
Page 1 of 17

IBM Platform Symphony RFC4501 Readme File
About the “Support for Python v2.7.2”
This package contains the Symphony Standard Python Client API support, which enables the Python
application to leverage the Symphony Python API to write Python clients to access C++ services. It also
conatins examples that demonstrate the API usage.
The package also includes python wrapper features, which enable Python application code to run task
functions on either the local side or the Symphony service side.

Readme file for: IBM® Platform Symphony
Product/Component Release: Symphony 6.1.1
Update Name: Support for Python v2.7.2
Fix ID: sym-6.1.1-build-231678-pimco
Publication date: 8 Apr 2014
Last modified date: 4 May 2014

Page 2 of 17

1 Scope..2
2 Configuration to enable Symphony Python wrapper support.. 3
2.1 Prerequisites.. 3
2.2 Installation files.. 3
2.3 Installation procedure..4
2.4 Configuration procedure...5
2.5 Verification procedure...9
Run basic workload pattern..9
Run parent/child job pattern...10

3 Configuration to enable Symphony Python Client API...10
3.1 Prerequisites.. 10
3.2 Installation files.. 10
3.3 Installation procedure... 11
3.4 Configuration procedure...11
3.5 Verification procedure...12
Run SampleApp example...12
Run CrossLanguage example... 14
Run SharingData example... 14

3.6 Review cross language message class...15
4 Usage... 15
4.1 How this feature works...15
4.2 Libraries.. 16
4.3 Environment variables..16
4.4 User interface...16
4.5 Examples..16
Note..16

5 Troubleshooting.. 17
5.1 Log files...17

6 Copyright and trademark information..18

1 Scope
Applicability

Operating system Linux2.6-glibc2.3-x86_64

Python version 2.7.2 64 bit

Symphony version 6.1.1

Cluster types This feature applies to a single grid cluster or DE.

Other This feature applies to SOAM.

Dependencies

File system This feature has no requirement on the file system type.

<Other> Python 2.7.2 64 bit version must be installed on the client host and all

Page 3 of 17

compute hosts.

Limitations

<Limitation> a. The Python wrapper is not thread-safe. The user must ensure the
methods of a Client object are called in a single thread.

b. On the service side, stdout and stdin data files are used to exchange
data in a special format. An echo message to stdout will break the
protocol.

Known Issues N/A

2 Configuration to enable Symphony Python wrapper
support

2.1 Prerequisites
Python 2.7.2 64-bit version must be installed on the client host and all compute hosts.

2.2 Installation files
This package includes the following files:

File name Description

grid/client.py Client wrapper to make task functions run on
the local side or to submit tasks to make the
task functions run on the service side

grid/dataobjects.py Internal module that enables the transfer of
task function-related information between the
Symphony client and service

grid/functionrunner.py Internal module for running task functions

grid/__init__.py Internal module for the grid package on the
client side

grid/interface/soamapi.pyc Internal module for supporting the submission
of task functions from the client side and
running task functions on the service side

grid/interface/SoamFactory.so Internal library for supporting the submission of
task functions from the client side and running
task functions on the service side

grid/cshrc.python; grid/profile.python Shell file for setting the PYTHONPATH on the
client side

Page 4 of 17

File name Description

grid/PythonApp.xml Application profile for this wrapper

grid/PythonApp-1.xml Application profile for this wrapper for
demonstrating the parent/child job pattern

grid/service/__init__.py Internal module for the grid package on the
service side

grid/service/pythonwrapperservice.py
grid/service/invokeservice.py

Service wrapper for running task functions on
the service side

grid/service/servicerunner.py Internal module for running task functions on
the service side

grid/service/makepackage.sh Shell file for automatically deploying the service
package to the Symphony grid

grid/service/makepackage-1.sh Shell file for automatically deploying the service
package to the Symphony grid for
demonstrating the parent/child job pattern

grid/docs/client.html Client module API reference

grid/samples/test_map_apply.py Sample module demonstrating how to use the
Client.map_apply method

grid/samples/test_imap_apply.py Sample module demonstrating how to use the
Client.imap_apply method

grid/samples/test_apply.py Sample module demonstrating how to use the
Client.apply method

grid/samples/test_parent_child_job.py Sample module demonstrating how to create
parent/child job pattern

grid/samples/test_config_dict_attrs.py Sample module demonstrating how to use the
new config_dict attributes introduced in drop 2

