NOTE:
THIS HARDWARE, SOFTWARE OR TEST SUITE PRODUCT (“PRODUCT(S)”) AND ITS RELATED DOCUMENTATION ARE PROVIDED BY MELLANOX TECHNOLOGIES “AS-IS” WITH ALL FAULTS OF ANY KIND AND SOLELY FOR THE PURPOSE OF AIDING THE CUSTOMER IN TESTING APPLICATIONS THAT USE THE PRODUCTS IN DESIGNATED SOLUTIONS. THE CUSTOMER’S MANUFACTURING TEST ENVIRONMENT HAS NOT MET THE STANDARDS SET BY MELLANOX TECHNOLOGIES TO FULLY QUALIFY THE PRODUCT(S) AND/OR THE SYSTEM USING IT. THEREFORE, MELLANOX TECHNOLOGIES CANNOT AND DOES NOT GUARANTEE OR WARRANT THAT THE PRODUCTS WILL OPERATE WITH THE HIGHEST QUALITY. ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL MELLANOX BE LIABLE TO CUSTOMER OR ANY THIRD PARTIES FOR ANY DIRECT, INDIRECT, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES OF ANY KIND (INCLUDING, BUT NOT LIMITED TO, PAYMENT FOR PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY FROM THE USE OF THE PRODUCT(S) AND RELATED DOCUMENTATION EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Mellanox Technologies
350 Oakmead Parkway Suite 100
Sunnyvale, CA 94085
U.S.A.
www.mellanox.com
Tel: (408) 970-3400
Fax: (408) 970-3403

Mellanox Technologies, Ltd.
Hakidma 26
Ofer Industrial Park
Yokneam 2069200
Israel
www.mellanox.com
Tel: +972 (0)74 723 7200
Fax: +972 (0)4 959 3245

© Copyright 2015. Mellanox Technologies. All Rights Reserved.

Mellanox®, Mellanox logo, BridgeX®, ConnectX®, Connect-IB®, CoolBox®, CORE-Direct®, GPUDirect®, InfiniBridge®, InfiniHost®, InfiniScale®, Kotura®, Kotura logo, Mellanox Connect. Accelerate. Outperform logo, Mellanox Federal Systems® Mellanox Open Ethernet®, Mellanox Virtual Modular Switch®, MetroX®, MetroDX®, MLNX-OS®, Open Ethernet logo, PhyX®, ScalableHPC®, SwitchX®, TestX®, The Generation of Open Ethernet logo, UFM®, Virtual Protocol Interconnect®, Voltaire® and Voltaire logo are registered trademarks of Mellanox Technologies, Ltd.

CyPU™, ExtendX™, FabricIT™, FPGADirect™, HPC-X™, Mellanox Care™, Mellanox CloudX™, Mellanox NEO™, Mellanox Open Ethernet™, Mellanox PeerDirect™, NVMeDirect™, StP™, Switch-IB™, Unbreakable-Link™ are trademarks of Mellanox Technologies, Ltd.

All other trademarks are property of their respective owners.
Table of Contents

Document Revision History .. 12
About this Manual .. 21
Chapter 1 Introduction ... 24
 1.1 System Features .. 24
 1.2 Ethernet Features ... 25
 1.3 Gateway Features .. 25
Chapter 2 Getting Started ... 27
 2.1 Configuring the Switch for the First Time 27
 2.2 Starting the Command Line (CLI) 28
 2.3 Starting the Web User Interface 28
 2.4 Licenses ... 31
 2.4.1 Installing MLNX-OS® License (CLI) 31
 2.4.2 Installing MLNX-OS License (Web) 32
 2.4.3 Retrieving a Lost License Key 34
 2.4.4 Commands ... 36
Chapter 3 User Interfaces ... 41
 3.1 Command Line Interface (CLI) Overview 41
 3.1.1 CLI Modes ... 41
 3.1.2 Syntax Conventions .. 42
 3.1.3 Getting Help ... 42
 3.1.4 Prompt and Response Conventions 43
 3.1.5 Using the “no” Form .. 44
 3.1.6 Parameter Key .. 45
 3.1.7 Command Output Filtering 46
 3.2 Web Interface Overview ... 47
 3.2.1 Setup Menu ... 48
 3.2.2 System Menu ... 49
 3.2.3 Security Menu .. 50
 3.2.4 Ports Menu ... 50
 3.2.5 Status Menu ... 51
 3.2.6 ETH Mgmt .. 51
 3.2.7 IP Route .. 52
 3.3 Secure Shell (SSH) ... 52
 3.3.1 Adding a Host and Providing an SSH Key 52
 3.3.2 Retrieving Return Codes when Executing Remote Commands ... 53
 3.4 Commands .. 54
 3.4.1 CLI Session ... 54
 3.4.2 Banner .. 62
 3.4.3 SSH .. 67
 3.4.4 Remote Login .. 82
 3.4.5 Web Interface .. 85
Chapter 4 System Management .. 100

4.1 Management Interface .. 100
 4.1.1 Configuring Management Interfaces with Static IP Addresses 100
 4.1.2 Configuring IPv6 Address on the Management Interface 100
 4.1.3 Dynamic Host Configuration Protocol (DHCP) 100
 4.1.4 Default Gateway .. 101
 4.1.5 In-Band Management ... 101
 4.1.6 Commands .. 103

4.2 NTP, Clock & Time Zones .. 149
 4.2.1 Commands .. 150

4.3 Software Management .. 156
 4.3.1 Upgrading MLNX-OS Software – Preconditions 156
 4.3.2 Upgrading MLNX-OS Software 156
 4.3.3 Upgrading MLNX-OS HA Groups 160
 4.3.4 Deleting Unused Images .. 160
 4.3.5 Downgrading MLNX-OS Software 161
 4.3.6 Upgrading System Firmware 164
 4.3.7 Image Maintenance via Mellanox ONIE 165
 4.3.8 Commands .. 167

4.4 Configuration Management .. 178
 4.4.1 Saving a Configuration File 178
 4.4.2 Loading a Configuration File 178
 4.4.3 Managing Configuration Files 178
 4.4.4 Commands .. 181

4.5 Logging ... 207
 4.5.1 Monitor .. 207
 4.5.2 Remote Logging .. 207
 4.5.3 Switch Power-On Self-Test. 207
 4.5.4 Commands .. 209

4.6 Debugging ... 227
 4.6.1 Commands .. 228

4.7 Event Notifications ... 247
 4.7.1 Supported Events ... 247
 4.7.2 Terminal Notifications ... 248
 4.7.3 Email Notifications ... 249
 4.7.4 Commands .. 251

4.8 mDNS ... 270
 4.8.1 Commands .. 271

4.9 User Management and Security ... 272
 4.9.1 User Accounts ... 272
 4.9.2 Authentication, Authorization and Accounting (AAA) 272
 4.9.3 Commands .. 274

4.10 Cryptographic (X.509, IPSec) .. 315
 4.10.1 Commands .. 316

4.11 Scheduled Jobs ... 328
Chapter 5 Ethernet Switching ... 400

5.1 Interface .. 400
 5.1.1 Break-Out Cables ... 400
 5.1.2 Transceiver Information ... 403
 5.1.3 Commands .. 404

5.2 Link Aggregation Group (LAG) ... 419
 5.2.1 Configuring Static Link Aggregation Group (LAG) 419
 5.2.2 Configuring Link Aggregation Control Protocol (LACP) 419
 5.2.3 Commands .. 421

5.3 MLAG .. 439
 5.3.1 MLAG Keepalive and Failover 441
 5.3.2 Unicast and Multicast Sync 441
 5.3.3 MLAG Port Sync ... 441
 5.3.4 MLAG Virtual System-MAC 441
 5.3.5 Upgrading MLAG Pair ... 441
 5.3.6 MLAG Configuration ... 442
 5.3.7 Commands .. 446

5.4 VLANs .. 463
 5.4.1 Configuring Access Mode and Assigning Port VLAN ID (PVID) 463
 5.4.2 Configuring Hybrid Mode and Assigning Port VLAN ID (PVID) 464
 5.4.3 Configuring Trunk Mode VLAN Membership 464
 5.4.4 Configuring Hybrid Mode VLAN Membership 465
 5.4.5 Commands .. 466

5.5 QinQ .. 475
 5.5.1 QinQ Operation Modes ... 475
 5.5.2 Configuring QinQ ... 475
 5.5.3 Commands .. 478

5.6 MAC Address Table ... 479
 5.6.1 Configuring Unicast Static MAC Address 479
 5.6.2 MAC Learning Considerations 479
 5.6.3 Commands .. 480

5.7 Spanning Tree .. 486
 5.7.1 Port Priority and Cost ... 486
 5.7.2 Port Type .. 486
 5.7.3 BPDU Filter ... 487
 5.7.4 BPDU Guard ... 487
Chapter 6 IP Routing ... 646
6.1 General ... 646
 6.1.1 IP Interfaces .. 646
 6.1.2 Equal Cost Multi-Path Routing (ECMP) 649
 6.1.3 Virtual Routing and Forwarding 650
 6.1.4 IPv4 Routing Mode .. 651
 6.1.5 Commands .. 652
6.2 IPv6 ... 692
 6.2.1 Neighbor Discovery Protocol 692
 6.2.2 Configuring IPv6 ... 693
 6.2.3 Commands .. 696
6.3 OSPF ... 722
 6.3.1 Router ID ... 722
 6.3.2 ECMP ... 722
 6.3.3 Configuring OSPF .. 723
 6.3.4 Verifying OSPF .. 724
 6.3.5 Commands .. 727
6.4 BGP ... 762
 6.4.1 State Machine ... 762
 6.4.2 Configuring BGP .. 762
 6.4.3 Verifying BGP ... 764
 6.4.4 Commands .. 765
 6.4.5 IP AS-Path Access-List .. 817
 6.4.6 IP Community-List .. 819
6.5 Policy Rules ... 822
 6.5.1 Route Map ... 822
 6.5.2 IP Prefix-List ... 852
6.6 Multicast (IGMP and PIM) .. 855
 6.6.1 Basic PIM-SM ... 855
 6.6.2 Bidirectional PIM ... 856
 6.6.3 PIM Load-Sharing .. 856
 6.6.4 Bootstrap Router ... 857
 6.6.5 Configuring Multicast .. 857
 6.6.6 Commands .. 860
6.7 VRRP ... 902
 6.7.1 Load Balancing .. 902
 6.7.2 Configuring VRRP .. 903
 6.7.3 Verifying VRRP .. 904
 6.7.4 Commands .. 906
6.8 MAGP ... 917
 6.8.1 MAGP Configuration .. 917
 6.8.2 Commands .. 919
6.9 DHCP Relay .. 925
 6.9.1 Commands .. 926
Appendix A Enhancing System Security According to NIST SP 800-131A 934
A.1 Overview ... 934
A.2 Web Certificate.. 934
A.3 Code Signing .. 935
A.4 SNMP ... 935
A.5 SSH ... 936
A.6 HTTPS .. 936
A.7 LDAP ... 937
A.8 Password Hashing .. 939

Appendix B Security Vulnerabilities and Exposures 940

Appendix C UI Changes in Version 3.4.2008 956
C.1 Interface Addressing Change 956
C.2 CLI Change .. 956
C.3 MIB ifTable Change ... 957
C.4 WebUI Ports Page Change 958
C.5 Interface Speed Configuration Change 958
C.6 CLI Change .. 958
C.7 WebUI Change .. 959
C.8 IB SM Link Speed Change 960
C.9 Multi-ASIC Support ... 961
C.10 CLI Change ... 961
C.11 MIB entPhysicalTable Change 963
C.12 MGMT Module Display Change 964
C.13 MLNX-OS Image Name Change 965
C.14 CLI Change ... 965
C.15 WebUI Status Page Change 965
C.16 CPU Module Display Change 966
C.17 CLI Change ... 966
C.18 WebUI System Inventory Page Change 967
List of Tables

Table 1 -Reference Documents ... 21
Table 2 -Glossary .. 21
Table 3 -General System Features .. 24
Table 4 -Ethernet Features ... 25
Table 5 -Gateway Features .. 25
Table 6 -Serial Terminal Program Configuration for PPC Based Systems 27
Table 7 -CLI Modes and Config Context .. 41
Table 8 -Syntax Conventions .. 42
Table 9 -Angled Brackets Parameter Description 45
Table 10 -WebUI Setup Submenus ... 48
Table 11 -WebUI System Submenus ... 49
Table 12 -WebUI Security Submenus .. 50
Table 13 -WebUI Ports Submenus .. 50
Table 14 -WebUI Status Submenus ... 51
Table 15 -WebUI ETH Mgmt Submenus .. 51
Table 16 -WebUI IP Route Submenus ... 52
Table 17 -POST Return Codes ... 207
Table 18 -Supported Event Notifications and MIB Mapping 247
Table 19 -User Roles (Accounts) and Default Passwords 272
Table 20 -LWR Configuration Behavior .. 356
Table 21 -Key for Port Splitting Figure .. 401
Table 22 -Port Splitting Options ... 401
Table 23 -Supported VLANs by RPVST per Switch System 489
Table 24 -Mirroring Parameters ... 595
Table 25 -List of Statistical Counters ... 609
Table 26 -Common Vulnerabilities and Exposures 940
List of Figures

Figure 1: Managing an Ethernet Fabric Using MLNX-OS ... 26
Figure 2: IBM System Console Ports ... 27
Figure 3: MLNX-OS Login Window ... 29
Figure 4: EULA Prompt .. 30
Figure 5: Welcome Popup .. 30
Figure 6: Display After Login ... 31
Figure 7: No Licenses Installed ... 32
Figure 8: Enter License Key(s) in Text Box .. 33
Figure 9: Installed License ... 34
Figure 10: WebUI .. 48
Figure 11: SX65xx Downgrade Attention Sticker ... 161
Figure 12: Break-Out Cable ... 400
Figure 13: Port Splitting Options ... 401
Figure 14: Basic MLAG Setup ... 439
Figure 15: Basic MLAG Topology .. 442
Figure 16: MAC Learning Disable Example Case ... 479
Figure 17: RPVST Network Config .. 488
Figure 18: RPVST and RSTP Cluster ... 489
Figure 19: Overview of Mirroring Functionality ... 594
Figure 20: Mirror to Analyzer Mapping ... 594
Figure 21: Header Format Options ... 597
Figure 22: Mirroring Session ... 598
Figure 23: sFlow Functionality Overview ... 609
Figure 24: RoCEv2 and RoCE Frame Format Differences 624
Figure 25: RoCEv2 Protocol Stack .. 625
Figure 26: ECMP .. 649
Figure 27: Multiple Hash Functions ... 650
Figure 28: IPv6 Network .. 693
Figure 29: OSPF Basic Topology .. 723
Figure 30: Basic BGP Configuration ... 762
Figure 31: Common VRRP Configuration with Load Balancing 902
Figure 32: 1U MIB ifTable Before Screenshot ... 957
Figure 33: 1U MIB ifTable After Screenshot .. 957
Figure 34: Director Switch MIB ifTable Before Screenshot 958
Figure 35: Director Switch MIB ifTable After Screenshot 958
Figure 36: Ports WebUI Page ... 960
Figure 37: MIB entPhysicalTable Before Screenshot 963
Figure 38: MIB entPhysicalTable After Screenshot 964
Figure 39: Status WebUI Page ... 966
Figure 40: System Inventory WebUI Page .. 967
Document Revision History

Rev 4.20 – July 30, 2015

Added:
- the command “switchport dot1q-tunnel qos-mode” on page 471
- Section 5.5, “QinQ,” on page 475
- the command “dot1x host-mode” on page 633
- the command “show ip route” on page 680
- the command “vlan-pop” on page 589
- the command “vlan-push” on page 590

Updated:
- Section 2.4, “Licenses,” on page 31
- the command “ssh server host-key” on page 68
- notes of the command “aaa authorization” on page 288
- the command “show module” on page 369
- the command “snmp-server user” on page 393
- the command “ip ospf authentication-key” on page 750
- the command “neighbor password” on page 792
- the command “neighbor peer-group” on page 793
- Appendix B, “Security Vulnerabilities and Exposures” on page 940

Added:
- Section 2.1, “Configuring the Switch for the First Time,” on page 27 with MLNX-OS® Boot Menu step
- the command “ssh server security strict” on page 73
- the command “ssh server tcp-forwarding enable” on page 74
- Section 4.1.5, “In-Band Management,” on page 101 This feature can now be enabled with IP Routing. Also updated the flow of setting an in-band management channel.
- the command “show module” on page 369
- Section 5.1.1, “Break-Out Cables,” on page 400
- the command “ip address dhcp” on page 411
- the command “ip address dhcp” on page 428
- Section 5.3.4, “MLAG Virtual System-MAC,” on page 441
- Section 5.3.5, “Upgrading MLAG Pair,” on page 441
- Section 5.16, “802.1x Protocol,” on page 628
- Section 6.1.3, “Virtual Routing and Forwarding,” on page 650
• the command “ip l3” on page 652
• the command “vrf definition” on page 653
• the command “routing-context vrf” on page 654
• the command “description” on page 656
• the command “rd” on page 657
• the command “vrf forwarding” on page 658
• the command “show routing-context vrf” on page 660
• the command “show vrf” on page 661
• the command “ip address dhcp” on page 666

Section 6.2, “IPv6,” on page 692 commands by adding loopback interface configuration
mode to the commands
Section 6.6.3, “PIM Load-Sharing,” on page 856
the command “ip pim multipath rp” on page 874

Updated:
• the command “tcpdump” on page 148
• Section 4.3.2, “Upgrading MLNX-OS Software,” on page 156 with HA group note
• Section 4.3.3, “Upgrading MLNX-OS HA Groups,” on page 160
• the command “show inventory” on page 368
• the command “show asic-version” on page 371
• Section 5.3.1, “MLAG Keepalive and Failover,” on page 441
• Step 10 in Section 5.3.6, “MLAG Configuration,” on page 442
• the example of the command “upgrade-timeout” on page 457
• the command “ip routing” on page 655
• the command “show ip routing” on page 659
• the command “show ip interface” on page 673
• the command “interface loopback” on page 674 “id” parameter range
• the command “ip route” on page 678
• the command “show ip route” on page 680
• the command “clear ip arp” on page 685
• the command “show ip arp” on page 686
• the command “ping” on page 687
• the command “traceroute” on page 688
• the command “tcpdump” on page 690

