auth(): Did not find

user test_user3 in the customauth.conf file, will continue with EGO

authentication.

Thu Apr 13 17:36:13 2017 DEBUG [1137064] server_start(): Continue

authentication against EGO database.

Thu Apr 13 17:36:13 2017 DEBUG [1137064] checkUserPasswordDefault():

entering...

Thu Apr 13 17:36:13 2017 DEBUG [1137064] the directory is:

/opt/xjli/cluster/MH/kernel/conf/users.xml

Thu Apr 13 17:36:13 2017 ERROR [1137064] server_start(): Auth failed,

Readme File for RFE 97838

9

**out=F

6. Log on as EGO default users (for example: “Admin” and “Guest”) from the cluster management
console or the command line. Authentication must work as before.

NOTE: Before logging in to the cluster management console, clear the browser cache.

Verifying authentication through the custom plug-in

If you used the custom plug-in, follow these steps to verify authentication to your cluster:

1. Log on to the cluster as the “Admin” cluster administrator. For example:

$ egosh user logon -u Admin -x Admin

2. Add the users that must be authenticated with the custom logic to the EGO database (from the GUI or
from the command line using the “egosh user add” command),and assign “CONSUMER_ADMIN” role
for the user. For example:

$ egosh user add -u test_user_abc -x pswdabc123

$ egosh user assignrole -u test_user_abc -r CONSUMER_ADMIN -p /

NOTE: If the user won’t be authenticated against the EGO database, you can use any random string
as the password.

3. Test access for the users by logging in to the cluster as those users from the cluster management
console or the command line.

Troubleshooting

If you encounter authentication issues, check the logs for errors. All authentication errors are logged to
the plug-in’s server log ego_ext_plugin_server.log in the log directory, which is specified by the

EGO_SEC_CONF parameter in the $EGO_CONFDIR/ego.conf on management hosts.

If configuration errors or the plug-in’s own issue cause the server to not load the plug-in successfully, look
for ERROR logs in the authentication server logs (such as the VEMKD logs).

For example, when the plug-in file does not exist under $EGO_LIBDIR, the cluster cannot start

successfully and ERROR messages in the VEMKD log:

2017-04-13 17:00:01.000 CST ERROR [746373:139724319766304] secinit: dlerror():

/opt/xjli/cluster/MH/3.5/linux-x86_64/lib/sec_ego_ext_custom.so: cannot open

shared object file: No such file or directory.

2017-04-13 17:00:01.000 CST ERROR [746373:139724319766304] secinit: failed to

initialize security module.

Copyright and trademark information

© Copyright IBM Corporation 2017

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

IBM®, the IBM logo and ibm.com® are trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark
information" at www.ibm.com/legal/copytrade.shtml.

http://www.ibm.com/legal/copytrade.shtml