2.3 Installation procedure
1. Download the sympython-lnx26-lib23-x64-6.1.1.tar.gz package from the Platform web

site.
2. Uncompress the package: sympython-lnx26-lib23-x64-6.1.1.tar.gz

tar xzvf sympython-lnx26-lib23-x64-6.1.1.tar.gz

2.4 Configuration procedure

Page 5 of 17

Configuration source Setting Behavior

Edit cshrc.python and
profile.python

Replace the
“@GRID_DIR_LOCATION@” with
the absolute path where the grid dir
is located.
For example, if the installation
package is extracted to /opt/,replace
the “@GRID_DIR_LOCATION@”
with “/opt”.

After sourcing the shell file in the
client, PYTHONPATH will point to
the directory where the grid directory
is located.

PythonApp.xml If you want to change the name of
the application, change the
applicationName attribute in the
Consumer section to your desired
name. The current
applicationName is “PythonApp”.

After registering this profile, the
application with this name will be
registered.

Change the SessionTypes
settings, including the names of the
session types and the detailed
configuration of the session types,
by configuring the settings in PMC or
by editing the application profile
manually.

To configure the settings in PMC:

1. Log on to the PMC.
2. Go to Symphony Workload >

Configure Applications >
PythonApp > Session Type
Definition.

3. Complete your desired
configuration in the “Session
Type Definition” region.

4. Click the Save button in the
lower left corner to make your
configuration take effect.

To configure the settings manually:

1. Open the application profile.
2. Edit the SessionTypes

section and complete your
desired configuration.

3. soamreg the application profile
to make your configuration take
effect.

Note: If the names of session types
are customized, remember to adjust
your
config_dict[‘session_type’]
setting for the client wrapper on the
client side. Otherwise, if the
config_dict[‘session_type’]
does not match any session type
name configured in the application
profile, the client wrapper cannot
submit the tasks to the Symphony
grid.

Page 6 of 17

Configuration source Setting Behavior

If Python is not installed in
/usr/local/bin/, change the
value of env "PATH" in Service-
>osTypes->osType to where the
python is installed on the compute
hosts..
The current value of env “PATH” is
"/usr/local/bin/"
For example, if Python is installed
under /home/dev/, change the
value of env "PATH" to
"/home/dev/"

To configure the setting in PMC:

1. Log on to the PMC.
2. Go to Symphony Workload >

Configure Applications >
PythonApp > Service
Definition > Operating System
Definition > Environment
Variables.

3. Complete your desired
configuration in the
“Environment Variables” region.

4. Click the Save button in the
lower left corner to make your
configuration take effect.

To configure the settings manually:

1. Open the application profile.
2. Edit the Service > osTypes

> osType > env section and
complete your desired
configuration.

3. soamreg the application profile
to make your configuration take
effect.

After registering this profile, the new
env “PATH” will take effect.
Note: The env “PATH” must be
correctly set to point to the location
where Python is installed. Otherwise,
the service wrapper will not work.

Page 7 of 17

Configuration source Setting Behavior

If you changed the Consumer >
applicationName, remember to
adjust the Service > osTypes >
osType > fileNamePattern
accordingly.
Otherwise, the PMC cannot retrieve
the logs generated by the service
wrapper.
The current fileNamePattern is
“PythonApp_".
For example, if you change
applicationName to
“MyPythonApp”, adjust the
fileNamePattern to
“MyPythonApp_”

To configure the setting in PMC:

1. Log on to the PMC.
2. Go to Symphony Workload >

Configure Applications >
PythonApp > Service
Definition > Operating System
Definition > Logging > Log file
naming convention (if used).