Removed:
• the command “interface vlan create” from Section 4.1.6, “Commands,” on page 103
• the command “ipv6 dhcp client”
• Section B.9, “Security Vulnerabilities and Exposures,” on page 1330 and added it to the RN

Rev 3.70 – March 19, 2015
Updated:
• the command “speed” on page 1065
• the command “show interfaces ib” on page 1071
• the command “show interfaces ib status” on page 1072

Rev 3.70 – March 19, 2015
No changes

Rev 3.60 – March 05, 2015
Added:
• MLAG configuration Step 10
• the command “system-mac” on page 456
• the command “upgrade-timeout” on page 457
• Section 5.7.4, “BPDU Guard,” on page 487
Updated:
• MLAG configuration verification Step 1 with system MAC and upgrade timeout
• the command “show mlag” on page 458
• Table 23, “Supported VLANs by RPVST per Switch System,” on page 489

Rev 3.60 – March 05, 2015
No changes

Rev 3.50 – February 24, 2015
Added:
• the command “show version concise” on page 365
Updated:
• the command “show uboot” on page 366

Rev 3.40 – February 11, 2015
Added:
• “List of Tables” and “List of Figures” Sections
• Updated Section 2.4, “Licenses,” on page 31
• the command “license delete” on page 38
• the command “license install” on page 39
• the command “telnet” on page 82
• the command “terminal” on page 59
• the command “web cache-enable” on page 86
• the command “ip default-gateway” on page 105
• the command “boot system” on page 169
• the command “configuration write” on page 203
• the command “logging trap” on page 224
• the command “email autosupport enable” on page 251
• the command “email autosupport event” on page 252
• the command “crypto ipsec ike” on page 316
• the command “lacp-individual enable” on page 427
• the command “show interfaces port-channel” on page 435
• the command “show interfaces port-channel compatibility-parameters” on page 436
• the command “show interfaces port-channel load-balance” on page 437
• the command “show interfaces port-channel summary” on page 438
• Section 5.7.8, “RPVST,” on page 488
• the command “spanning-tree vlan forward-time” on page 510
• the command “spanning-tree vlan hello-time” on page 511
• the command “spanning-tree vlan max-age” on page 512
• the command “spanning-tree vlan priority” on page 513
• the command “show spanning-tree vlan” on page 519
• Section 6.2, “IPv6,” on page 692
• the command “auto-cost reference-bandwidth” on page 731

Updated:
• Section 2.3, “Starting the Web User Interface,” on page 28
• the command “image options” on page 175
• the command “reload” on page 185
• Section 4.5.2, “Remote Logging,” on page 207
• the command “logging debug-files” on page 211
• Section 4.6.1, “Commands,” on page 228
• Section 4.9.1, “User Accounts,” on page 272
• the command “username” on page 274
• the command “aaa authentication attempts track” on page 281
• the command “radius-server host” on page 293
• the command “tacacs-server host” on page 297
• the command “snmp-server auto-refresh” on page 383
• the command “snmp-server user” on page 393
• the command “show interfaces ethernet [<inf>] description” on page 415
• the command “show interfaces ethernet [<inf>] status” on page 416
• the command “show interfaces port-channel summary” on page 438
• the command “show interfaces mlag-port-channel summary” on page 461
• the command “spanning-tree mode” on page 492
• the command “show spanning-tree” on page 514
• the command “show spanning-tree detail” on page 515
• the command “show spanning-tree interface” on page 516
• the command “show spanning-tree mst” on page 517
• the command “show spanning-tree root” on page 518
• Section 5.9.2, “Defining a Multicast Router Port on a VLAN,” on page 529
• the command “dcb application-priority” on page 557
• the command “dcb priority-flow-control enable” on page 576
• Section 5.14.1, “Flow Samples,” on page 609
• the command “ip arp timeout” on page 684
• the command “redistribute” on page 733

Rev 3.30 – November 19, 2014

Updated:
• the command “web https” on page 93

• the command “dcb application-priority” on page 557
• Section A.6, “HTTPS,” on page 936
• Section A.8, “Password Hashing,” on page 939

Rev 3.20 – November 09, 2014

Added:
• Section 5.6.2, “MAC Learning Considerations,” on page 479
• the command “mac-learning disable” on page 482
• Appendix A, “Enhancing System Security According to NIST SP 800-131A,” on page 934

Updated:
• Section 1.2, “Ethernet Features,” on page 25
• Section 3.2, “Web Interface Overview,” on page 47
• the command “interface port-channel” on page 421
• the command “show lacp interfaces neighbor” on page 431
• the command “ip icmp redirect” on page 672
• Section 6.4, “BGP,” on page 762
Replaced:

- the command “show lacp interfaces port-channel” with the command “show lacp” on page 433
- the command “show lacp system-identifier” with the command “show lacp interfaces system-identifier” on page 434

Rev 3.10 – July 20, 2014

Added:

- Section 5.15, “Transport Applications,” on page 624
- Section 6.1.1, “IP Interfaces,” on page 646

Updated:

- Section 4.13.1, “XML API,” on page 382
- MAC addresses note in Section 5.3, “MLAG,” on page 439

Rev 3.00 – June 05, 2014

No changes

Rev 2.90 – 19 May, 2014

Updated:

- the command “show configuration” on page 205
- the command “show uboot” on page 366
- the command “show voltage” on page 375

Rev 2.80 – May 08, 2014

Added:

- supported versions note in Section 5.9, “IGMP Snooping,” on page 529

Rev 2.70 – April 30, 2014

Added:

- Appendix A, “Enhancing System Security According to NIST SP 800-131A,” on page 934
- supported versions note in Section 5.9, “IGMP Snooping,” on page 529

Updated:

- the command “show ssh server” on page 81
- the command “web auto-logout” on page 85
- the command “web https” on page 93
- the command “show web” on page 99
- the command “show usernames” on page 276
- the command “ldap base-dn” on page 300
• the command “ldap ssl” on page 310

Rev 2.60 – April 10, 2014
N/A

Rev 2.50 – April 2014
Updated:
• Section 3.1.7, “Command Output Filtering,” on page 46
• the command “show protocols” on page 381
• Section 5.1.1, “Break-Out Cables,” on page 400
• the command “show mac-address-table” on page 484
• the command “deny/permit (MAC ACL rule)” on page 584
• the command “show mac/ipv4 access-lists” on page 592

Rev 2.40 – February, 2014
Updated:
• Section 4.3.6.2, “Importing Firmware and Changing the Default Firmware,” on page 165 – updated Step 1
• the command “show running-config” on page 206
• the command “show log” on page 226
• Section 4.10, “Cryptographic (X.509, IPSec),” on page 315
• Section 5.2.1, “Configuring Static Link Aggregation Group (LAG),” on page 419 – removed unnecessary step
• the command “lldp tlv-select” on page 556
• the command “show lldp interface” on page 559
Added:
• Section 3.1.7, “Command Output Filtering,” on page 46

Updated:
• the command “crypto certificate generation” on page 321
• the command “crypto certificate name” on page 322

Rev 2.20 – January, 2014
N/A

Rev 2.10 – January, 2014
Added:
• Section 4.12.2.1, “Width Reduction Power Saving,” on page 355
Updated:
- Section 2.2, “Starting the Command Line (CLI),” on page 28
- Section 2.3, “Starting the Web User Interface,” on page 28
- Section 4.3.2, “Upgrading MLNX-OS Software,” on page 156 with EULA note
- the command “load-interval” on page 410 with Config Interface Port Channel
- the command “spanning-tree port-priority” on page 496 with Config Interface Port Channel
- Section 5.8, “OpenFlow,” on page 520
- the command “openflow description” on page 523
- the command “show openflow” on page 528
- the command “switchport {hybrid, trunk} allowed-vlan” on page 473 with Config Interface Port Channel
- the command “spanning-tree cost” on page 497 with Config Interface Port Channel
- the command “spanning-tree port type” on page 498 with Config Interface Port Channel
- the command “spanning-tree guard” on page 499 with Config Interface Port Channel
- the command “spanning-tree bpdufilter” on page 500 with Config Interface Port Channel
- the command “deny/permit (IPv4 ACL rule)” on page 585
- the command “sflow enable (interface)” on page 622 with Config Interface Port Channel
- Section 6.3, “OSPF,” on page 722
- the command “router-id” on page 729

Rev 2.00 – December 2013

Added:
- Section 5.1.2, “Transceiver Information,” on page 403

Updated:
- Section 4.3.2, “Upgrading MLNX-OS Software,” on page 156
- Section 4.3.4, “Deleting Unused Images,” on page 160
- Section 4.6, “Debugging,” on page 227
- the example of the command “show cpld” on page 367
- “Notification Indicator” column in Section 8.3.2, “Standalone Proxy-ARP Configuration,” on page 1271
- the command “lldp tlv-select” on page 556

Moved:
Section 4.5.3, “Switch Power-On Self-Test,” on page 207 from 4.11.1
Section 3.3, “Secure Shell (SSH),” on page 52 from 4.13.2
 Removed:
 - mention of the MLNX-OS Command Reference Guide
 - the command “lldp tlv-select dcbx”

Rev 1.90 – November 2013

Added *Appendix A, “MEX6200 System,” on page 1329*

Rev 1.80 – October 2013

Added:
 - Section 5.7.7, “MSTP,” on page 488
 - Section 5.8, “OpenFlow,” on page 520
 - Section 5.9.3, “IGMP Snooping Querier,” on page 531
 - the command “ip igmp snooping querier”
 - the command “igmp snooping querier query-interval”
 - the command “show ip igmp snooping querier”
 - Section 5.10.2, “DCBX,” on page 548
 - the command “lldp tlv-select dcbx”
 - the command “dcb application-priority”
 - the command “show dcb application-priority”

Updated:
 - the command “show lldp interface”
 - the command “show lldp interfaces ethernet <inf> remote”

Rev 1.7.0 – October 2013

About this Manual

This manual provides general information concerning the scope and organization of this User’s Manual.

Intended Audience

This manual is intended for network administrators who are responsible for configuring and managing Mellanox Technologies’ SwitchX based Switch Platforms.

Related Documentation

The following table lists the documents referenced in this User’s Manual.

Table 1 - Reference Documents

<table>
<thead>
<tr>
<th>Document Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InfiniBand Architecture Specification, Vol. 1,</td>
<td>The InfiniBand Architecture Specification that is provided by IBTA.</td>
</tr>
<tr>
<td>Release 1.2.1</td>
<td></td>
</tr>
<tr>
<td>Director switch Installation Guide</td>
<td>Each Mellanox Technologies' switch platform is shipped with an Installation</td>
</tr>
<tr>
<td></td>
<td>Guide document to bring-up and initialize the switch platform.</td>
</tr>
<tr>
<td>System Hardware User Manual</td>
<td>This document contains hardware descriptions, LED assignments and hardware</td>
</tr>
<tr>
<td></td>
<td>specifications among other things.</td>
</tr>
<tr>
<td>Switch Product Release Notes</td>
<td>Please look up the relevant SwitchX®-based switch system/series release note</td>
</tr>
<tr>
<td>Mellanox Virtual Modular Switch Reference Guide</td>
<td>This reference architecture provides general information concerning Mellanox</td>
</tr>
<tr>
<td></td>
<td>L2 and L3 Virtual Modular Switch (VMS) configuration and design.</td>
</tr>
<tr>
<td>Configuring Mellanox Hardware for VPI Operation</td>
<td>This manual provides information on basic configuration of the converged VPI</td>
</tr>
<tr>
<td>Application Note</td>
<td>networks.</td>
</tr>
</tbody>
</table>

All of these documents can be found on the Mellanox website. They are available either through the product pages or through the support page with a login and password.

Glossary

Table 2 - Glossary

| AAA | Authentication, Authorization, and Accounting. Authentication - verifies user credentials (username and password). Authorization - grants or refuses privileges to a user/client for accessing specific services. Accounting - tracks network resources consumption by users. |
| ARP | Address Resolution Protocol. A protocol that translates IP addresses into MAC addresses for communication over a local area network (LAN). |
Table 2 - Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLI</td>
<td>Command Line Interface. A user interface in which you type commands at the prompt</td>
</tr>
<tr>
<td>DCB</td>
<td>Data Center Bridging</td>
</tr>
<tr>
<td>DCBX</td>
<td>DCBX protocol is an extension of the Link Layer Discovery Protocol (LLDP). DCBX end points exchange request and acknowledgment messages. For flexibility, parameters are coded in a type-length-value (TLV) format.</td>
</tr>
<tr>
<td>DHCP</td>
<td>The Dynamic Host Configuration Protocol (DHCP) is an automatic configuration protocol used on IP networks.</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name System. A hierarchical naming system for devices in a computer network</td>
</tr>
<tr>
<td>ETS</td>
<td>ETS provides a common management framework for assignment of bandwidth to traffic classes.</td>
</tr>
<tr>
<td>FTP/TFTP/sFTP</td>
<td>File Transfer Protocol (FTP) is a standard network protocol used to transfer files from one host to another over a TCP-based network, such as the Internet.</td>
</tr>
<tr>
<td>Gateway</td>
<td>A network node that interfaces with another network using a different network protocol</td>
</tr>
<tr>
<td>HA (High Avail)</td>
<td>A system design protocol that provides redundancy of system components, thus enables overcoming single or multiple failures in minimal downtime</td>
</tr>
<tr>
<td>Host</td>
<td>A computer platform executing an Operating System which may control one or more network adapters</td>
</tr>
<tr>
<td>LACP</td>
<td>Link Aggregation Control Protocol (LACP) provides a method to control the bundling of several physical ports together to form a single logical channel. LACP allows a network device to negotiate an automatic bundling of links by sending LACP packets to the peer (directly connected device that also implements LACP).</td>
</tr>
<tr>
<td>LDAP</td>
<td>The Lightweight Directory Access Protocol is an application protocol for reading and editing directories over an IP network.</td>
</tr>
<tr>
<td>MAC</td>
<td>A Media Access Control address (MAC address) is a unique identifier assigned to network interfaces for communications on the physical network segment. MAC addresses are used for numerous network technologies and most IEEE 802 network technologies including Ethernet.</td>
</tr>
<tr>
<td>MTU (Max Transfer Unit)</td>
<td>The maximum size of a packet payload (not including headers) that can be sent/received from a port</td>
</tr>
<tr>
<td>Network Adapter</td>
<td>A hardware device that allows for communication between computers in a network</td>
</tr>
<tr>
<td>PFC/FC</td>
<td>Priority Based Flow Control applies pause functionality to traffic classes OR classes of service on the Ethernet link.</td>
</tr>
<tr>
<td>RADIUS</td>
<td>Remote Authentication Dial In User Service. A networking protocol that enables AAA centralized management for computers to connect and use a network service.</td>
</tr>
</tbody>
</table>
Table 2 - Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDMA (Remote Direct Memory Access)</td>
<td>Accessing memory in a remote side without involvement of the remote CPU</td>
</tr>
<tr>
<td>RSTP</td>
<td>Rapid Spanning Tree Protocol. A spanning-tree protocol used to prevent loops in bridge configurations. RSTP is not aware of VLANs and blocks ports at the physical level.</td>
</tr>
<tr>
<td>SA (Subnet Administrator)</td>
<td>The interface for querying and manipulating subnet management data</td>
</tr>
<tr>
<td>SCP</td>
<td>Secure Copy or SCP is a means of securely transferring computer files between a local and a remote host or between two remote hosts. It is based on the Secure Shell (SSH) protocol.</td>
</tr>
<tr>
<td>NTP</td>
<td>Network Time Protocol. A protocol for synchronizing computer clocks in a network</td>
</tr>
<tr>
<td>SSH</td>
<td>Secure Shell. A protocol (program) for securely logging in to and running programs on remote machines across a network. The program authenticates access to the remote machine and encrypts the transferred information through the connection.</td>
</tr>
<tr>
<td>syslog</td>
<td>A standard for forwarding log messages in an IP network</td>
</tr>
<tr>
<td>TACACS+</td>
<td>Terminal Access Controller Access-Control System Plus. A networking protocol that enables access to a network of devices via one or more centralized servers. TACACS+ provides separate AAA services.</td>
</tr>
</tbody>
</table>
1 Introduction

Mellanox® Operating System (MLNX-OS®) enables the management and configuration of Mellanox Technologies’ SwitchX® Family silicon based switch platforms. MLNX-OS supports the Virtual Protocol Interconnect (VPI) technology which enables it to be used for both Ethernet and InfiniBand technology providing the user with greater flexibility.

MLNX-OS provides a full suite of management options, including support for SNMPv1, 2, 3, and web user interface (WebUI). In addition, it incorporates a familiar industry-standard CLI, which enables administrators to easily configure and manage the system.

1.1 System Features

Table 3 - General System Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Management</td>
<td>• Dual software image</td>
</tr>
<tr>
<td></td>
<td>• Software and firmware updates</td>
</tr>
<tr>
<td>File management</td>
<td>• FTP</td>
</tr>
<tr>
<td></td>
<td>• TFTP</td>
</tr>
<tr>
<td></td>
<td>• SCP</td>
</tr>
<tr>
<td>Logging</td>
<td>• Event history log</td>
</tr>
<tr>
<td></td>
<td>• SysLog support</td>
</tr>
<tr>
<td>Management Interface</td>
<td>• DHCP/Zeroconf</td>
</tr>
<tr>
<td></td>
<td>• IPv6</td>
</tr>
<tr>
<td>Chassis Management</td>
<td>• Monitoring environmental controls</td>
</tr>
<tr>
<td>Network Management</td>
<td>• SNMP v1,v2c,v3</td>
</tr>
<tr>
<td>Interfaces</td>
<td>• interfaces (XML Gateway)</td>
</tr>
<tr>
<td></td>
<td>• Puppet Agent</td>
</tr>
<tr>
<td>Security</td>
<td>• SSH</td>
</tr>
<tr>
<td></td>
<td>• Telnet</td>
</tr>
<tr>
<td></td>
<td>• RADIUS</td>
</tr>
<tr>
<td></td>
<td>• TACACS+</td>
</tr>
<tr>
<td>Date and Time</td>
<td>• NTP</td>
</tr>
<tr>
<td>Cables & Transceivers</td>
<td>• Transceiver info</td>
</tr>
<tr>
<td>Unbreakable links</td>
<td>• LLR</td>
</tr>
</tbody>
</table>
1.2 Ethernet Features

Table 4 - Ethernet Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>• ACL – 24K rules (permit/deny)</td>
</tr>
<tr>
<td></td>
<td>• Breakout cables</td>
</tr>
<tr>
<td></td>
<td>• Jumbo Frames (9K)</td>
</tr>
<tr>
<td>Ethernet support</td>
<td>• 48K Unicast MAC addresses</td>
</tr>
<tr>
<td></td>
<td>• DCBX</td>
</tr>
<tr>
<td></td>
<td>• DHCP Relay</td>
</tr>
<tr>
<td></td>
<td>• ETS (802.1Qaz)</td>
</tr>
<tr>
<td></td>
<td>• Flow control (802.3x)</td>
</tr>
<tr>
<td></td>
<td>• IGMP snooping v1,2</td>
</tr>
<tr>
<td></td>
<td>• LAG/LACP (802.3ad), 16 links per LAG (64 LAGs)</td>
</tr>
<tr>
<td></td>
<td>• LLDP</td>
</tr>
<tr>
<td></td>
<td>• MLAG</td>
</tr>
<tr>
<td></td>
<td>• MSTP</td>
</tr>
<tr>
<td></td>
<td>• OpenFlow</td>
</tr>
<tr>
<td></td>
<td>• PFC (802.1Qbb)</td>
</tr>
<tr>
<td></td>
<td>• Rapid Spanning Tree (802.1w)</td>
</tr>
<tr>
<td></td>
<td>• sFlow</td>
</tr>
<tr>
<td></td>
<td>• VLAN (802.1Q) - 4K</td>
</tr>
<tr>
<td>IP routing</td>
<td>• BGP</td>
</tr>
<tr>
<td></td>
<td>• DHCP Relay</td>
</tr>
<tr>
<td></td>
<td>• ECMP</td>
</tr>
<tr>
<td></td>
<td>• IGMP</td>
</tr>
<tr>
<td></td>
<td>• IPv4</td>
</tr>
<tr>
<td></td>
<td>• IPv6</td>
</tr>
<tr>
<td></td>
<td>• OSPF</td>
</tr>
<tr>
<td></td>
<td>• PIM</td>
</tr>
<tr>
<td></td>
<td>• VLAN interface</td>
</tr>
<tr>
<td></td>
<td>• Loopback interface</td>
</tr>
<tr>
<td></td>
<td>• Router interface</td>
</tr>
<tr>
<td></td>
<td>• VRRP</td>
</tr>
</tbody>
</table>

1.3 Gateway Features

Table 5 - Gateway Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy-ARP</td>
<td>• Proxy-ARP interface</td>
</tr>
<tr>
<td></td>
<td>• Unicast</td>
</tr>
<tr>
<td></td>
<td>• Multicast</td>
</tr>
<tr>
<td></td>
<td>• High availability Proxy-ARP</td>
</tr>
</tbody>
</table>
Figure 1: Managing an Ethernet Fabric Using MLNX-OS
2 Getting Started

The procedures described in this chapter assume that you have already installed and powered on your switch according to the instructions in the *Hardware Installation Guide*, which was shipped with the product.

2.1 Configuring the Switch for the First Time

➢ To configure the switch:

Step 1. Connect the host PC to the console (mini USB) port of the switch system using the supplied cable.

![Figure 2: IBM System Console Ports](image)

No remote IP connection is available at this stage via the external management port. The internal management port can be accessed currently by the chassis management.

Step 2. Configure a serial terminal with the settings described below.

This step may be skipped if the DHCP option is used and an IP is already configured for the MGT port.

Table 6 - Serial Terminal Program Configuration for PPC Based Systems

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud Rate</td>
<td>9600</td>
</tr>
<tr>
<td>Data bits</td>
<td>8</td>
</tr>
<tr>
<td>Stop bits</td>
<td>1</td>
</tr>
<tr>
<td>Parity</td>
<td>None</td>
</tr>
<tr>
<td>Flow Control</td>
<td>None</td>
</tr>
</tbody>
</table>
Step 3. You are prompted with the boot menu.

Mellanox MLNX-OS Boot Menu:

1: <image #1>
2: <image #2>
u: USB menu (if USB device is connected) (password required)
c: Command prompt (password required)

Choice:

Select “1” to boot with software version installed on partition #1.
Select “2” to boot with software version installed on partition #2.
Selecting “u” is not currently supported.
Selecting “c” to proceed to advanced booting options – available to Mellanox Support only.

The MLNX-OS Boot Menu features a countdown timer. It is recommended to allow the timer to run out by not selecting any of the options.

Step 4. Login as *admin* and use *admin* as password.

If the machine is still initializing, you might not be able to access the CLI until initialization completes. As an indication that initialization is ongoing, a countdown of the number of remaining modules to be configured is displayed in the following format: “<no. of modules> Modules are being configured”.

2.2 Starting the Command Line (CLI)

Step 1. Set up an Ethernet connection between the switch and a local network machine using a standard RJ-45 connector.

Step 2. Start a remote secured shell (SSH) to the switch using the command “ssh -l <username> <switch ip address>.”

```
rem_mach1 > ssh -l <username> <ip address>
```

Step 3. Login to the switch (default username is *admin*, password *admin*)

Step 4. Read and accept the EULA when prompted.

Step 5. Once you get the prompt, you are ready to use the system.

Mellanox MLNX-OS Switch Management

Password:
Last login: <time> from <ip-address>

Mellanox Switch

Please read and accept the Mellanox End User License Agreement located at:
http://www.mellanox.com/related-docs/prod_management_software/MLNX-OS_EULA.pdf

switch >

2.3 Starting the Web User Interface

- To start a WebUI connection to the switch platform:
Step 1. Set up an Ethernet connection between the switch and a local network machine using a standard RJ-45 connector.

Step 2. Open a web browser – Firefox 12, Chrome 18, IE 8, Safari 5 or higher.
Note: Make sure the screen resolution is set to 1024*768 or higher.

Step 3. Type in the IP address of the switch or its DNS name in the format: https://<switch_IP_address>.

Step 4. Login to the switch (default user name is admin, password admin).

Figure 3: MLNX-OS Login Window
Step 5. Read and accept the EULA if prompted. You are only prompted if you have not accessed the switch via CLI before.

Figure 4: EULA Prompt

Step 6. The Welcome popup appears. After reading through the content, click OK to continue. You may click on the links under Documentation to reach the MLNX-OS documentation. The link under What’s New takes you straight to the RN Changes and New Features section.

Figure 5: Welcome Popup
You may also tick the box to not show this popup again. But should you wish to see this window again, click “Product Documents” on the upper right corner of the WebUI.

Step 7. A default status summary is displayed as shown in Figure 6.

Figure 6: Display After Login

![Figure 6: Display After Login](image)

2.4 Licenses

Gateway is not supported in MLNX-OS® release 3.4.1110.

MLNX-OS software package can be extended with premium features. Installing a license allows you to access the specified premium features.

This section is relevant only to switch systems with an internal management capability.

2.4.1 Installing MLNX-OS® License (CLI)

- **To install an MLNX-OS license via CLI:**

 Step 1. Login as *admin* and change to *Config* mode.

  ```
  switch > enable
  switch # config terminal
  ```
Step 2. Install the license using the key. Run:

```
switch (config) # license install <license key>
```

Step 3. Display the installed license(s) using the following command.

```
switch (config) # show licenses
License 1: <license key>
Feature: EFM_SX
Valid: yes
Active: yes
switch (config) #
```

Make sure that the “Valid” and “Active” fields both indicate “yes”.

Step 4. Save the configuration to complete the license installation. Run:

```
switch (config) # configuration write
```

If you do not save the installation session, you will lose the license at the next system start up.

2.4.2 Installing MLNX-OS License (Web)

➢ To install an MLNX-OS license via WebUI:

Step 1. Log in as admin.

Step 2. Click the Setup tab and then Licensing on the left side navigation pane.

Figure 7: No Licenses Installed
Step 3. Enter your license key(s) in the text box. If you have more than one license, please enter each license in a separate line. Click “Add Licenses” after entering the last license key to install them.

If you wish to add another license key in the future, you can simply enter it in the text box and click “Add Licenses” to install it.

Figure 8: Enter License Key(s) in Text Box

All installed licenses should now be displayed.
2.4.3 Retrieving a Lost License Key

In case of a lost MLNX-OS® license key, contact your authorized Mellanox reseller and provide the switch’s **chassis serial number**.

➢ To obtain the switch’s chassis serial number:

Step 1. Login to the switch.

Step 2. Retrieve the switch’s **chassis serial number** using the command “show inventory”.

```bash
switch (config) # show inventory
================================================================================
Module          Type                  Part number          Serial Number
================================================================================
CHASSIS         SX1035                MSX6036P-1BFR         MT1121X02692
MGMT            SX1035                MSX6036P-1BFR         MT1121X02692
FAN             SXX0XX_FAN            MSX60-FF              MT1121X02722
PS1             SXX0XX_PS             N/A                   N/A
switch (config) #
```

Step 3. Send your Mellanox reseller the following information to obtain the license key:

- The chassis serial number

Step 4. Save the configuration to complete the license installation.

If you do not save the installation session, you will lose the installed licenses at the next system boot.
• The type of license you need to retrieve. Refer to “Licenses” on page 31.

Step 4. Once you receive the license key, you can install the license as described in the sections above.
2.4.4 Commands

file eula upload

file eula upload <filename> <URL>

Uploads the Mellanox End User License Agreement to a specified remote location.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>filename</th>
<th>The Mellanox End User License Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>URL</td>
<td>URL or scp://username[:password]@hostname/path/ filename</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.4.1100</td>
</tr>
<tr>
<td>Role</td>
<td>monitor/admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # file help-docs upload Mellanox_End_User_ License_Agreement.pdf <scp://username[:password]@hostname/path/ filename>
switch (config) #
```

Related Commands

license

Note
file help-docs upload

file help-docs upload `<filename> <URL or scp://username[:password]@hostname/path/filename>`

Uploads the MLNX-OS UM or RN to a specified remote location.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>filename</th>
<th>The file to upload to a remote host</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>URL</td>
<td>URL or scp://username[:password]@hostname/path/filename</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.4.1100</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```bash
switch (config) #
```

Related Commands

Note
license delete

license delete <license-key>

Removes license keys by ID.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.4.1100</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # license delete <license-key>
 switch (config) # |

Related Commands
license install

`licenses install <license-key>`

Installs a new license key.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.4.1100</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # licenses install <license-key>
switch (config) #
```

Related Commands

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
</table>
show licenses

 show licenses

Displays a list of all installed licenses. For each license, the following is displayed:
 • a unique ID which is a small integer
 • the text of the license key as it was added
 • whether or not it is valid and active
 • which feature(s) it is activating
 • a list of all licensable features specifying whether or not it is currently activated by a license

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.4.1100</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

 switch (config) # show licenses
 License 1: <license key>
 Feature: SX_CONFIG
 Valid: yes
 Active: yes
 switch (config) #

Related Commands

Note
3 User Interfaces

3.1 Command Line Interface (CLI) Overview

MLNX-OS® is equipped with an industry-standard CLI. The CLI is accessed through SSH or Telnet sessions, or directly via the console port on the front panel (if it exists).

3.1.1 CLI Modes

The CLI can be in one of the following modes, and each mode makes available a certain group (or level) of commands for execution. The different CLI configuration modes are:

Table 7 - CLI Modes and Config Context

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>When the CLI is launched, it begins in Standard mode. This is the most restrictive mode and only has commands to query a restricted set of state information. Users cannot take any actions that directly affect the system, nor can they change any configuration.</td>
</tr>
<tr>
<td>Enable</td>
<td>The <code>enable</code> command moves the user to Enable mode. This mode offers commands to view all state information and take actions like rebooting the system, but it does not allow any configurations to be changed. Its commands are a superset of those in Standard mode.</td>
</tr>
<tr>
<td>Config</td>
<td>The <code>configure terminal</code> command moves the user from Enable mode to Config mode. Config mode is allowed only for user accounts in the “admin” role (or capabilities). This mode has a full unrestricted set of commands to view anything, take any action, and change any configuration. Its commands are a superset of those in Enable mode. To return to Enable mode, enter <code>exit</code> or <code>no configure</code>. Note that moving directly from/to Standard mode to/from Config mode is not possible.</td>
</tr>
<tr>
<td>Config Interface Management</td>
<td>Configuration mode for management interface mgmt0, mgmt1 and loopback.</td>
</tr>
<tr>
<td>Config Interface Ethernet</td>
<td>Configuration mode for Ethernet interface.</td>
</tr>
<tr>
<td>Config Interface Port Channel</td>
<td>Configuration mode for Port channel (LAG).</td>
</tr>
<tr>
<td>Config VLAN</td>
<td>Configuration mode for VLAN.</td>
</tr>
<tr>
<td>Any Command Mode</td>
<td>Several commands such as “show” can be applied within any context.</td>
</tr>
</tbody>
</table>
3.1.2 Syntax Conventions

To help you identify the parts of a CLI command, this section explains conventions of presenting the syntax of commands.

Table 8 - Syntax Conventions

<table>
<thead>
<tr>
<th>Syntax Convention</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>< > Angled brackets</td>
<td>Indicate a value/variable that must be replaced.</td>
<td><1...65535> or <switch interface></td>
</tr>
<tr>
<td>[] Square brackets</td>
<td>Enclose optional parameters. However, only one parameter out of the list of parameters listed can be used. The user cannot have a combination of the parameters unless stated otherwise.</td>
<td>[destination-ip</td>
</tr>
<tr>
<td>{ } Braces</td>
<td>Enclose alternatives or variables that are required for the parameter in square brackets.</td>
<td>[mode {active</td>
</tr>
<tr>
<td></td>
<td>Vertical bars</td>
<td>Identify mutually exclusive choices.</td>
</tr>
</tbody>
</table>

Do not type the angled or square brackets, vertical bar, or braces in command lines. This guide uses these symbols only to show the types of entries.

CLI commands and options are in lowercase and are case-sensitive. For example, when you enter the enable command, enter it all in lowercase. It cannot be ENABLE or Enable. Text entries you create are also case-sensitive.

3.1.3 Getting Help

You may request context-sensitive help at any time by pressing “?” on the command line. This will show a list of choices for the word you are on, or a list of top-level commands if you have not typed anything yet.

For example, if you are in Standard mode and you type “?” at the command line, then you will get the following list of available commands.

```
switch > ?
c1i    Configure CLI shell options
enable Enter enable mode
exit   Log out of the CLI
help   View description of the interactive help system
no     Negate or clear certain configuration options
show   Display system configuration or statistics
```
slogin Log into another system securely using ssh
switch Configure switch on system
telnet Log into another system using telnet
terminal Set terminal parameters
traceroute Trace the route packets take to a destination
switch-11a596 [standalone: master] >

If you type a legal string and then press “?” without a space character before it, then you will either get a description of the command that you have typed so far or the possible command/parameter completions. If you press “?” after a space character and “<cr>” is shown, this means that what you have entered so far is a complete command, and that you may press Enter (carriage return) to execute it.

Try the following to get started:

?
show ?
show c?
show clock?
show clock ?
show interfaces ? (from enable mode)

You can also enter “help” to view a description of the interactive help system.

Note also that the CLI supports command and/or parameter tab-completions and their shortened forms. For example, you can enter “en” instead of the “enable” command, or “cli cl” instead of “cli clear-history”. In case of ambiguity (more than one completion option is available, that is), then you can hit double tabs to obtain the disambiguation options. Thus, if you are in Enable mode and wish to learn which commands start with the letter “c”, type “c” and click twice on the tab key to get the following:

switch # c<tab>
clear cli configure
switch # c

(There are three commands that start with the letter “c”: clear, cli and configure.)

3.1.4 Prompt and Response Conventions

The prompt always begins with the hostname of the system. What follows depends on what command mode the user is in. To demonstrate by example, assuming the machine name is “switch”, the prompts for each of the modes are:

switch > (Standard mode)
switch # (Enable mode)
switch (config) # (Config mode)

The following session shows how to move between command modes:

switch > (You start in Standard mode)
switch > enable (Move to Enable mode)
switch # (You are in Enable mode)
switch # configure terminal (Move to Config mode)
switch (config) # (You are in Config mode)
switch (config) # exit (Exit Config mode)
switch # (You are back in Enable mode)
switch # disable (Exit Enable mode)
switch > (You are back in Standard mode)
Commands entered do not print any response and simply show the command prompt after you press <Enter>.

If an error is encountered in executing a command, the response will begin with “%”, followed by some text describing the error.

3.1.5 Using the “no” Form

Several Config mode commands offer the negation form using the keyword “no”. This no form can be used to disable a function, to cancel certain command parameters or options, or to reset a parameter value to its default. To re-enable a function or to set cancelled command parameters or options, enter the command without the “no” keyword (with parameter values if necessary).

The following example performs the following:

1. Displays the current CLI session options.
2. Disables auto-log-out.
3. Displays the new CLI session options (auto-log-out is disabled).
4. Re-enables auto-log-out (after 15 minutes).
5. Displays the final CLI session options (auto-log-out is enabled)

```bash
// 1. Display the current CLI session options
switch (config) # show cli
CLI current session settings:
  Maximum line size: 8192
  Terminal width: 157 columns
  Terminal length: 60 rows
  Terminal type: xterm
  Auto-log-out: 15 minutes
  Paging: enabled
  Progress tracking: enabled
  Prefix modes: enabled
...

// 2. Disable auto-log-out
switch (config) # no cli session auto-log-out

// 3. Display the new CLI session options
switch-1 [standalone: master] (config) # show cli
CLI current session settings:
  Maximum line size: 8192
  Terminal width: 157 columns
  Terminal length: 60 rows
  Terminal type: xterm
  Auto-log-out: disabled
  Paging: enabled
  Progress tracking: enabled
  Prefix modes: enabled
...