3. Complete your desired
configuration in the “Log file
naming convention (if used)” text
box.

4. Click the Save button in the
lower left corner to make your
configuration take effect.

To configure the settings manually:

1. Open the application profile
2. Edit the Service > osTypes

> osType >
fileNamePattern attribute
and complete your desired
configuration.

3. soamreg the application profile
to make your configuration take
effect.

After registering this profile, the new
fileNamePattern of the Service will
take effect. PMC will retrieve the
service wrapper log files with the
new file name pattern.

Parent-Child Configuration Best Practices
By default, both the parent application and the child application consume resources from the same
resource group. Once a parent task is running, it occupies a resource until all of its child tasks are
complete. This dependency on the child workload means that the application is blocked from making
progress until there is at least one resource available to run child tasks. If the child tasks require
resources and its resources are lent out, the resources will be reclaimed with the configured grace period

Page 8 of 17

according to the resource plan. If the reclaim grace period is lengthy, the application might be blocked for
a long time. To mitigate potential blockage, it is recommended to apply one of the following best practices:

o Assign some slots to be owned by the child consumer that are not to be lent to other consumers.
o Create separate resource groups for parent workload and child workload so the parent and child

never directly compete for resources.

2.5 Verification procedure

Run a basic workload pattern

1. Set up a cluster with only one host and source the $EGO_TOP/cshrc.platform in the cluster.
2. Go to the grid directory.

cd grid
3. Edit cshrc.python or profile.python to replace the “@GRID_DIR_LOCATION@” with the

absolute path where the grid directory is located.
4. Source cshrc.python or profile.python.
5. Create the consumer "/PythonApp" in the PMC.
6. Go to the service directory and deploy the service package:

a) cd service
b) ./makepackage.sh

7. Register the application:
soamreg ../PythonApp.xml

8. Run the sample test_map_apply.py to test:
/usr/local/bin/python ../samples/test_map_apply.py
The sample will display the following messages:

===
2011-04-26 20:38:13,726 - PythonWrapperClientLogger - INFO - Connected to
application <PythonApp> connection ID <f9b9ce0a-522f-102e-c000-00123f2ac241-
1105209696-17210>
2011-04-26 20:38:13,741 - PythonWrapperClientLogger - INFO - Created session
with ID <4837>
2011-04-26 20:38:13,765 - PythonWrapperClientLogger - INFO - Done sending <1>
tasks with named_args <{'key': 'value'}>
2011-04-26 20:38:13,766 - PythonWrapperClientLogger - INFO - Fetching task
results ...
Task details:
* task_id < 1 >
* func_name < my_func >
* args < 1 >
* value < 1 >
* task_stats['node'] < devlinux13 >
* task_stats['task_id'] < 1 >
* task_stats['run_time'] < 6.91413879395e-06 >
* exception < None >
* stack_trace < None >
2011-04-26 20:38:15,480 - PythonWrapperClientLogger - INFO - Done fetching
task results ...
2011-04-26 20:38:15,492 - PythonWrapperClientLogger - INFO - Session closed.
2011-04-26 20:38:15,499 - PythonWrapperClientLogger - INFO - Connection
closed.
...

Page 9 of 17

Run a parent/child job pattern
This sample demonstrates how to create a parent/child job. It creates two consumers (“/PythonApp “ and
“/PythonApp-1”) and registers two applications (“PythonApp” and “PythonApp-1”) under the two
consumers separately.

Step 1, 2, 3, 4 are the same as in section 3.5.1.