// 4. Re-enable auto-log-out after 15 minutes
switch (config) # cli session auto-log-out 15
```
3.1.6 Parameter Key

This section provides a key to the meaning and format of all of the angle-bracketed parameters in all the commands that are listed in this document.

Table 9 - Angled Brackets Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><domain></td>
<td>A domain name, e.g. “mellanox.com”.</td>
</tr>
<tr>
<td><hostname></td>
<td>A hostname, e.g. “switch-1”.</td>
</tr>
<tr>
<td><ifname></td>
<td>An interface name, e.g. “mgmt0”, “mgmt1”, “lo” (loopback), etc.</td>
</tr>
<tr>
<td><index></td>
<td>A number to be associated with aliased (secondary) IP addresses.</td>
</tr>
<tr>
<td><IP address></td>
<td>An IPv4 address, e.g. “192.168.0.1”.</td>
</tr>
<tr>
<td><log level></td>
<td>A syslog logging severity level. Possible values, from least to most severe, are: “debug”, “info”, “notice”, “warning”, “error”, “crit”, “alert”, “emerg”.</td>
</tr>
<tr>
<td><GUID></td>
<td>Globally Unique Identifier. A number that uniquely identifies a device or component.</td>
</tr>
<tr>
<td><MAC address></td>
<td>A MAC address. The segments may be 8 bits or 16 bits at a time, and may be delimited by “:” or “.”. So you could say “11:22:33:44:55:66”, “1122:3344:5566”, “11.22.33.44.55.66”, or “1122.3344.5566”.</td>
</tr>
<tr>
<td><netmask></td>
<td>A netmask (e.g. “255.255.255.0”) or mask length prefixed with a slash (e.g. “/24”). These two express the same information in different formats.</td>
</tr>
<tr>
<td><network prefix></td>
<td>An IPv4 network prefix specifying a network. Used in conjunction with a netmask to determine which bits are significant. e.g. “192.168.0.0”.</td>
</tr>
<tr>
<td><regular expression></td>
<td>An extended regular expression as defined by the “grep” in the man page. (The value you provide here is passed on to “grep -E”.)</td>
</tr>
<tr>
<td><node id></td>
<td>ID of a node belonging to a cluster. This is a numerical value greater than zero.</td>
</tr>
<tr>
<td><cluster id></td>
<td>A string specifying the name of a cluster.</td>
</tr>
<tr>
<td><port></td>
<td>TCP/UDP port number.</td>
</tr>
</tbody>
</table>
Table 9 - Angled Brackets Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><TCP port></td>
<td>A TCP port number in the full allowable range [0...65535].</td>
</tr>
<tr>
<td><URL></td>
<td>A normal URL, using any protocol that wget supports, including http, https, ftp, sftp, and tftp; or a pseudo-URL specifying an scp file transfer. The scp pseudo-URL format is scp://username:password@hostname/path/filename. Note that the path is an absolute path. Paths relative to the user's home directory are not currently supported. The implementation of ftp does not support authentication, so use scp or sftp for that. Note also that if you omit the “:password” part, you may be prompted for the password in a follow up prompt, where you can type it securely (without the characters being echoed). This prompt will occur if the “cli default prompt empty-password” setting is true; otherwise, the CLI will assume you do not want any password. If you include the “:” character, this will be taken as an explicit declaration that the password is empty, and you will not be prompted in any case.</td>
</tr>
</tbody>
</table>

3.1.7 Command Output Filtering

The MLNX-OS CLI supports filtering “show” commands to display lines containing or excluding certain phrases or characters. To filter the outputs of the “show” commands use the following format:

```
switch (config) # <show command> | [include | exclude] <extended regular expression> [<ignore-case>] [next <lines>] [prev <lines>] | exclude <extended regular expression> [<ignore-case>] [next <lines>] [prev <lines>]
```

The filtering parameters are separated from the show command they filter by a pipe character (i.e. “|”). Quotation marks may be used to include or exclude a string including space, and multiple filters can be used simultaneously. For example:

```
switch (config) # <show command> | [include <extended regular expression> [<ignore-case>] [next <lines>]] [prev <lines>] | exclude <extended regular expression> [<ignore-case>] [next <lines>]] [prev <lines>]
```

Examples:

```
switch (config) # show asic-version | include SX
MGMT       SX                  9.3.3150

arc-switch14 [standalone: master] (config) # show module | exclude PS
====================================================
Module   Type               Present Power Is Fatal
====================================================
MGMT     SX1036             1       1     Not Fatal
FAN      SXX0XX_FAN         1       1     Not Fatal

switch (config) # show interfaces | include "Eth|discard pac"
Eth1/1   0 discard packets
0 discard packets
Eth1/2   0 discard packets
0 discard packets
```
3.2 Web Interface Overview

MLNX-OS® package equipped with web interface which is a web GUI that accept input and provide output by generating webpages which can be viewed by the user using a web browser.

The following web browsers are supported:

• Internet Explorer 8.0 or higher
• Chrome 18 or higher
• Mozilla Firefox 12 or higher
• Safari 5 or higher

The web interface makes available the following perspective tabs:

• Setup
• System
• Security
• Ports
• Status
• IB SM Management
• Fabric Inspector
• Ethernet Management
• IP Route
• Gateway

Make sure to save your changes before switching between menus or submenus. Click the “Save” button to the right of “Save Changes?”.
3.2.1 Setup Menu

The Setup menu makes available the following submenus (listed in order of appearance from top to bottom):

Table 10 - WebUI Setup Submenus

<table>
<thead>
<tr>
<th>Submenu Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfaces</td>
<td>Obtains the status of, configures, or disables interfaces to the InfiniBand fabric. Thus, you can: set or clear the IP address and netmask of an interface; enable DHCP to dynamically assign the IP address and netmask; and set interface attributes such as MTU, speed, duplex, etc.</td>
</tr>
<tr>
<td>HA</td>
<td>Creates, joins or modifies an InfiniBand subnet.</td>
</tr>
<tr>
<td>Routing</td>
<td>Configures, removes or displays the default gateway, and the static and dynamic routes.</td>
</tr>
<tr>
<td>Hostname</td>
<td>Configures or modifies the hostname. Configures or deletes static hosts. Note: Changing hostname stamps a new HTTPS certificate.</td>
</tr>
<tr>
<td>DNS</td>
<td>Configures, removes, modifies or displays static and dynamic name servers.</td>
</tr>
<tr>
<td>Login Messages</td>
<td>Edits the login messages: Message of the Day (MOTD), Remote Login message, and Local Login message.</td>
</tr>
</tbody>
</table>
3.2.2 System Menu

The **System** menu makes available the following sub-menus (listed in order of appearance from top to bottom):

Table 11 - WebUI System Submenus

<table>
<thead>
<tr>
<th>Submenu Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Resolution</td>
<td>Adds static and dynamic ARP entries, and clears the dynamic ARP cache.</td>
</tr>
<tr>
<td>IPSec</td>
<td>Configures IPSec.</td>
</tr>
<tr>
<td>Neighbors</td>
<td>Displays IPv6 neighbor discovery protocol.</td>
</tr>
<tr>
<td>Virtualization</td>
<td>Manages the virtualization and virtual machines.</td>
</tr>
<tr>
<td>Virtual Switch Mgmt</td>
<td>Configures the system profile.</td>
</tr>
<tr>
<td>Web</td>
<td>Configures web user interface and proxy settings.</td>
</tr>
<tr>
<td>SNMP</td>
<td>Configures SNMP attributes, SNMP admin user, and trap sinks.</td>
</tr>
<tr>
<td>Email Alerts</td>
<td>Configures the destination of email alerts and the recipients to be notified.</td>
</tr>
<tr>
<td>XML gateway</td>
<td>Provides an XML request-response protocol to get and set hardware manage-</td>
</tr>
<tr>
<td></td>
<td>ment information.</td>
</tr>
<tr>
<td>Logs</td>
<td>Sets up system log files, remote log sinks, and log formats.</td>
</tr>
<tr>
<td>Configurations</td>
<td>Manages, activates, saves, and imports MLNX-OS SwitchX configuration files,</td>
</tr>
<tr>
<td></td>
<td>and executes CLI commands.</td>
</tr>
<tr>
<td>Date and Time</td>
<td>Configures the date, time, and time zone of the switch system.</td>
</tr>
<tr>
<td>NTP</td>
<td>Configures NTP (Network Time Protocol) and NTP servers.</td>
</tr>
<tr>
<td>Licensing</td>
<td>Manages MLNX-OS licenses.</td>
</tr>
<tr>
<td>Modules</td>
<td>Displays a graphic illustration of the system modules. By moving the mouse</td>
</tr>
<tr>
<td></td>
<td>over the ports in the front view, a pop-up caption is displayed to indicate</td>
</tr>
<tr>
<td></td>
<td>the status of the port. The port state (active/down) is differentiated by a</td>
</tr>
<tr>
<td></td>
<td>color scheme (green for active, gray/black for down). By moving the mouse</td>
</tr>
<tr>
<td></td>
<td>over the rear view, a pop-up caption is displayed to indicate the leaf part</td>
</tr>
<tr>
<td></td>
<td>information.</td>
</tr>
<tr>
<td>Inventory</td>
<td>Displays a table with the following information about the system modules: mod-</td>
</tr>
<tr>
<td></td>
<td>ule name, type, serial number, ordering part number and Asic firmware version.</td>
</tr>
<tr>
<td>Power Management</td>
<td>Displays a table with the following information about the system power supplies:</td>
</tr>
<tr>
<td></td>
<td>power supply name, power, voltage level, current consumption, and status. A</td>
</tr>
<tr>
<td></td>
<td>total power summary table is also displayed providing the power used, the</td>
</tr>
<tr>
<td></td>
<td>power capacity, and the power available.</td>
</tr>
<tr>
<td>MLNX-OS Upgrade</td>
<td>Displays the installed MLNX-OS images (and the active partition), uploads a</td>
</tr>
<tr>
<td></td>
<td>new image, and installs a new image.</td>
</tr>
</tbody>
</table>
3.2.3 Security Menu

The **Security** menu makes available the following sub-menus (listed in order of appearance from top to bottom):

Table 12 - WebUI Security Submenus

<table>
<thead>
<tr>
<th>Submenu Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users</td>
<td>Manages (setting up, removing, modifying) user accounts.</td>
</tr>
<tr>
<td>Admin Password</td>
<td>Modifies the system administrator password.</td>
</tr>
<tr>
<td>SSH</td>
<td>Displays and generate host keys.</td>
</tr>
<tr>
<td>AAA</td>
<td>Configures AAA (Authentication, Authorization, and Accounting) security services such as authentication methods and authorization.</td>
</tr>
<tr>
<td>Login Attempts</td>
<td>Manages login attempts</td>
</tr>
<tr>
<td>RADIUS</td>
<td>Manages Radius client.</td>
</tr>
<tr>
<td>TACACS+</td>
<td>Manages TACACS+ client.</td>
</tr>
<tr>
<td>LDAP</td>
<td>Manages LDAP client.</td>
</tr>
<tr>
<td>Certificate</td>
<td>Manages certificates.</td>
</tr>
</tbody>
</table>

3.2.4 Ports Menu

The Ports menu displays the port state and enables some configuration attributes of a selected port. It also enables modification of the port configuration. A graphical display of traffic over time (last hour or last day) through the port is also available.

Table 13 - WebUI Ports Submenus

<table>
<thead>
<tr>
<th>Submenu Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ports</td>
<td>Manages port attributes, counters, transceiver info and displays a graphical counters histogram.</td>
</tr>
<tr>
<td>Phy Profile</td>
<td>Provides the ability to manage phy profiles.</td>
</tr>
<tr>
<td>Monitor Session</td>
<td>Displays monitor session summary and enables configuration of a selected session.</td>
</tr>
</tbody>
</table>
3.2.5 Status Menu

The **Status** menu makes available the following sub-menus (listed in order of appearance from top to bottom):

Table 14 - WebUI Status Submenus

<table>
<thead>
<tr>
<th>Submenu Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>Displays general information about the switch system and the MLNX-OS image, including current date and time, hostname, uptime of system, system memory, CPU load averages, etc.</td>
</tr>
<tr>
<td>Profile and Capabilities</td>
<td>Displays general information about the switch system capabilities such as the enabled profiles (e.g IB/ETH) and their corresponding values.</td>
</tr>
<tr>
<td>Temperature</td>
<td>Provides a graphical display of the switch module sensors’ temperature levels over time (1 hour). It is possible to display either the temperature level of one module’s sensor or the temperature levels of all the module sensors’ together.</td>
</tr>
<tr>
<td>Power Supplies</td>
<td>Provides a graphical display of one of the switch’s power supplies voltage level over time (1 hour).</td>
</tr>
<tr>
<td>Fans</td>
<td>Provides a graphical display of fan speeds over time (1 hour). The display is per fan unit within a fan module.</td>
</tr>
<tr>
<td>CPU Load</td>
<td>Provides a graphical display of the management CPU load over time (1 hour).</td>
</tr>
<tr>
<td>Memory</td>
<td>Provides a graphical display of memory utilization over time (1 day).</td>
</tr>
<tr>
<td>Network</td>
<td>Provides a graphical display of network usage (transmitted and received packets) over time (1 day). It also provides per interface statistics.</td>
</tr>
<tr>
<td>Logs</td>
<td>Displays the system log messages. It is possible to display either the currently saved system log or a continuous system log.</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Performs specific maintenance operations automatically on a predefined schedule.</td>
</tr>
<tr>
<td>Alerts</td>
<td>Displays a list of the recent health alerts and enables the user to configure health settings.</td>
</tr>
</tbody>
</table>

3.2.6 ETH Mgmt

The ETH Mgmt menu is not applicable when the switch profile is not Ethernet or VPI.

The **ETH Mgmt** menu makes available the following sub-menus (listed in order of appearance from top to bottom):

Table 15 - WebUI ETH Mgmt Submenus

<table>
<thead>
<tr>
<th>Submenu Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning Tree</td>
<td>Configures and monitors spanning tree protocol.</td>
</tr>
</tbody>
</table>
3.2.7 **IP Route**

The **IP Route** menu makes available the following sub-menus (listed in order of appearance from top to bottom):

Table 16 - WebUI IP Route Submenus

<table>
<thead>
<tr>
<th>Submenu Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router Global</td>
<td>Enables/disables IP Routing protocol on the machine.</td>
</tr>
<tr>
<td>IP Route</td>
<td>Not implemented.</td>
</tr>
<tr>
<td>IP Interface</td>
<td>Not implemented.</td>
</tr>
<tr>
<td>Address Resolution</td>
<td>Not implemented.</td>
</tr>
<tr>
<td>IP Diagnostic</td>
<td>Not implemented.</td>
</tr>
</tbody>
</table>

3.3 **Secure Shell (SSH)**

It is recommended not to use more than 100 concurrent SSH sessions to the switch.

3.3.1 **Adding a Host and Providing an SSH Key**

To add entries to the global known-hosts configuration file and its SSH value:

Step 1. Change to Config mode Run:

```bash
switch [standalone: master] > enable
switch [standalone: master] # configure terminal
switch [standalone: master] (config) #
```
Step 2. Add an entry to the global known-hosts configuration file and its SSH value. Run:

```
switch [standalone: master] (config) # ssh client global known-host "myserver ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAIEAsXeklqc8T0EN2mmMCoVcfhueaRYzIVqt4rVsrERIjmLJh4mkYYIa8hGGikNa+
t5w2dRrNnxHLYK51bUsGI2nWxTI0pme3pA2eMY7G42MgGIW9x0uaXgAA3eBeoUjPdi6+1BqchWk0nTb+gMfI/     
MK/6eQNns7أتTvng/0SryUn="
```

```
switch [standalone: master] (config) #
```

Step 3. Verify what keys exist in the host. Run:

```
switch [standalone: master] (config) # show ssh client
SSH client Strict Hostkey Checking: ask
SSH Global Known Hosts:
   Entry 1: myserver
No SSH user identities configured.
No SSH authorized keys configured.
```

```
switch [standalone: master] (config) #
```

3.3.2 Retrieving Return Codes when Executing Remote Commands

➢ To stop the CLI and set the system to send return errors if some commands fail:

Step 1. Connect to the system from the host SSH.

Step 2. Add the `-h` parameter after the `cli` (as shown in the example below) to notify the system to halt on failure and pass through the exit code.

```
ssh <username>@<hostname> cli -h '"enable" "show interfaces brief"'
```
3.4 Commands

3.4.1 CLI Session

This chapter displays all the relevant commands used to manage CLI session terminal.

cli clear-history

```
cli clear-history
```

Clears the command history of the current user.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # cli clear-history
| | switch (config) # |
| Related Commands | N/A |

Note
cli default

cli default {auto-logout <minutes> | paging enable | prefix-modes {enable | show-config} | progress enable | prompt {confirm-reload | confirm-reset | confirm-unsaved | empty-password}}

no cli default {auto-logout | paging enable | prefix-modes {enable | show-config} | progress enable prompt {confirm-reload | confirm-reset | confirm-unsaved | empty-password}

Configures default CLI options for all future sessions.
The no form of the command deletes or disables the default CLI options.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>minutes</td>
<td>Configures keyboard inactivity timeout for automatic logout. Range is 0-35791 minutes. Setting the value to 0 or using the no form of the command disables the auto-logout.</td>
</tr>
<tr>
<td>paging enable</td>
<td>Enables text viewing one screen at a time.</td>
</tr>
<tr>
<td>prefix-modes {enable</td>
<td>show-config}</td>
</tr>
<tr>
<td></td>
<td>• “prefix-modes enable” enables prefix modes for current and all future sessions</td>
</tr>
<tr>
<td></td>
<td>• “prefix-modes show-config” uses prefix modes in “show configuration” output for current and all future sessions</td>
</tr>
<tr>
<td>progress enable</td>
<td>Enables progress updates.</td>
</tr>
<tr>
<td>prompt confirm-reload</td>
<td>Prompts for confirmation before rebooting.</td>
</tr>
<tr>
<td>prompt confirm-reset</td>
<td>Prompts for confirmation before resetting to factory state.</td>
</tr>
<tr>
<td>prompt confirm-unsaved</td>
<td>Confirms whether or not to save unsaved changes before rebooting.</td>
</tr>
<tr>
<td>prompt empty-password</td>
<td>Prompts for a password if none is specified in a pseudo-URL for SCP.</td>
</tr>
</tbody>
</table>

Default	N/A
Configuration Mode	Config
History	3.1.0000
Role	admin
Example

switch (config) # cli default prefix-modes enable
switch (config) # show cli

CLI current session settings:
Maximum line size: 8192
Terminal width: 171 columns
Terminal length: 38 rows
Terminal type: xterm
X display setting: (none)
Auto-logout: disabled
Paging: enabled
Progress tracking: enabled
Prefix modes: disabled

CLI defaults for future sessions:
Auto-logout: disabled
Paging: enabled
Progress tracking: enabled
Prefix modes: enabled (and use in 'show configuration')

Settings for both this session and future ones:
Show hidden config: yes
Confirm losing changes: yes
Confirm reboot/shutdown: no
Confirm factory reset: yes
Prompt on empty password: yes

Related Commands
show cli

Note
cli session

```
cli session {auto-logout <minutes> | paging enable | prefix-modes {enable | show-config} | progress enable | terminal {length <size> | resize | type <terminal-type> | width} | x-display full <display>}
no cli session {auto-logout | paging enable | prefix-modes {enable | show-config} | progress enable | terminal type | x-display}
```

Configures default CLI options for all future sessions. The no form of the command deletes or disables the CLI sessions.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>minutes</th>
<th>Configures keyboard inactivity timeout for automatic logout. Range is 0-35791 minutes. Setting the value to 0 or using the no form of the command disables the auto logout.</th>
</tr>
</thead>
<tbody>
<tr>
<td>paging enable</td>
<td></td>
<td>Enables text viewing one screen at a time.</td>
</tr>
</tbody>
</table>
| prefix-modes enable | show-config | Configures the prefix modes feature of CLI.
- “prefix-modes enable” enables prefix modes for current and all future sessions
- “prefix-modes show-config” uses prefix modes in “show configuration” output for current and all future sessions |
| progress enable | | Enables progress updates. |
| terminal length | | Sets the number of lines for the current terminal. Valid range is 5-999. |
| terminal resize | | Resizes the CLI terminal settings (to match the actual terminal window). |
| terminal-type | | Sets the terminal type. Valid options are:
- ansi
- console
- dumb
- linux
- unknown
- vt52
- vt100
- vt102
- vt220
- vt320
- xterm |
| terminal width | | Sets the width of the terminal in characters. Valid range is 34-999. |
| x-display full | <display> | Specifies the display as a raw string, e.g. localhost:0.0. |

Default

N/A

Configuration Mode

Config

History

3.1.0000

Role

admin
Example

switch (config) # cli session auto-logout
switch (config) #

Related Commands

show terminal

Note
terminal

terminal {length <number of lines> | resize | type <terminal type> | width <number of characters>}

no terminal type

Configures default CLI options for all future sessions. The no form of the command clears the terminal type.

| Syntax Description | length | Sets the number of lines for this terminal
		Range: 5-999
resize		Resizes the CLI terminal settings (to match with real terminal)
type		Sets the terminal type. Possible values: ansi, console, dumb, linux, screen, vt52, vt102, vt220, xterm.
width		Sets the width of this terminal in characters
		Range: 34-999

Default: N/A

Configuration Mode: Config

History: 3.1.0000

Role: admin

Example:

```
switch (config) # terminal length 500
switch (config) #
```

Related Commands: show terminal

Note
terminal sysrq enable

```
terminal sysrq enable
no terminal sysrq enable
```

Enable SysRq over the serial connection (RS232 or Console port). The no form of the command disables SysRq over the serial connection (RS232 or Console port).

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Enabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # terminal sysrq enable
switch (config) #
```

Related Commands

show terminal

Note
show cli

show cli

Displays the CLI configuration and status.

Syntax Description

N/A

Default

N/A

Configuration Mode

Any Command Mode

History

3.1.0000

Role

admin

Example

```
switch (config) # show cli
CLI current session settings:
  Maximum line size:        8192
  Terminal width:           171 columns
  Terminal length:          38 rows
  Terminal type:            xterm
  X display setting:        (none)
  Auto-logout:              disabled
  Paging:                   enabled
  Progress tracking:        enabled
  Prefix modes:             disabled

CLI defaults for future sessions:
  Auto-logout:              disabled
  Paging:                   enabled
  Progress tracking:        enabled
  Prefix modes:             enabled (and use in 'show configuration')

Settings for both this session and future ones:
  Show hidden config:       yes
  Confirm losing changes:   yes
  Confirm reboot/shutdown:  no
  Confirm factory reset:    yes
  Prompt on empty password: yes
switch (config) #
```

Related Commands

cli default

Note
3.4.2 Banner

banner login

```
banner {login | login-remote | login-local} <string>
no banner login
```

Sets the CLI welcome banner message. The login-remote refers to the SSH connections banner, while the login-local refers to the serial connection banner. The no form of the command resets the system login banner to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>string</th>
<th>Text string.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>“Mellanox MLNX-OS Switch Management”</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```
switch (config) # banner login example
switch (config) # show banner
Banners:
    MOTD:
    Mellanox Switch

    Login: example

switch (config) #
```

Related Commands

show banner

Note

If more than one word is used (there is a space) quotation marks should be added (i.e. “xxxx xxxx”).
banner login-local

banner login-local <string>
no banner login-local

Sets system login local banner.
The no form of the command resets the banner.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>string</th>
<th>Text string.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # banner login-local Testing switch (config) #</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>show banner</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>If more then one word is used (there is a space) quotation marks should be added (i.e. “xxxx xxxx”).</td>
<td></td>
</tr>
</tbody>
</table>
banner login-remote

banner login-remote <string>
no banner login-remote

Sets system login remote banner.
The no form of the command resets the banner.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>string</th>
<th>Text string.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | switch (config) # banner login-remote Testing
| | switch (config) # | |
| Related Commands | show banner | |
| Note | If more then one word is used (there is a space) quotation marks should be added (i.e. “xxxx xxxx”). |
banner motd

```
banner motd <string>
no banner motd
```

Sets the message of the day banner.
The no form of the command resets the system Message of the Day banner.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>string</th>
<th>Text string.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>“Mellanox Switch”</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch (config) # banner motd “My Banner”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch (config) # show banner</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Banners:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOTD: My-Banner</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Login:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mellanox MLNX-OS Switch Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch (config) #</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>show banner</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Note</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• If more then one word is used (there is a space) quotation marks should be added (i.e. "xxxx xxxx").</td>
</tr>
<tr>
<td></td>
<td>• To insert a multi-line MotD, hit Ctrl-V (escape sequence) followed by Ctrl-J (new line sequence). The symbol “^J” should appear. Then, whatever is typed after it becomes the new line of the MotD. Remember to also include the string between quotation marks.</td>
</tr>
</tbody>
</table>
show banner

show banner

Displays configured banners.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>unpriv/monitor/admin</td>
</tr>
</tbody>
</table>

Example

```sh
switch (config) # show banner
Banners:
   MOTD: Testing
   Login:
       Mellanox MLNX-OS Switch Management
switch (config) #
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>banner login</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>banner motd</td>
</tr>
</tbody>
</table>

Note
3.4.3 SSH

ssh server enable

```
ssh server enable
no ssh server enable
```

Enables the SSH server.
The no form of the command disables the SSH server.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>SSH server is enabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # ssh server enable
switch (config) # show ssh server
SSH server configuration:
  SSH server enabled: yes
  Server security strict mode: no
  Minimum protocol version: 2
  TCP forwarding enabled: yes
  X11 forwarding enabled: no
  SSH server ports: 22

  Interface listen enabled: yes
  No Listen Interfaces.

  Host Key Finger Prints:
```

Related Commands

show ssh server

Note

Disabling SSH server does not terminate existing SSH sessions, it only prevents new ones from being established.
ssh server host-key

`ssh server host-key {<key-type> {private-key <private-key>| public-key <public-key>} | generate}`

Manipulates host keys for SSH.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
</table>
| key-type | • rsa1 - RSAv1
| | • rsa2 - RSAv2
| | • dsa2 - DSAv2 |
| private-key | Sets new private-key for the host keys of the specified type. |
| public-key | Sets new public-key for the host keys of the specified type. |
| generate | Generates new RSA and DSA host keys for SSH. |

<table>
<thead>
<tr>
<th>Default</th>
<th>SSH keys are locally generated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td></td>
<td>3.4.2300 Added notes</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
Example

switch (config) # ssh server host-key dsa2 private-key
Key: **
Confirm: **
switch (config) # show ssh server host-keys
SSH server configuration:
 SSH server enabled: yes
 Minimum protocol version: 2
 X11 forwarding enabled: no
 SSH server ports: 22

 Interface listen enabled: yes
 No Listen Interfaces.

Host Key Finger Prints:

Host Keys:
 RSA v1 host key: \"switch-5ea5d8 1024 35
12457497995374010105491416867919987976776882016984375942831915584962796
9937540659608504272219042450456598705086665814485933132732365068789517
13570509420864336951833046700451354269467758379288848962624165330724512
160918998303869151036219385577978596282214644533444813712105628654158
3022982202576029771297093\""
 RSA v2 host key: \"switch-5ea5d8 ssh-rsa AAAA
IEArB9i5OnukAHNUOwkpCmE10m88kXjgBZL22+FStfaSn+sOpVYxrece2eyuzXsoZ1VtFT
Fydwy0YVMS0Kcv2PuCrPZV/
GYd31QEnn22rEmrlPrKrCrM11Xly6DF1r3QgwWM1baobmD1g/gSzIWz/gc4Jgqf2CyX-
Fq4pzaR1jar1Vk=\"
 DSA v2 host key: \"switch-5ea5d8 ssh-dss AAAAB3NzaC1kc3MAAC-
BAMeJS+nyaHHRbw3tJq1LttD3S2ZVC5i4ZeVMMmp28VLP94cyyug39VCDm9pEvA17h
zzRSAgeRNgakb/YLD/7nGH3w3p19Fx81fe0H3bPJzG+m7eGRsmwqrtXK1KAb00-
jlzuZnpfP0IHjwF+TbR3kSHwVzqYwV/bAAAAPQCboDpEqBZzA+2Kylk1uabz2lpHkgQAAA-
IAJK+StiQdtOrw15UMCtt7rTe5507DSFyrEYtTrnBbtgVSNNqWWp5QYpVDHQq9t6qCM
4V039uHUGQTMDIX7t+9mfB87YyU05a/nib3GhNhnxHwzbzlr9hqLL7FSHA7DY7bVoz-
Rlq6H64eqKQGzqy1ps/F4E31lyn7GC4EQQAAIA/2osHlpfxf+NRjpfgtfnRQVMf/gE9V9zc9/
AMuX1JnS5vHeVe5CZpWcI+LwMOjOhoh3jYW31czGkR0oDa9vUbkXTen8bkgUxySA1rH
NPOqQ0eT4L09A1tSp3imxHqds7jixFvOTEKWXrgczlmTB8+zjhUah/YuUb12H

Related Commands
 show ssh server
 system secure-mode enable

Note
 When working in secure mode, the commands “ssh server host-key rsa1” and “ssh
server host-key generate” do not create RSAv1 key-type.
ssh server listen

ssh server listen {enable | interface <inf>}
no ssh server listen {enable | interface <inf>}

Enables the listen interface restricted list for SSH. If enabled, and at least one non-
DHCP interface is specified in the list, the SSH connections are only accepted on
those specified interfaces.
The no form of the command disables the listen interface restricted list for SSH.
When disabled, SSH connections are not accepted on any interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables SSH interface restrictions on access to this system.</td>
</tr>
<tr>
<td>interface <inf></td>
<td>Adds interface to SSH server access restriction list. Possible interfaces are “lo”, and “mgmt0”.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>SSH listen is enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # ssh server listen enable
switch (config) # show ssh server
SSH server configuration:
  SSH server enabled:       yes
  Minimum protocol version: 2
  X11 forwarding enabled:   no
  SSH server ports:         22
  Interface listen enabled: yes
  No Listen Interfaces.

Host Key Finger Prints:
```

Related Commands

show ssh server

Note
ssh server min-version

`ssh server min-version <version>`
`no ssh server min-version`

Sets the minimum version of the SSH protocol that the server supports.
The no form of the command resets the minimum version of SSH protocol supported.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>version Possible versions are 1 and 2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>2</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| **Example** | switch (config) # ssh server min-version 2
switch (config) # show ssh server
SSH server configuration:
 SSH server enabled: yes
 Minimum protocol version: 2
 X11 forwarding enabled: no
 SSH server ports: 22
 Interface listen enabled: yes
 No Listen Interfaces.
 Host Key Fingerprint:
switch (config) # |

Related Commands

- show ssh server

Note
ssh server ports

`ssh server ports {<port1> [<port2>...]}`

Specifies which ports the SSH server listens on.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

| Example | switch (config) # ssh server ports 22
| | switch (config) # show ssh server
| | SSH server configuration:
| | SSH server enabled: yes
| | Minimum protocol version: 2
| | X11 forwarding enabled: no
| | SSH server ports: 22
| | Interface listen enabled: yes
| | No Listen Interfaces.

| Related Commands | show ssh server |

| Note | • Multiple ports can be specified by repeating the <port> parameter
| | • The command will remove any previous ports if not listed in the command |
ssh server security strict

ssh server security strict

Enables strict security settings.
The no form of the command disables strict security settings.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # ssh server security strict.
 switch (config) # |
| Related Commands | show ssh server |
| Note | |

Mellanox Technologies Confidential | 73
ssh server tcp-forwarding enable

Enables TCP port forwarding.
The no form of the command disables TCP port forwarding.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # ssh server tcp-forwarding enable
switch (config) #
```

Related Commands

show ssh server
ssh server x11-forwarding

ssh server x11-forwarding enable
no ssh server x11-forwarding enable

Enables X11 forwarding on the SSH server.
The no form of the command disables X11 forwarding.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>X11-forwarding is disabled.</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```bash
switch (config) # ssh server x11-forwarding enable
switch (config) # show ssh server
SSH server configuration:
  SSH server enabled:       yes
  Minimum protocol version: 2
  X11 forwarding enabled:   yes
  SSH server ports:         22

  Interface listen enabled: yes
  No Listen Interfaces.

  Host Key Finger Prints:

switch (config) #
```

Related Commands
N/A

Note
ssh client global

`ssh client global {host-key-check <policy>} | known-host <known-host-entry>`

no ssh client global {host-key-check | known-host localhost}

Configures global SSH client settings.
The no form of the command negates global SSH client settings.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
</table>
| host-key-check <policy> | Sets SSH client configuration to control how host key checking is performed. This parameter may be set in 3 ways.
 - If set to “no” it always permits connection, and accepts any new or changed host keys without checking
 - If set to “ask” it prompts user to accept new host keys, but does not permit a connection if there was already a known host entry that does not match the one presented by the host
 - If set to “yes” it only permits connection if a matching host key is already in the known hosts file |

| known-host | Adds an entry to the global known-hosts configuration file. |

| known-host-entry | Adds/removes an entry to/from the global known-hosts configuration file. The entry consist of “<IP> <key-type> <key>". |

Default

`host-key-check - ask, no keys are configured by default`

Configuration Mode

`Config`

History

`3.1.0000`

Role

`admin`

Example

```
switch (config) # ssh client global host-key-check no
switch (config) # ssh client global known-host "72.30.2.2 ssh-rsa AAAAB3NzaC1yc2EAAAABAIAwAAAADwAAoJUa76/JgB= zL22+F5tfaSn+50pVYxrceZeyuzXaoZ1VtFTK2FydwY0YvM0KcP2uCrFzV/ GYd3QEnn2ZrEmrilPrCrFl11X0y6DFlr3OgwWm1baobmDiG/gSziWz/gc4Jgqf2CyX- Fg4pzaR1jar1V=-"
switch (config) # show ssh client
SSH client Strict Hostkey Checking: ask
SSH Global Known Hosts:
  Entry 1: 72.30.2.2
No SSH user identities configured.
No SSH authorized keys configured.
switch (config) #
```
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>show ssh client</th>
</tr>
</thead>
</table>

Note
ssh client user

```
ssh client user <username> {authorized-key sshv2 <public key> | identity <key type> {generate | private-key [<private key>] | public-key [<public key>] | known-host <known host> remove}
no ssh client user admin {authorized-key sshv2 <public key ID> | identity <key type>}
```

Adds an entry to the global known-hosts configuration file, either by generating new key, or by adding manually a public or private key.

The no form of the command removes a public key from the specified user's authorized key list, or changes the key type.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>username</td>
<td>The specified user must be a valid account on the system. Possible values for this parameter are “admin”, “monitor”, “xmladmin”, and “xmluser”.</td>
</tr>
<tr>
<td>authorized-key sshv2 <public key></td>
<td>Adds the specified key to the list of authorized SSHv2 RSA or DSA public keys for this user account. These keys can be used to log into the user's account.</td>
</tr>
<tr>
<td>identity <key type></td>
<td>Sets certain SSH client identity settings for a user, dsa2 or rsa2.</td>
</tr>
<tr>
<td>generate</td>
<td>Generates SSH client identity keys for specified user.</td>
</tr>
<tr>
<td>private-key</td>
<td>Sets private key SSH client identity settings for the user.</td>
</tr>
<tr>
<td>public-key</td>
<td>Sets public key SSH client identity settings for the user.</td>
</tr>
<tr>
<td>known-host <known host></td>
<td>Removes host from user's known host file.</td>
</tr>
</tbody>
</table>

Default

No keys are created by default

Configuration Mode

Config

History

3.1.0000

Role

admin

Example

```
switch (config) # ssh client user admin known-host 172.30.1.116 remove
switch (config) #
```

Related Commands

show ssh client

Note

If a key is being pasted from a cut buffer and was displayed with a paging program, it is likely that newline characters have been inserted, even if the output was not long enough to require paging. One can specify “no cli session paging enable” before running the “show” command to prevent the newlines from being inserted.
slogin

`slogin [<slogin options>] <hostname>`

Invokes the SSH client. The user is returned to the CLI when SSH finishes.