6. Create the consumer "/PythonApp" and "/PythonApp-1" in the PMC.
7. Go to the service directory and deploy the service packages for the two consumers:

cd service
./makepackage.sh
./makepackage-1.sh

8. Register the two applications:
soamreg ../PythonApp.xml
soamreg ../PythonApp-1.xml

9. Run the sample test_map_apply.py to test:
/usr/local/bin/python ../samples/test_parent_child_job.py
The sample will display the following messages:

===
2011-07-26 11:14:48,270 - PythonWrapperClientLogger - INFO - Connected to
application <PythonApp> connection ID <57ceb828-9963-102e-c000-00123f2ac241-
1105209696-14068>
2011-07-26 11:14:48,273 - PythonWrapperClientLogger - INFO - Created session
with ID <38507>
2011-07-26 11:14:48,275 - PythonWrapperClientLogger - INFO - Done sending <2>
tasks with named_args <{'key': 'value'}>
2011-07-26 11:14:48,276 - PythonWrapperClientLogger - INFO - Fetching task
results ...
2011-07-26 11:14:55,644 - PythonWrapperClientLogger - INFO - Done fetching
task results ...
2011-07-26 11:14:55,647 - PythonWrapperClientLogger - INFO - Session closed.
2011-07-26 11:14:55,648 - PythonWrapperClientLogger - INFO - Connection
closed.
The final task calculation result value: < 20 >

3 Configuration to enable the Symphony Python Client API

3.1 Prerequisites
1. Python 2.7.2 64-bit version must be installed on the client host and all compute hosts.
2. Symphony DE must be installed to run the Cross Language example application. The application
requires the C++ sample service in DE.

3.2 Installation files
This package added the following directories based on the Python wrapper package:

File name Description

Page 10 of 17

grid/samples/SampleApp Sample module demonstrating how to create
and run applications with the Symphony
standard Python API

grid/samples/CrossLanguage Sample module demonstrating how to create
and run applications that the client and service
developed with different language

grid/samples/SharingData Sample module demonstrating how to create
and run applications that have common data to
share

3.3 Installation procedure
1. Download the sympython-lnx26-lib23-x64-6.1.1.tar.gz package from the Platform web

site.
2. Uncompress the sympython-lnx26-lib23-x64-6.1.1.tar.gz package and grid/ directory will

be extracted.
tar xzvf sympython-lnx26-lib23-x64-6.1.1.tar.gz

3.4 Configuration procedure

Configuration source Setting Behavior

Edit cshrc.python and
profile.python

Replace the
“@GRID_DIR_LOCATION@” with
the absolute path where the grid
directory is located.
For example, if the installation
package is extracted to /opt/,replace
the “@GRID_DIR_LOCATION@”
with “/opt”.

After sourcing the shell file in the
client, PYTHONPATH will point to
the directory where the grid directory
is located.

3.5 Verification procedure

Run SampleApp example

1. Source the Symphony cluster profile:
source $EGO_TOP/cshrc.platform

2. Go to the grid directory:
cd grid

3. Edit cshrc.python or profile.python to replace the “@GRID_DIR_LOCATION@” with the
absolute path where the grid directory is located.

4. Go to the SampleApp example directory:
cd samples/SampleApp

5. Source cshrc.sampleapp or profile.sampleapp.

Page 11 of 17

6. Create the consumer "/SampleAppPython" in the PMC.
7. Go to the service directory and deploy the service package:

cd Service
./makepackage.sh

8. Register the application:
soamreg ../SampleAppPython.xml

9. Run the synchronize sample client:
cd ../SyncClient
python SyncClient.py

The sample will display the following messages:

===
[root@vvm SyncClient]# python SyncClient.py
Connected to application: SampleAppPython , Connection ID: 6b71c0bc-0918-
102f-c000-080027ece28d-1118312768-3600
Created session: 5
Sent task: 1
Sent task: 2
Sent task: 3
Sent task: 4
Sent task: 5
Sent task: 6
Sent task: 7
Sent task: 8
Sent task: 9
Sent task: 10
Task Succeeded [2]
Integer Value : 1
you sent : Hello Grid !!
we replied : Hello Client !!
>>> Synchronously.

Task Succeeded [1]
Integer Value : 0
you sent : Hello Grid !!
we replied : Hello Client !!
>>> Synchronously.

Task Succeeded [3]
Integer Value : 2
you sent : Hello Grid !!
we replied : Hello Client !!
>>> Synchronously.