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-1</code></td>
<td>bind_address</td>
</tr>
<tr>
<td><code>-2</code></td>
<td>cipher_spec</td>
</tr>
<tr>
<td><code>-4</code></td>
<td>escape_char</td>
</tr>
<tr>
<td><code>-6</code></td>
<td>configfile</td>
</tr>
<tr>
<td><code>-A</code></td>
<td>identity_file</td>
</tr>
<tr>
<td><code>-C</code></td>
<td>port</td>
</tr>
<tr>
<td><code>-G</code></td>
<td>login_name</td>
</tr>
<tr>
<td><code>-K</code></td>
<td>mac_spec</td>
</tr>
<tr>
<td><code>-N</code></td>
<td>option</td>
</tr>
<tr>
<td><code>-O</code></td>
<td>port:host:port</td>
</tr>
<tr>
<td><code>-Q</code></td>
<td>host</td>
</tr>
<tr>
<td><code>-V</code></td>
<td>command</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config

History

3.1.0000

Role

monitor/admin

Example

```
switch (config) # slogin 192.168.10.70
The authenticity of host '192.168.10.70 (192.168.10.70)' can't be established.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.10.70' (RSA) to the list of known hosts.

Mellanox MLNX-OS Switch Management

Last login: Sat Feb 28 22:55:17 2009 from 10.208.0.121

Mellanox Switch

switch (config) #
```

Related Commands

N/A

Note

N/A
show ssh client

show ssh client

Displays the client configuration of the SSH server.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```bash
switch (config) # show ssh client
SSH client Strict Hostkey Checking: ask

SSH Global Known Hosts:
Entry 1: 72.30.2.2

No SSH user identities configured.
No SSH authorized keys configured.
```

Related Commands

| N/A |

Note

| N/A |
show ssh server

Displays SSH server configuration.

Syntax Description
N/A

Default
N/A

Configuration Mode
Config

History
3.1.0000

3.3.5050 Updated Example

Role
admin

Example

```
switch (config) # show ssh server
SSH server configuration:
   SSH server enabled: yes
   Server security strict mode: no
   Minimum protocol version: 2
   TCP forwarding enabled: yes
   X11 forwarding enabled: no
   SSH server ports: 22

   Interface listen enabled: yes
   No Listen Interfaces.

   Host Key Finger Prints and Key Lengths:
      RSA v2 host key: 15:e2:a8:45:1c:58:1b:00:cc:29:ec:00:38:49:00 (2048)
```

switch (config) #

Related Commands
ssh server

Note
3.4.4 Remote Login

telnet

Logs into another system using telnet.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # (config) # telnet
telnet> |
| Related Commands | telnet-server |
| Note | |
telnet-server enable

```
telnet-server enable
no telnet-server enable
```

Enables the telnet server.
The no form of the command disables the telnet server.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Telnet server is disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # telnet-server enable
switch (config) # show telnet-server
Telnet server enabled: yes |
| Related Commands | show telnet-server |
| Note | |
show telnet-server

show telnet-server

Displays telnet server settings.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # show telnet-server
Telnet server enabled: yes
switch (config) # |

Related Commands
telnet-server enable

Note
3.4.5 Web Interface

web auto-logout

```
web auto-logout <number of minutes>
no web auto-logout <number of minutes>
```

Configures length of user inactivity before auto-logout of a web session.
The no form of the command disables the web auto-logout (web sessions will never logged out due to inactivity).

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>number of minutes</th>
<th>The length of user inactivity in minutes. 0 will disable the inactivity timer (same as a “no web auto-logout” command).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>60 minutes</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Updated Example</td>
<td>3.3.5050</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```
switch (config) # web auto-logout 60
switch (config) # show web

Web User Interface:
Web interface enabled: yes
HTTP enabled: yes
HTTP port: 80
HTTP redirect to HTTPS: no
HTTPS enabled: yes
HTTPS port: 443
HTTPS ssl-ciphers: all
HTTPS certificate name: default-cert
Listen enabled: yes
No Listen Interfaces.
Inactivity timeout: 1 hr
Session timeout: 2 hr 30 min
Session renewal: 30 min

Web file transfer proxy:
Proxy enabled: no

Web file transfer certificate authority:
HTTPS server cert verify: yes
HTTPS supplemental CA list: default-ca-list
```

switch (config) #

Related Commands

- show web

Note

The no form of the command does not automatically log users out due to inactivity.
web cache-enable

 web cache-enable
 no web cache-enable

Enables web clients to cache webpages.
The no form of the command disables web clients from caching webpages.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Enabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.4.1100</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config) # no web cache-enable</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note
web client cert-verify

This command enables verification of server certificates during HTTPS file transfers. The no form of the command disables this verification.

Syntax Description
N/A

Default
N/A

Configuration Mode
Config

History
3.2.3000

Role
admin

Example
```
switch (config) # web client cert-verify
```

Related Commands
N/A

Note
N/A
web client ca-list

```
web client ca-list {<ca-list-name> | default-ca-list | none}
no web client ca-list
```

Configures supplemental CA certificates for verification of server certificates during HTTPS file transfers. The no form of the command uses no supplemental certificates.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ca-list-name</td>
<td>Specifies CA list to configure.</td>
<td></td>
</tr>
<tr>
<td>default-ca-list</td>
<td>Configures default supplemental CA certificate list.</td>
<td></td>
</tr>
<tr>
<td>none</td>
<td>Uses no supplemental certificates.</td>
<td></td>
</tr>
</tbody>
</table>

Default

default-ca-list

Configuration Mode

Config

History

3.2.3000

Role

admin

Example

```
switch (config) # web client ca-list default-ca-list
```

Related Commands

N/A

Note

web enable

web enable
no web enable

Enables the web-based management console.
The no form of the command disables the web-based management console.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>enable</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td></td>
<td>3.3.5050</td>
</tr>
<tr>
<td></td>
<td>Updated Example</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # web enable
switch (config) # show web

Web User Interface:
    Web interface enabled: yes
    HTTP enabled: yes
    HTTP port: 80
    HTTP redirect to HTTPS: no
    HTTPS enabled: yes
    HTTPS port: 443
    HTTPS ssl-ciphers: all
    HTTPS certificate name: default-cert
    Listen enabled: yes
    No Listen Interfaces.

    Inactivity timeout: 1 hr
    Session timeout: 2 hr 30 min
    Session renewal: 30 min

Web file transfer proxy:
    Proxy enabled: no

Web file transfer certificate authority:
    HTTPS server cert verify: yes
    HTTPS supplemental CA list: default-ca-list
```

Related Commands

show web

Note
web http

```bash
web http {enable | port <port number> | redirect}
no web http {enable | port | redirect}
```

Configures HTTP access to the web-based management console. The no form of the command negates HTTP settings for the web-based management console.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables HTTP access to the web-based management console.</td>
</tr>
<tr>
<td>port number</td>
<td>Sets a port for HTTP access.</td>
</tr>
<tr>
<td>redirect</td>
<td>Enables redirection to HTTPS. If HTTP access is enabled, this specifies whether a redirect from the HTTP port to the HTTPS port should be issued to mandate secure HTTPS access.</td>
</tr>
</tbody>
</table>

Default

HTTP is enabled
HTTP TCP port is 80
HTTP redirect to HTTPS is disabled

Configuration Mode

Config

History

3.1.0000
3.3.5050 Updated Example

Role

admin

Example

```bash
switch (config) # web http enable
switch (config) # show web
```

Web User Interface:

- Web interface enabled: yes
- HTTP enabled: yes
- HTTP port: 80
- HTTP redirect to HTTPS: no
- HTTPS enabled: yes
- HTTPS port: 443
- HTTPS ssl-ciphers: all
- HTTPS certificate name: default-cert
- Listen enabled: yes
- No Listen Interfaces.

- Inactivity timeout: 1 hr
- Session timeout: 2 hr 30 min
- Session renewal: 30 min

Web file transfer proxy:

- Proxy enabled: no

Web file transfer certificate authority:

- HTTPS server cert verify: yes
- HTTPS supplemental CA list: default-ca-list

```bash
switch (config) #
```
| Related Commands | show web
| | web enable |
| Note | Enabling HTTP is meaningful if the WebUI as a whole is enabled. |
web httpd

web httpd listen {enable | interface <ifName> }

no web httpd listen {enable | interface <ifName> }

Enables the listen interface restricted list for HTTP and HTTPS. The no form of the command disables the HTTP server listen ability.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>Enables Web interface restrictions on access to this system.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interface <ifName></td>
<td>Adds interface to Web server access restriction list (i.e. mgmt0, mgmt1)</td>
</tr>
</tbody>
</table>

Default

Listening is enabled. all interfaces are permitted.

Configuration Mode

Config

History

3.1.0000

3.3.5050 Updated Example

Role

admin

Example

switch (config) # web httpd listen enable
switch (config) # show web

Web User Interface:

- Web interface enabled: yes
- HTTP enabled: yes
- HTTP port: 80
- HTTP redirect to HTTPS: no
- HTTPS enabled: yes
- HTTPS port: 443
- HTTPS ssl-ciphers: all
- HTTPS certificate name: default-cert
- Listen enabled: yes
- No Listen Interfaces.

- Inactivity timeout: 1 hr
- Session timeout: 2 hr 30 min
- Session renewal: 30 min

Web file transfer proxy:

- Proxy enabled: no

Web file transfer certificate authority:

- HTTPS server cert verify: yes
- HTTPS supplemental CA list: default-ca-list

switch (config) #

Related Commands

N/A

Note

If enabled, and if at least one of the interfaces listed is eligible to be a listen interface, then HTTP/HTTPS requests will only be accepted on those interfaces. Otherwise, HTTP/HTTPS requests are accepted on any interface.
web https

web https {certificate {regenerate | name | default-cert} | enable | port <port number> | ssl ciphers {all | TLS | TLS1.2}}

no web https {enable | port <port number>}

Configures HTTPS access to the web-based management console. The no form of the command negates HTTPS settings for the web-based management console.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>certificate regenerate</td>
<td>Re-generates certificate to use for HTTPS connections.</td>
</tr>
<tr>
<td>certificate name</td>
<td>Configure the named certificate to be used for HTTPS connections.</td>
</tr>
<tr>
<td>certificate default-cert</td>
<td>Configure HTTPS to use the configured default certificate.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables HTTPS access to the web-based management console.</td>
</tr>
<tr>
<td>port</td>
<td>Sets a TCP port for HTTPS access.</td>
</tr>
<tr>
<td>ssl ciphers {all</td>
<td>TLS</td>
</tr>
</tbody>
</table>

Default
- HTTPS is enabled
- Default port is 443

Configuration Mode
- Config

History
- 3.1.0000
- 3.3.5050: Added “ssl ciphers” parameter
- Added TLS parameter to “ssl ciphers”

Role
- admin
Example

```
switch (config) # web https enable
switch (config) # show web
```

Web User Interface:
- Web interface enabled: yes
- HTTP enabled: yes
- HTTP port: 80
- HTTP redirect to HTTPS: no
- HTTPS enabled: yes
- HTTPS port: 443
- HTTPS ssl-ciphers: all
- HTTPS certificate name: default-cert
- Listen enabled: yes
- No Listen Interfaces.

 - Inactivity timeout: 1 hr
 - Session timeout: 2 hr 30 min
 - Session renewal: 30 min

Web file transfer proxy:
- Proxy enabled: no

Web file transfer certificate authority:
- HTTPS server cert verify: yes
- HTTPS supplemental CA list: default-ca-list

Related Commands
- show web
- web enable

Note
- Enabling HTTPS is meaningful if the WebUI as a whole is enabled.
- See the command “crypto certificate default-cert name” for how to change the default certificate if inheriting the configured default certificate is preferred.
web session

```
web session {renewal <minutes> | timeout <minutes>}
no web session {renewal | timeout}
```

Configures session settings.
The no form of the command resets session settings to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>renewal <minutes></td>
<td>Configures time before expiration to renew a session.</td>
</tr>
<tr>
<td>timeout <minutes></td>
<td>Configures time after which a session expires.</td>
</tr>
</tbody>
</table>

Default

- **timeout** - 2.5 hours
- **renewal** - 30 min

Configuration Mode

- **Config**

History

- 3.1.0000

Role

- **admin**

Example

```
switch (config) # web session renewal 60
switch (config) # show web
```

Web User Interface:

- Web interface enabled: yes
- HTTP enabled: yes
- HTTP port: 80
- HTTP redirect to HTTPS: no
- HTTPS enabled: yes
- HTTPS port: 443
- HTTPS ssl-ciphers: all
- HTTPS certificate name: default-cert
- Listen enabled: yes
- No Listen Interfaces.

- Inactivity timeout: 1 hr
- Session timeout: 2 hr 30 min
- Session renewal: 60 min

Web file transfer proxy:

- Proxy enabled: no

Web file transfer certificate authority:

- HTTPS server cert verify: yes
- HTTPS supplemental CA list: default-ca-list

```
switch (config) #
```

Related Commands

- N/A

Note
web proxy auth

`web proxy auth {authtype <type>| basic [password <password> | username <username>]}`
`no web proxy auth {authtype | basic {password | username }}`

Configures authentication settings for web proxy authentication. The no form of the command resets the attributes to their default values.

Syntax Description

| **Syntax Description** | **type** | Configures the type of authentication to use with web proxy. The possible values are:
| | | • basic - HTTP basic authentication
| | | • none - No authentication
| basic | Configures HTTP basic authentication settings for proxy. The password is accepted and stored in plaintext.
| password | A password used for HTTP basic authentication with the web proxy.
| username | A username used for HTTP basic authentication with the web proxy.

Default

Web proxy is disabled.

Configuration Mode

Config

History

3.1.0000

Role

admin
Example

```plaintext
switch (config) # web proxy auth authtype basic
switch (config) # web proxy auth basic username web-user
switch (config) # web proxy auth basic password web-password
switch (config) # show web

Web User Interface:
    Web interface enabled: yes
    HTTP enabled: yes
    HTTP port: 80
    HTTP redirect to HTTPS: no
    HTTPS enabled: yes
    HTTPS port: 443
    HTTPS ssl-ciphers: all
    HTTPS certificate name: default-cert
    Listen enabled: yes
    No Listen Interfaces.

    Inactivity timeout: 1 hr
    Session timeout: 2 hr 30 min
    Session renewal: 30 min

Web file transfer proxy:
    Proxy enabled: yes
    Proxy address: 10.10.10.11
    Proxy port: 40
    Authentication type: basic
    Basic auth username: web-user
    Basic auth password: web-password

Web file transfer certificate authority:
    HTTPS server cert verify: yes
    HTTPS supplemental CA list: default-ca-list

switch (config) #
```

Related Commands

- show web
- web proxy host

Note
web proxy host

`web proxy host <IP address> [port <port number>]`

`no web proxy`

Adds and enables a proxy to be used for any HTTP or FTP downloads. The no form of the command disables the web proxy.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>IP address</th>
<th>IPv4 or IPv6 address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>port number</td>
<td>Sets the web proxy default port.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>1080</th>
</tr>
</thead>
</table>

Configuration Mode

Config

History

3.1.0000

Role

admin

Example

```
switch (config) # web proxy host 10.10.10.10 port 1080
switch (config) # show web
```

Web User Interface:
- Web interface enabled: yes
- HTTP enabled: yes
- HTTP port: 80
- HTTP redirect to HTTPS: no
- HTTPS enabled: yes
- HTTPS port: 443
- HTTPS ssl-ciphers: all
- HTTPS certificate name: default-cert
- Listen enabled: yes
- No Listen Interfaces.

- Inactivity timeout: 1 hr
- Session timeout: 2 hr 30 min
- Session renewal: 30 min

Web file transfer proxy:
- Proxy enabled: yes
- Proxy address: 10.10.10.10
- Proxy port: 1080
- Authentication type: basic
- Basic auth username: web-user
- Basic auth password: web-password

Web file transfer certificate authority:
- HTTPS server cert verify: yes
- HTTPS supplemental CA list: default-ca-list

```
switch (config) #
```

Related Commands

web proxy auth

Note
show web

show web

Displays the web configuration.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td></td>
<td>3.3.5050</td>
</tr>
<tr>
<td></td>
<td>3.4.1100</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # show web</td>
</tr>
</tbody>
</table>

Web User Interface:
- Web interface enabled: yes
- Web caching enabled: yes
- HTTP enabled: yes
- HTTP port: 80
- HTTP redirect to HTTPS: no
- HTTPS enabled: yes
- HTTPS port: 443
- HTTPS ssl-ciphers: all
- HTTPS certificate name: default-cert
- Listen enabled: yes
- No Listen Interfaces.

Inactivity timeout: 1 hr
Session timeout: 2 hr 30 min
Session renewal: 30 min

Web file transfer proxy:
- Proxy enabled: yes
- Proxy address: 10.10.10.11
- Proxy port: 40
- Authentication type: basic
- Basic auth username: web-user
- Basic auth password: web-password

Web file transfer certificate authority:
- HTTPS server cert verify: yes
- HTTPS supplemental CA list: default-ca-list

switch (config) #

Related Commands
- show web
- web proxy auth

Note
4 System Management

4.1 Management Interface

4.1.1 Configuring Management Interfaces with Static IP Addresses

If your switch system was set during initialization to obtain dynamic IP addresses through DHCP and you wish to switch to static assignments, perform the following steps:

Step 1. Enter Config mode. Run:

```bash
switch >
switch > enable
switch # configure terminal
switch (config) #
```

Step 2. Disable setting IP addresses using the DHCP using the following command:

```bash
switch (config) # no interface <ifname> dhcp
```

Step 3. Define your interfaces statically using the following command:

```bash
switch (config) # interface <ifname> ip address <IP address> <netmask>
```

4.1.2 Configuring IPv6 Address on the Management Interface

Step 1. Enable IPv6 on this interface.

```bash
switch (config) # interface mgmt0 ipv6 enable
```

Step 2. Set the IPv6 address to be configured automatically.

```bash
switch (config) # interface mgmt0 ipv6 address autoconfig
```

Step 3. Verify the IPv6 address is configured correctly.

```bash
switch (config) # show interfaces mgmt0 brief
```

4.1.3 Dynamic Host Configuration Protocol (DHCP)

DHCP is used for automatic retrieval of management IP addresses.

For all other systems (and software versions) DHCP is disabled by default.

If a user connects through SSH, runs the wizard and turns off DHCP, the connection is immediately terminated as the management interface loses its IP address.

```bash
<localhost>#$ ssh admin@<ip-address>
Mellanox MLNX-OS Switch Management
Password:
Mellanox Switch
Mellanox configuration wizard
Do you want to use the wizard for initial configuration? yes
Step 1: Hostname? [my-switch]
Step 2: Use DHCP on mgmt0 interface? [yes] no
<localhost>#
```

In such case the serial connection should be used.
4.1.4 Default Gateway

To configure manually the default gateway, use the “ip route” command, with “0.0.0.0” as prefix and mask. The next-hop address must be within the range of one of the IP interfaces on the system.

```
switch (config)# ip route 0.0.0.0 0.0.0.0 10.209.0.2
switch (config)# show ip route
```

<table>
<thead>
<tr>
<th>Destination</th>
<th>Mask</th>
<th>Gateway</th>
<th>Interface</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>0.0.0.0</td>
<td>10.209.0.2</td>
<td>mgmt0</td>
<td>static</td>
</tr>
<tr>
<td>10.209.0.0</td>
<td>255.255.254.0</td>
<td>0.0.0.0</td>
<td>mgmt0</td>
<td>direct</td>
</tr>
</tbody>
</table>

4.1.5 In-Band Management

In-band management is a management path passing through the data ports. In-band management can be created over one of the VLANs in the systems.

The in-band management feature does not require any license. However, it works only for system profiles VPI and Ethernet. It can be enabled with IP Routing but not with IP Proxy-ARP.

➢ To set an in-band management channel:

Step 1. Create a VLAN. Run:
```
switch (config)# vlan 10
switch (config vlan 10)#
```

Step 2. Create a VLAN interface. Run:
```
switch (config)# interface vlan 10
```

Step 3. Enter the VLAN interface configuration mode and configure L3 attributes. Run:
```
switch (config)# interface vlan 10
switch (config interface vlan 10)# ip address 10.10.10.10 /24
```
Step 4. (Optional) Verify in-band management configuration. Run:

```
switch (config) # show interfaces vlan 10
Admin state: Enabled
Operational state: Up
Mac Address: f4:52:14:67:07:e8
Internet Address: 10.10.10.10/24
Broadcast address: 10.10.10.255
MTU: 1500 bytes
Arp timeout: 1500 seconds
Icmp redirect: Disabled
Description: N/A
VRF: default
Counters: Enabled
RX
  0 Unicast packets
  0 Multicast packets
  0 Unicast bytes
  0 Multicast bytes
  0 Bad packets
  0 Bad bytes
TX
  0 Unicast packets
  0 Multicast packets
  0 Unicast bytes
  0 Multicast bytes
switch (config) #
```
4.1.6 Commands

4.1.6.1 Interface

This chapter describes the commands should be used to configure and monitor the management interface.

interface

```plaintext
interface {mgmt0 | mgmt1 | lo | vlan<id>}
```

Enters a management interface context.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>mgmt0</th>
<th>mgmt1</th>
<th>lo</th>
<th>vlan<id></th>
</tr>
</thead>
<tbody>
<tr>
<td>mgmt0</td>
<td>Management port 0 (out of band).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mgmt1</td>
<td>Management port 1 (out of band).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lo</td>
<td>Loopback interface.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vlan<id></td>
<td>In-band management interface (e.g. vlan10).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config

History

3.1.0000

Role

admin

Example

```plaintext
switch (config) # interface mgmt0
switch (config interface mgmt0) #
```

Related Commands

show interfaces <ifname>

Notes
ip address

ip address <IP address> <netmask>
no ip address

Sets the IP address and netmask of this interface.
The no form of the command clears the IP address and netmask of this interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>IP address</th>
<th>IPv4 address</th>
</tr>
</thead>
<tbody>
<tr>
<td>netmask</td>
<td>Subnet mask of IP address</td>
<td></td>
</tr>
</tbody>
</table>

Default 0.0.0.0/0

Configuration Mode Config Interface Management

History 3.1.0000

Role admin

Example

```
switch (config) # interface mgmt0
switch (config interface mgmt0) # ip address 10.10.10.10 255.255.255.0
switch (config interface mgmt0) # show interfaces mgmt0

Interface mgmt0 state
  Admin up: yes
  Link up: yes
  IP address: 10.10.10.10
  Netmask: 255.255.255.0
  IPV6 enabled: yes
  Autoconf enabled: no
  Autoconf route: yes
  Autoconf privacy: no
  IPV6 addresses: 1
  IPV6 address: fe80:202:c9ff:fe5e:a5d8/64
  Speed: 1000Mb/s (auto)
  Duplex: full (auto)
  Interface type: ethernet
  Interface ifindex: 2
  Interface source: physical
  MTU: 1500
  HW address: 00:02:C9:5E:A5:D8
  Comment:

  RX bytes: 2946769856   TX bytes: 467577486
  RX packets: 44866091   TX packets: 1385520
  RX mcast packets: 0    TX discards: 0
  RX discards: 0         TX errors: 0
  RX errors: 0           TX overruns: 0
  RX overruns: 0         TX carrier: 0
  RX frame: 0            TX collisions: 0
  RX queue len:         TX queue len: 1000

switch (config interface mgmt0) #
```

Related Commands show interfaces <ifname>

Notes If DHCP is enabled on the specified interface, then the DHCP IP assignment will hold until DHCP is disabled.
ip default-gateway

ip default-gateway <next hop IP address or interface name>
no ip default-gateway

Configures a default route.
The no form of the command removes the current default route.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>next hop IP address or interface name</th>
<th>IP address, lo, mgmt0, or mgmt1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface Management</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # ip default-gateway mgmt1
switch (config) #</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
alias

alias <index> ip address < IP address> <netmask>
no alias <index>

Adds an additional IP address to the specified interface. The secondary address will appear in the output of “show interface” under the data of the primary interface along with the alias.
The no form of the command removes the secondary address to the specified interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>A number that is to be aliased to (associated with) the secondary IP.</td>
</tr>
<tr>
<td>IP address</td>
<td>Additional IP address.</td>
</tr>
<tr>
<td>netmask</td>
<td>Subnet mask of the IP address.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config Interface Management</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.1.0000</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch (config interface mgmt0) # alias 2 ip address 9.9.9.9 255.255.255.255</td>
</tr>
<tr>
<td>switch (config interface mgmt0) # show interfaces mgmt0</td>
</tr>
</tbody>
</table>

Interface mgmt0 state
Admin up: yes
Link up: yes
IP address: 172.30.2.2
Netmask: 255.255.0.0
Secondary address: 9.9.9.9/32 (alias: 'mgmt0:2')
IPv6 enabled: yes
Autoconf enabled: no
Autoconf route: yes
Autoconf privacy: no
IPv6 addresses: 1
IPv6 address: fe80::202:c9ff:fe5e:a5d8/64
Speed: 1000Mb/s (auto)
Duplex: full (auto)
Interface type: ethernet
Interface ifindex: 2
Interface source: physical
MTU: 1500
HW address: 00:02:C9:5E:A5:D8
Comment:

RX bytes: 2970074221 TX bytes: 468579522
RX packets: 44983023 TX packets: 1390539
RX mcast packets: 0 TX discards: 0
RX drops: 0 TX errors: 0
RX overerrs: 0 TX overruns: 0
RX frames: 0 TX carrier: 0
RX collisions: 0 TX queue len: 1000

switch (config interface mgmt0) #
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>show interfaces <ifname></th>
</tr>
</thead>
</table>
| Notes | • If DHCP is enabled on the specified interface, then the DHCP IP assignment will hold until DHCP is disabled
| | • More than one additional IP address can be added to the interface |
mtu

mtu <bytes>

no mtu <bytes>

Sets the Maximum Transmission Unit (MTU) of this interface. The no form of the command resets the MTU to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>bytes</th>
<th>The entry range is 68-1500.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>1500</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Mode

Config Interface Management

History

3.1.0000

Role

admin

Example

```
switch (config interface mgmt0) # mtu 1500
switch (config interface mgmt0) # show interfaces mgmt0
Interface mgmt0 state
    Admin up: yes
    Link up: yes
    IP address: 172.30.2.2
    Netmask: 255.255.0.0
    Secondary address: 9.9.9.9/32 (alias: 'mgmt0:2')
    IPV6 enabled: yes
    Autoconf enabled: no
    Autoconf route: yes
    Autoconf privacy: no
    IPV6 addresses: 1
    IPV6 address: fe80:202:c9ff:fe5e:a5d8/64
    Speed: 1000Mb/s (auto)
    Duplex: full (auto)
    Interface type: ethernet
    Interface ifindex: 2
    Interface source: physical
    MTU: 1500
    HW address: 00:02:C9:5E:A5:D8
    Comment:

    RX bytes: 2970074221        TX bytes: 468579522
    RX packets: 44983023        TX packets: 1390539
    RX mcast packets: 0         TX discards: 0
    RX discards: 0              TX errors: 0
    RX errors: 0                TX overruns: 0
    RX overruns: 0              TX carrier: 0
    RX frame: 0                 TX collisions: 0
    TX queue len: 1000

switch (config interface mgmt0) #
```

Related Commands

show interfaces <ifname>

Notes
duplex

duplex <duplex>

no duplex

Sets the interface duplex.
The no form of the command resets the duplex setting for this interface to its default value.

| Syntax Description | duplex | Sets the duplex mode of the interface. The following are the possible values:
| | | • half - half duplex
| | | • full - full duplex
| | | • auto - auto duplex sensing (half or full)

<table>
<thead>
<tr>
<th>Default</th>
<th>auto</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config Interface Management</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.1.0000</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

Example

```
switch (config interface mgmt0) # duplex auto
switch (config interface mgmt0) # show interfaces mgmt0
Interface mgmt0 state
    Admin up: yes
    Link up: yes
    IP address: 172.30.2.2
    Netmask: 255.255.0.0
    Secondary address: 9.9.9.9/32 (alias: 'mgmt0:2')
    IPV6 enabled: yes
    Autoconf enabled: no
    Autoconf route: yes
    Autoconf privacy: no
    IPV6 addresses: 1
    IPV6 address: fe80::202:c9ff:fe5e:a5d8/64
    Speed: 1000Mb/s (auto)
    Duplex: full (auto)
    Interface type: ethernet
    Interface ifindex: 2
    Interface source: physical
    MTU: 1500
    HW address: 00:02:C9:5E:A5:D8
    Comment:

    RX bytes: 2970074221         TX bytes: 468579522
    RX packets: 44983023          TX packets: 1390539
    RX mcast packets: 0           TX discards: 0
    RX discards: 0                 TX errors: 0
    RX errors: 0                  TX overruns: 0
    RX overruns: 0                TX carrier: 0
    RX frame: 0                    TX collisions: 0
    TX queue len: 1000

switch (config interface mgmt0) #
```
Related Commands

show interfaces <ifname>

Notes

- Setting the duplex to “auto” also sets the speed to “auto”
- Setting the duplex to one of the settings “half” or “full” also sets the speed to a manual setting which is determined by querying the interface to find out its current auto-detected state
speed

speed <speed>
no speed

Sets the interface speed.
The no form of the command resets the speed setting for this interface to its default value.

| Syntax Description | speed | Sets the speed of the interface. The following are the possible values:
| | | • 10 - fixed to 10Mbps
| | | • 100 - fixed to 1000Mbps
| | | • 1000 - fixed to 1000Mbps
| | | • auto - auto speed sensing (10/100/1000Mbps)

Default: auto

Configuration Mode: Config Interface Management

History: 3.1.0000

Role: admin

Example:
```
switch (config interface mgmt0) # speed auto
switch (config interface mgmt0) # show interfaces mgmt0
Interface mgmt0 state
  Admin up:           yes
  Link up:            yes
  IP address:         172.30.2.2
  Netmask:            255.255.0.0
  Secondary address:  9.9.9.9/32 (alias: 'mgmt0:2')
  IPV6 enabled:       yes
  Autoconf enabled:   no
  Autoconf route:     yes
  Autoconf privacy:   no
  IPv6 addresses:     1
  IPv6 address:       fe80::202:c9ff:fe5e:a5d8/64
  Speed:              1000Mb/s (auto)
  Duplex:             full (auto)
  Interface type:     ethernet
  Interface ifindex:  2
  Interface source:   physical
  MTU:                1500
  HW address:         00:02:C9:5E:A5:D8
  Comment:

  RX bytes:          2970074221          TX bytes:       468579522
  RX packets:        44983023            TX packets:     1390539
  RX mcast packets:  0                   TX discards:    0
  RX discards:       0                   TX errors:      0
  RX errors:         0                   TX overruns:    0
  RX overruns:       0                   TX carrier:     0
  RX frame:          0                   TX collisions:  0
  TX queue len:      1000
```

switch (config interface mgmt0) #
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>show interfaces <ifname></th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Setting the speed to “auto” also sets the duplex to “auto”</td>
</tr>
<tr>
<td></td>
<td>• Setting the speed to one of the manual settings (generally “10”, “100”, or “1000”) also sets the duplex to a manual setting which is determined by querying the interface to find out its current auto-detected state</td>
</tr>
</tbody>
</table>
dhcp

dhcp [renew]
no dhcp

Enables DHCP on the specified interface.
The no form of the command disables DHCP on the specified interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>renew</th>
<th>Forces a renewal of the IP address. A restart on the DHCP client for the specified interface will be issued.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td></td>
<td>Could be enabled or disabled (per part number) manufactured with 3.2.0500</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td></td>
<td>Config Interface Management</td>
</tr>
<tr>
<td>History</td>
<td></td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

switch (config interface mgmt0) # dhcp
switch (config) # show interfaces mgmt0 configured
Interface mgmt0 configuration
 Enabled: yes
 DHCP: yes
 Zeroconf: no
 IP address:
 Netmask:
 IPv6 enabled: yes
 Autoconf enabled: no
 Autoconf route: yes
 Autoconf privacy: no
 IPv6 addresses: 0
 Speed: auto
 Duplex: auto
 MTU: 1500
 Comment:

Related Commands
show interfaces <ifname> configured

Notes
- When enabling DHCP, the IP address and netmask are received via DHCP hence, the static IP address configuration is ignored
- Enabling DHCP disables zeroconf and vice versa
- Setting a static IP address and netmask does not disable DHCP. DHCP is disabled by using the “no” form of this command, or by enabling zeroconf.
shutdown

```
shutdown
no shutdown
```

Disables the specified interface.
The no form of the command enables the specified interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>no shutdown</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface Management</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config interface mgmt0) # no shutdown
switch (config) # show interfaces mgmt0 configured
Interface mgmt0 configuration
 Enabled: yes
 DHCP: yes
 Zeroconf: no
 IP address:
 Netmask:
 IPV6 enabled: yes
 Autoconf enabled: no
 Autoconf route: yes
 Autoconf privacy: no
 IPV6 addresses: 0
 Speed: auto
 Duplex: auto
 MTU: 1500
 Comment: |
| Related Commands | show interfaces <ifname> configured |

Notes
zeroconf

zeroconf
no zeroconf

Enables zeroconf on the specified interface. It randomly chooses a unique link-local IPv4 address from the 169.254.0.0/16 block. This command is an alternative to DHCP.

The no form of the command disables the use of zeroconf on the specified interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>no zeroconf</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface Management</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config interface mgmt0) # zeroconf
switch (config) # show interfaces mgmt0 configured
Interface mgmt0 configuration
  Enabled: yes
  DHCP: no
  Zeroconf: yes
  IP address: 
  Netmask: 
  IPV6 enabled: yes
  Autoconf enabled: no
  Autoconf route: yes
  Autoconf privacy: no
  IPV6 addresses: 0
  Speed: auto
  Duplex: auto
  MTU: 1500
  Comment: 
```

Related Commands

show interfaces <ifname> configured

Notes

Enabling zeroconf disables DHCP and vice versa.
comment

comment <comment>
no comment

Adds a comment for an interface.
The no form of the command removes a comment for an interface.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>comment <comment></td>
<td>A free-form string that has no semantics other than being displayed when the interface records are listed.</td>
</tr>
</tbody>
</table>

Default

no comment

Configuration Mode

Config Interface Management

History

3.1.0000

Role

admin

Example

```
switch (config interface mgmt0) # comment my-interface
switch (config interface mgmt0) # show interfaces mgmt0
Interface mgmt0 state
  Admin up:       yes
  Link up:        yes
  IP address:     172.30.2.2
  Netmask:        255.255.0.0
  IPV6 enabled:   yes
  Autoconf enabled: no
  Autoconf route: yes
  Autoconf privacy: no
  IPV6 addresses: 1
  IPV6 address:   fe80::202:c9ff:fe5e:a5d8/64
  Speed:          1000Mbps (auto)
  Duplex:         full (auto)
  Interface type: ethernet
  Interface ifindex: 2
  Interface source: physical
  MTU:            1500
  HW address:     00:02:C9:5E:A5:D8
  Comment:        my-interface
  RX bytes:       962067812
  TX bytes:       40658219
  RX packets:     3738865
  TX packets:     142345
  RX mcast packets: 0
  TX discards:    0
  RX discards:    0
  RX errors:      0
  TX errors:      0
  RX overruns:    0
  TX overruns:    0
  RX frame:       0
  TX carrier:     0
  TX collisions:  0
  TX queue len:   1000
```

Related Commands

N/A

Notes
ipv6 enable

ipv6 enable
no ipv6 enable

Enables all IPv6 addressing for this interface.
The no form of the command disables all IPv6 addressing for this interface.