Task Succeeded [4]
Integer Value : 3
you sent : Hello Grid !!
we replied : Hello Client !!
>>> Synchronously.

Task Succeeded [6]
Integer Value : 5
you sent : Hello Grid !!
we replied : Hello Client !!
>>> Synchronously.

Page 12 of 17

Task Succeeded [5]
Integer Value : 4
you sent : Hello Grid !!
we replied : Hello Client !!
>>> Synchronously.

Task Succeeded [7]
Integer Value : 6
you sent : Hello Grid !!
we replied : Hello Client !!
>>> Synchronously.

Task Succeeded [8]
Integer Value : 7
you sent : Hello Grid !!
we replied : Hello Client !!
>>> Synchronously.

Task Succeeded [9]
Integer Value : 8
you sent : Hello Grid !!
we replied : Hello Client !!
>>> Synchronously.

Task Succeeded [10]
Integer Value : 9
you sent : Hello Grid !!
we replied : Hello Client !!
>>> Synchronously.

Closing session
Closing connection
All done!!!

10. Run the asynchronize sample client:
cd ../AsyncClient
python AsyncClient.py

Run CrossLanguage example

1. Build the C++ service in DE and deploy to the cluster.
a) Source the Symphony DE environment:

cd /opt/symphonyDE/DE611
source conf/cshrc.symclient

b) Compile the Symphony DE C++ cross language sample:
cd 6.1.1/samples/CrossLanguage/CPP
make

c) Create the consumer "/CrossLanguage" in the cluster:
d) Deploy the C++ service to the cluster:

cd Output/
tar czvf CrossLanguageServiceCPP.tar.gz CrossLanguageServiceCPP
source $EGO_TOP/cshrc.platform (the cluster environment)
soamdeploy add CrossLanguageServiceCPP -p

CrossLanguageServiceCPP.tar.gz -c CrossLanguage
e) Register the C++ application service:

Page 13 of 17

cd ../..
soamreg CrossLanguageCpp.xml

2. Run the Python client to invoke the C++ service.
a) Go to the grid directory:

cd grid
b) Edit cshrc.python or profile.python to replace the “@GRID_DIR_LOCATION@” with

the absolute path where the grid dir is located.
c) Go to the CrossLanguage example directory:

cd samples/CrossLanguage
d) Source cshrc.crosslanguage or profile.crosslanguage.
e) Run the cross language Python client:

cd Client
python CrossLanguageClient.py

The Python client will invoke the C++ service.

Run SharingData example

1. Source the Symphony cluster profile:
source $EGO_TOP/cshrc.platform

2. Go to the grid directory:
cd grid

3. Edit cshrc.python or profile.python to replace the “@GRID_DIR_LOCATION@” with the
absolute path where the grid dir is located.

4. Go to the SharingData example directory:
cd samples/SharingData

5. Source cshrc.sharingdata or profile.sharingdata.
6. Create the consumer "/SharingDataPython" in the PMC.
7. Go to the service directory and deploy the service package:

cd Service
./makepackage.sh

8. Register the application:
soamreg ../SharingData.xml

9. Run the synchronize sample client:
cd ../Client
python SharingDataClient.py

10. Review the MyDataObjects.py at grid/samples/SharingData/Common, MyCommonData is
the common data to be sharing between tasks.

3.6 Review the cross language message class
1. Review the Python message class at:

grid/samples/CrossLanguage/Common/MyMessage.py
2. Revie the C++ message class at:

/opt/symphonyDE/DE611/6.1.1/samples/CrossLanguage/CPP/Common/MyMessage.
h and MyMessage.cpp
To pass the message from the Python client to the C++ service, the two message classes must have
the same members, methods, and serialize/deserialize implementations.

Page 14 of 17

4 Usage

4.1 How this feature works
This feature provides a client wrapper to run task functions on the local side (local mode) or to submit
task functions to the Symphony service side (remote mode). It also provides a service wrapper to run task
functions on the Symphony service side.

For local mode, task functions run locally in a sequential way (one by one). For remote mode, task
functions run remotely on the Symphony service side in parallel. When task functions are submitted, the
task functions and their input are transferred from the client side to the service side. When task function
execution finishes on the service side, the calculation output and the related task running information are
transferred from the service side back to the client side. On the service side, each service wrapper
process will spawn a new child process, which is responsible for the actual task function execution. This
occurs when the wrapper process starts for a new session. The wrapper process kills the child process
when it finishes serving the session. Spawning the child process will make the PYTHONPATH and
LD_LIBRARY_PATH sent from the client side take effect during the task function execution.

The Python wrapper now supports creating parent/child jobs. Client.map_apply() and Client.imap_apply()
are extended to accept an optional list of functions (specified as the argument ‘dependent_funcs’), which
the function pointed to by argument ‘func’ depends on, either directly or indirectly. The client calls
map_apply() or imap_apply() with a parent function as argument ‘func’ to generate parent tasks. Any
functions that the parent function depends on, including the child function, should be passed to
map_apply() or imap_apply() as argument ‘dependent_funcs’. Any functions that the child function
depends on should also be included in this list. When the session is created and tasks are sent, the child
function, and the dependent functions of the parent and child functions will be passed from the client side
to the service side together with the parent function. This way, the parent function can call its dependent
functions during its task function execution and the parent task function can also create child sessions,
send child tasks with the child function as argument ‘func’, and specify the child function’s dependent
functions as argument ‘dependent_funcs’ to pass them to the child service instance.

NOTE:
When a client wrapper connects to Symphony, both the user name and password for the connection are
“Guest”.

4.2 Libraries
SoamFactory.so is required by both the client wrapper and the service wrapper.

4.3 Environment variables
The environment variable PYTHONPATH and Symphony-related environment variables must be set
correctly to run the python wrapper. Before running the python wrapper, remember to
* source the cshrc.python or profile.python extracted from the installation package.
* source the $EGO_TOP/cshrc.platform in the Symphony installation directory, no matter if local mode or
remote mode will be used.

4.4 User interface
Refer to the wrapper API reference client.html located in the grid/docs/ directory.

Page 15 of 17

Refer to the standard Client API reference document:
sym_RFC3385_Standard_Python_Client_API_Reference.doc .

4.5 Examples
1. Uncompress the sympython-lnx26-lib23-x64-6.1.1.tar.gz package:

tar xzvf sympython-lnx26-lib23-x64-6.1.1.tar.gz

2. For further steps, refer to the “Verification procedure” section.

Note
1. The service wrapper must be deployed to the Symphony grid through the

grid/service/makepackage.sh. Otherwise, the service wrapper might not work as expected.
2. The service wrapper does not handle the service interrupt event that results from suspending the

session, killing the session, killing the task, and resource reclaim. In other words, the service wrapper
cannot actively react to these events (such as cleaning up resources in the service wrapper, etc.) as
soon as the event happens. Set the following *Period parameters in SessionTypes section of the
application profile accordingly to make sure these events will not be unexpectedly delayed.
* For suspending the session: suspendGracePeriod
* For killing the session or killing the task: taskCleanupPeriod
* For resource reclaim: reclaimGracePeriod
For details about these *Period parameters, refer to Knowledge Center > Symphony Reference >
Application Profile > SessionTypes section.

5 Troubleshooting

5.1 Log files
Both the client wrapper and the service wrapper have a logging mechanism that is implemented based on
the Python logging module.

 There are five logging levels: DEBUG, INFO, WARN, ERROR, and CRITICAL

 The client-side log file name and location depends on the setting to the argument debug_stdio of
the Client constructor.
For example, if debug_stdio of the Client constructor is set to “client.log”, the client.log will be
generated under the current working directory.
For details about how to set the argument debug_stdio, refer to the client module API reference in
grid/docs/client.html.

 Inside a client log file, log messages have the following format:
2011-04-17 20:31:15,837 – PythonWrapperClientLogger - DEBUG - ……
2011-04-17 20:31:15,837 – PythonWrapperClientLogger - INFO - ……
2011-04-17 20:31:15,837 – PythonWrapperClientLogger - ERROR - ……

 The service-side log files are generated under the working directory of the service wrapper process.
This working directory is determined by the value of the “workDir” attribute of Service-
>osTypes->osType section in the application profile. Currently, the “workDir” attribute is set to

Page 16 of 17

“$SOAM_HOME/work” in PythonApp.xml. For each service wrapper process, there will be two
service-side log files generated. Their names have the following format:
* AppName_ServicePID.log: generated by the service wrapper process.
* AppName_ServicePID_WorkerService.log: generated by the child process spawned by the service
wrapper process.

For example, a service wrapper process with process id 3456 in PythonApp application will generate
the following two log files:
* PythonApp_3456.log
* PythonApp_3456_WorkerService.log

All the service log files (including AppName_ServicePID.log and
AppName_ServicePID_WorkerService.log) have file rotation ability. Take PythonApp_3456.log as an
example: When it reaches 100 MB, it will be renamed to PythonApp_3456.log.1 and an empty
PythonApp_3456.log will be created and start to be written to. When PythonApp_3456.log reaches
100 MB again, the PythonApp_3456.log.1 will be renamed to PythonApp_3456.log.2, the
PythonApp_3456.log will be renamed to PythonApp_3456.log.1, and an empty PythonApp_3456.log
will be created and start to be written again. The PythonApp_3456.log is always the only file that is
being written to.

Currently, for each service log file, the service wrapper can create up to 10 backups. In other words,
the maximum suffix number of the log file name is 10. Take PythonApp_3456.log as an example: The
backup file name with the maximum suffix is PythonApp_3456.log.10. If PythonApp_3456.log.10
already exists and PythonApp_3456.log reaches 100 MB later, the renaming operation will happen
normally as above; the PythonApp_3456.log.10 will be cleared and filled with the previous content of
PythonApp_3456.log.9 and no file named “PythonApp_3456.log.11” will be created.

 For each service wrapper process, in addition to the AppName_ServicePID.log and
AppName_ServicePID_WorkerService.log, another file called
AppName_ServicePID_WorkerService.out is generated (for example,
PythonApp_3456_WorkerService.out.). The service wrapper process will redirect anything written to
stdout and stderr in the task function to the AppName_ServicePID_WorkerService.out file. This file
does not have file rotation ability.

 After the Python wrapper runs for a long time, there might be many service log files generated. To
remove these files, go to the directory (by default, $SOAM_HOME/work) specified by the “workDir”
attribute of Service > osTypes > osType section in the application profile and remove as many
service log files as you want.

 Inside a service log file, log messages have the following format:

2011-04-17 20:31:15,837 - PythonWrapperServiceLogger - DEBUG - ……
2011-04-17 20:31:15,837 - PythonWrapperServiceLogger - INFO - ……
2011-04-17 20:31:15,837 - PythonWrapperServiceLogger - ERROR - ……

6 Copyright and trademark information
© Copyright IBM Corporation 1992, 2014.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Page 17 of 17

IBM Web site pages might contain other proprietary notices and copyright information that should be
observed.

	1Scope
	2ConfigurationtoenableSymphonyPythonwrapper
	2.1Prerequisites
	2.2Installationfiles
	2.3Installationprocedure
	2.4Configurationprocedure
	2.5Verificationprocedure
	Runabasicworkloadpattern
	Runaparent/childjobpattern

	3ConfigurationtoenabletheSymphonyPythonClie
	3.1Prerequisites
	3.2Installationfiles
	3.3Installationprocedure
	3.4Configurationprocedure
	3.5Verificationprocedure
	RunSampleAppexample
	RunCrossLanguageexample
	RunSharingDataexample

	3.6Reviewthecrosslanguagemessageclass

	4Usage
	4.1Howthisfeatureworks
	4.2Libraries
	4.3Environmentvariables
	4.4Userinterface
	4.5Examples
	Note

	5Troubleshooting
	5.1Logfiles