Syntax Description

<table>
<thead>
<tr>
<th>Default</th>
<th>IPv6 addressing is disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config Interface Management</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config interface mgmt0) # ipv6 enable
switch (config interface mgmt0) # show interfaces mgmt0
Interface mgmt0 state
    Admin up: yes
    Link up: yes
    IP address: 172.30.2.2
    Netmask: 255.255.0.0
    IPv6 enabled: yes
    Autoconf enabled: no
    Autoconf route: yes
    Autoconf privacy: no
    IPv6 addresses: 1
    IPv6 address: fe80::202:c9ff:fe5e:a5d8/64
    Speed: 1000Mb/s (auto)
    Duplex: full (auto)
    Interface type: ethernet
    Interface ifindex: 2
    Interface source: physical
    MTU: 1500
    HW address: 00:02:C9:5E:A5:D8
    Comment: my-interface

    RX bytes: 962067812   TX bytes: 40658219
    RX packets: 3738865   TX packets: 142345
    RX multicast packets: 0   TX discards: 0
    RX discard: 0    TX errors: 0
    RX overload: 0    TX overruns: 0
    RX overrun: 0    TX carrier: 0
    RX frame: 0    TX collisions: 0
    TX queue len: 1000
```

switch (config interface mgmt0) #
Related Commands

ipv6 address
show interface <ifname>

Notes

- The interface identifier is a 64-bit long modified EUI-64, which is based on the MAC address of the interface.
- If IPv6 is enabled on an interface, the system will automatically add a link-local address to the interface. Link-local addresses can only be used to communicate with other hosts on the same link, and packets with link-local addresses are never forwarded by a router.
- A link-local address, which may not be removed, is required for proper IPv6 operation. The link-local addresses start with “fe80:”, and are combined with the interface identifier to form the complete address.
ipv6 address

`ipv6 address [<IPv6 address/netmask> | autoconfig [default | privacy]]`
`no ipv6 [<IPv6 address/netmask> | autoconfig [default | privacy]]`

Configures IPv6 address and netmask to this interface, static or autoconfig options are possible. The no form of the command removes the given IPv6 address and netmask or disables the autoconfig options.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 address/netmask</td>
<td>Configures a static IPv6 address and netmask. Format example: 2001:db8:1234::5678/64.</td>
</tr>
<tr>
<td>autoconfig</td>
<td>Enables IPv6 stateless address auto configuration (SLAAC) for this interface. An address will be automatically added to the interface based on an IPv6 prefix learned from router advertisements, combined with an interface identifier.</td>
</tr>
<tr>
<td>autoconfig default</td>
<td>Enables default learning routes. The default route will be discovered automatically, if the autoconfig is enabled.</td>
</tr>
<tr>
<td>autoconfig privacy</td>
<td>Uses privacy extensions for SLAAC to construct the autoconfig address, if the autoconfig is enabled.</td>
</tr>
</tbody>
</table>

Default: No IP address available, auto config is enabled

Configuration Mode: Config Interface Management

History: 3.1.0000

Role: admin
Example

switch (config interface mgmt0) # ipv6 fe80::202:c9ff:fe5e:a5d8/64
switch (config interface mgmt0) # show interfaces mgmt0
Interface mgmt0 state
 Admin up: yes
 Link up: yes
 IP address: 172.30.2.2
 Netmask: 255.255.0.0
 IPv6 enabled: yes
 Autoconf enabled: no
 Autoconf route: yes
 Autoconf privacy: no
 IPv6 addresses: 1
 IPv6 address: fe80::202:c9ff:fe5e:a5d8/64
 Speed: 1000Mb/s (auto)
 Duplex: full (auto)
 Interface type: ethernet
 Interface ifindex: 2
 Interface source: physical
 MTU: 1500
 HW address: 00:02:C9:5E:A5:D8
 Comment: my-interface

 RX bytes: 962067812 TX bytes: 40658219
 RX packets: 3738865 TX packets: 142345
 RX mcast packets: 0 TX discards: 0
 RX discards: 0 TX errors: 0
 RX errors: 0 TX overruns: 0
 RX overruns: 0 TX carrier: 0
 RX frame: 0 TX collisions: 0
 TX queue len: 1000

Related Commands
ipv6 enable
show interface <ifname>

Notes

- Unlike IPv4, IPv6 can have multiple IPv6 addresses on a given interface
- For Ethernet, the default interface identifier is a 64-bit long modified EUI-64, which is based on the MAC address of the interface
ipv6 dhcp primary-intf

`ipv6 dhcp primary-intf <if-name>`

`no ipv6 dhcp primary-intf`

Sets the interface from which non-interface-specific (resolver) configuration is accepted via DHCPv6.
The no form of the command resets non-interface-specific (resolver) configuration.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>if-name</th>
<th>Interface name:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• lo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• mgmt0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• mgmt1</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config

History

3.1.0000

Role

admin

Example

```
switch (config) # ipv6 dhcp primary-intf mgmt0
switch (config) #
```

Related Commands

ipv6 enable
ipv6 address
show interface <ifname>

Notes
ipv6 dhcp stateless

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch (config) # ipv6 dhcp stateless</td>
</tr>
<tr>
<td></td>
<td>switch (config) #</td>
</tr>
<tr>
<td>Related Commands</td>
<td>ipv6 enable</td>
</tr>
<tr>
<td></td>
<td>ipv6 address</td>
</tr>
<tr>
<td></td>
<td>show interface <ifname></td>
</tr>
<tr>
<td>Notes</td>
<td>• This command only gets DNS configuration, not an IPv6 address</td>
</tr>
<tr>
<td></td>
<td>• The no form of the command requests all information, including an IPv6 address</td>
</tr>
</tbody>
</table>
show interface

show interface [<ifname> [configured | brief]]

Displays information about the specified interface, configuration status, and counters.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>iface</td>
<td>The interface name e.g., “mgmt0”, “mgmt1”, “lo” (loopback), etc.</td>
</tr>
<tr>
<td>configured</td>
<td>Displays the interface configuration.</td>
</tr>
<tr>
<td>brief</td>
<td>Displays a brief info on the interface configuration and status.</td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Any Command Mode

History: 3.1.0000

Role: admin

Example:

```
switch (config) # show interfaces mgmt0 configured
Interface mgmt0 configuration
   Enabled: yes
   DHCP: yes
   Zeroconf: no
   IP address: Netmask:
   IPv6 enabled: yes
   Autoconf enabled: no
   Autoconf route: yes
   Autoconf privacy: no
   IPv6 addresses: 0
   Speed: auto
   Duplex: auto
   MTU: 1500
   Comment: my-interface

switch (config) # show interfaces mgmt0 brief
Interface mgmt0 state
   Admin up: yes
   Link up: yes
   IP address: 172.30.2.2
   Netmask: 255.255.0.0
   IPv6 enabled: yes
   Autoconf enabled: no
   Autoconf route: yes
   Autoconf privacy: no
   IPv6 addresses: 1
   IPv6 address: fe80::202:c9ff:fe5e:a5d8/64
   Speed: 1000Mb/s (auto)
   Duplex: full (auto)
   Interface type: ethernet
   Interface ifindex: 2
   Interface source: physical
   MTU: 1500
   HW address: 00:02:C9:5E:A5:D8
   Comment: my-interface

switch (config) #
```
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
4.1.6.2 Hostname Resolution

hostname

```
hostname <hostname>
no hostname
```

Sets a static system hostname.
The no form of the command clears the system hostname.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname</td>
<td>A free-form string.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default hostname</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # hostname my-switch-hostname
my-switch-hostname (config) #
```

Related Commands

- show hosts

Notes

- Hostname may contain letters, numbers, and hyphens ('-'), in any combination
- Hostname may not contain other letters, such as ‘%’, ‘_’, ‘.’ etc
- Hostname may not begin with a hyphen
- Hostname may be 1-63 characters long
- Changing hostname stamps a new HTTPS certificate
ip name-server

Syntax

- `ip name-server <IPv4/IPv6 address>`
- `no name-server <IPv4/IPv6 address>`

Sets the static name server.
The no form of the command clears the name server.

Syntax Description

<table>
<thead>
<tr>
<th>Default</th>
<th>IPv4/v6 address</th>
<th>IPv4 or IPv6 address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```plaintext
switch (config) # ip name-server 9.9.9.9
switch (config) # show hosts
Hostname: switch
Name server: 9.9.9.9 (configured)
Name server: 10.211.0.121 (dynamic)
Name server: 172.30.0.126 (dynamic)
Name server: 10.4.0.135 (dynamic)
Domain name: vmlab.mtl.com (dynamic)
Domain name: yok.mtl.com (dynamic)
Domain name: mtl.com (dynamic)
IP 127.0.0.1 maps to hostname localhost
IPv6 ::1 maps to hostname localhost6
Automatically map hostname to loopback address: yes
Automatically map hostname to IPv6 loopback address: no
```

Related Commands

- `show hosts`

Notes
ip domain-list

 ip domain-list <domain-name>
 no ip domain-list <domain-name>

Sets the static domain name.
The no form of the command clears the domain name.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain-name</td>
<td>The domain name in a string form. A domain name is an identification string that defines a realm of administrative autonomy, authority, or control in the Internet. Domain names are formed by the rules and procedures of the Domain Name System (DNS).</td>
</tr>
</tbody>
</table>

Default

No static domain name

Configuration Mode

Config

History

3.1.0000

Role

admin

Example

switch (config) # ip domain-list mydomain.com
switch (config) # show hosts
Hostname: switch
Name server: 10.211.0.121 (dynamic)
Name server: 172.30.0.126 (dynamic)
Name server: 10.4.0.135 (dynamic)
Domain name: mydomain.com (configured)
Domain name: lab.mtl.com (dynamic)
Domain name: vmlab.mtl.com (dynamic)
Domain name: yok.mtl.com (dynamic)
Domain name: mtl.com (dynamic)
IP 1.1.1.1 maps to hostname p
IP 127.0.0.1 maps to hostname localhost
IPv6 ::1 maps to hostname localhost6
Automatically map hostname to loopback address: yes
Automatically map hostname to IPv6 loopback address: no
switch (config) #

Related Commands

show hosts

Notes
ip/ipv6 host

{ip | ipv6} host <hostname> <IP Address>
no {ip | ipv6} host <hostname> <IP Address>

Configures the static hostname IPv4 or IPv6 address mappings.
The no form of the command clears the static mapping.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>hostname</th>
<th>The hostname in a string form.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IP Address</td>
<td>The IPv4 or IPv6 address.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>No static domain name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

switch (config) # ip host my-host 2.2.2.2
switch (config) # ipv6 host my-ipv6-host 2001::8f9
switch (config) # show hosts
Hostname: switch
Name server: 9.9.9.9 (configured)
Name server: 10.211.0.121 (dynamic)
Name server: 172.30.0.126 (dynamic)
Name server: 10.4.0.135 (dynamic)
Domain name: mydomain.com (configured)
Domain name: lab.mtl.com (dynamic)
Domain name: vmlab.mtl.com (dynamic)
Domain name: yok.mtl.com (dynamic)
Domain name: mtl.com (dynamic)
IP 1.1.1.1 maps to hostname p
IP 127.0.0.1 maps to hostname localhost
IP 2.2.2.2 maps to hostname my-host
IPv6 2001::8f9 maps to hostname my-ipv6-host
IPv6 ::1 maps to hostname localhost6
Automatically map hostname to loopback address: yes
Automatically map hostname to IPv6 loopback address: yes
switch (config) #

Related Commands
show hosts

Notes

ip/ipv6 map-hostname

{ip | ipv6} map-hostname
no {ip | ipv6} map-hostname

Maps between the currently-configured hostname and the loopback address 127.0.0.1.
The no form of the command clears the mapping.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>IPv4 mapping is enabled by default IPv6 mapping is disabled by default</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```bash
switch (config) # ip map-hostname
switch (config) # # show hosts
Hostname: switch
Name server: 9.9.9.9 (configured)
Name server: 10.211.0.121 (dynamic)
Name server: 172.30.0.126 (dynamic)
Name server: 10.4.0.135 (dynamic)
Domain name: mydomain.com (configured)
Domain name: lab.mtl.com (dynamic)
Domain name: vmlab.mtl.com (dynamic)
Domain name: yok.mtl.com (dynamic)
Domain name: mtl.com (dynamic)
IP 1.1.1.1 maps to hostname p
IP 127.0.0.1 maps to hostname localhost
IP 2.2.2.2 maps to hostname my-host
IPv6 2001::8f9 maps to hostname my-ipv6-host
IPv6 ::1 maps to hostname localhost6
Automatically map hostname to loopback address: yes
Automatically map hostname to IPv6 loopback address: yes
switch (config) #
switch (config) # ping my-host-name
PING localhost (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.078 ms
64 bytes from localhost (127.0.0.1): icmp_seq=2 ttl=64 time=0.052 ms
64 bytes from localhost (127.0.0.1): icmp_seq=3 ttl=64 time=0.058 ms
```

Related Commands

show hosts

Notes

- If no mapping is configured, a mapping between the hostname and the IPv4 loopback address 127.0.0.1 will be added
- The no form of the command maps the hostname to the IPv6 loopback address if there is no statically configured mapping from the hostname to an IPv6 address (disabled by default)
- Static host mappings are preferred over DNS results. As a result, with this option set, you will not be able to look up your hostname on your configured DNS server; but without it set, some problems may arise if your hostname cannot be looked up in DNS.
show hosts

show hosts

Displays hostname, DNS configuration, and static host mappings.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

switch (config) # show hosts
Hostname: my-host-name
Name server: 9.9.9.9 (configured)
Name server: 10.211.0.121 (dynamic)
Name server: 172.30.0.126 (dynamic)
Name server: 10.4.0.135 (dynamic)
Domain name: mydomain.com (configured)
Domain name: lab.mtl.com (dynamic)
Domain name: vmlab.mtl.com (dynamic)
Domain name: yok.mtl.com (dynamic)
Domain name: mtl.com (dynamic)
IP 1.1.1.1 maps to hostname p
IP 127.0.0.1 maps to hostname localhost
IP 2.2.2.2 maps to hostname my-host
IPv6 ::1 maps to hostname localhost6
Automatically map hostname to loopback address: yes
Automatically map hostname to IPv6 loopback address: no

Related Commands

N/A

Notes
4.1.6.3 Routing

ip/ipv6 route

```
{ip | ipv6} route <network-prefix> <netmask> {<nexthop-address> | <ifname>}
no ip route <network-prefix> <netmask> {<nexthop-address> | <ifname>}
```

Sets a static route for a given IP.
The no form of the command deletes the static route.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>network-prefix</th>
<th>IPv4 or IPv6 network prefix.</th>
</tr>
</thead>
<tbody>
<tr>
<td>netmask</td>
<td>IPv4 netmask formats are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• /24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IPv6 netmask format is:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• /48 (as a part of the network prefix)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>nexthop-address</th>
<th>The IPv4 or IPv6 address of the next hop router for this route.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ifname</th>
<th>The interface name (e.g., mgmt0, mgmt1).</th>
</tr>
</thead>
</table>

Default

N/A

Configuration Mode

Config

History

3.1.0000

Role

admin

Example

```
switch (config) # ip route 20.20.20.0 255.255.255.0 mgmt0
switch (config) # show ip route
```

<table>
<thead>
<tr>
<th>Destination</th>
<th>Mask</th>
<th>Gateway</th>
<th>Interface</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>0.0.0.0</td>
<td>172.30.0.1</td>
<td>mgmt0</td>
<td>DHCP</td>
</tr>
<tr>
<td>10.10.10.10</td>
<td>255.255.255.255</td>
<td>0.0.0.0</td>
<td>mgmt0</td>
<td>static</td>
</tr>
<tr>
<td>20.10.10.10</td>
<td>255.255.255.255</td>
<td>172.30.0.1</td>
<td>mgmt0</td>
<td>static</td>
</tr>
<tr>
<td>20.20.20.0</td>
<td>255.255.255.0</td>
<td>0.0.0.0</td>
<td>mgmt0</td>
<td>static</td>
</tr>
<tr>
<td>172.30.0.0</td>
<td>255.255.0.0</td>
<td>0.0.0.0</td>
<td>mgmt0</td>
<td>interface</td>
</tr>
</tbody>
</table>

Related Commands

show ip route

Notes
ipv6 default-gateway

```bash
ipv6 default-gateway {<ip-address> | <ifname>}
no ipv6 default-gateway
```

Sets a static default gateway.
The no form of the command deletes the default gateway.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip address</td>
<td>The default gateway IP address (IPv4 or IPv6).</td>
</tr>
<tr>
<td>ifname</td>
<td>The interface name (e.g., mgmt0, mgmt1).</td>
</tr>
</tbody>
</table>

Default
N/A

Configuration Mode
Config

History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.0000</td>
<td>First version</td>
</tr>
<tr>
<td>3.2.0500</td>
<td>removed IPv4 configuration option</td>
</tr>
</tbody>
</table>

Role
admin

Example

```bash
switch (config) # ip default-gateway ::1
switch (config) # show ip default-gateway static
Configured default gateways:
::1
switch (config) #
```

Related Commands
show ip route

Notes

- The configured default gateway will not be used if DHCP is enabled.
- In order to configure ipv4 default-gateway use ‘ip route’ command.
show ip/ipv6 route

`show {ip | ipv6} route [static]`

Displays the routing table in the system.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>static</th>
<th>Filters the table with the static route entries.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```bash
switch (config) # show ip route
Destination       Mask              Gateway           Interface   Source
default           0.0.0.0           172.30.0.1        mgmt0       DHCP
10.10.10.10       255.255.255.255   0.0.0.0           mgmt0       static
20.10.10.10       255.255.255.255   172.30.0.1        mgmt0       static
20.20.20.0        255.255.255.0     0.0.0.0           mgmt0       static
172.30.0.0        255.255.0.0       0.0.0.0           mgmt0       interface

switch (config) # show ipv6 route
Destination prefix
Gateway                                  Interface  Source
::/0                                      mgmt0      static
::/128                                    lo         local
::/64                                     mgmt1      interface
```

Related Commands

- `show ip default-gateway`

Notes
show ip/ipv6 default-gateway

```
show {ip | ipv6} default-gateway [static]
```

Displays the default gateway.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
<th>Default</th>
<th>Configuration Mode</th>
<th>History</th>
<th>Role</th>
<th>Example</th>
</tr>
</thead>
</table>
| static | Displays the static configuration of the default gateway. | N/A | Any Command Mode | 3.1.0000 | admin | switch (config) # ip default-gateway 10.10.10.10
| | | | | | | switch (config) # show ip default-gateway
| | | | | | | Active default gateways:
| | | | | | | 172.30.0.1 (interface: mgmt0)
| | | | | | | switch (config) # show ip default-gateway static
| | | | | | | Configured default gateway: 10.10.10.10 |

Related Commands

- show ip default-gateway

Notes
The configured IPv4 default gateway will not be used if DHCP is enabled.
4.1.6.4 Network to Media Resolution (ARP & NDP)

IPv4 network use Address Resolution Protocol (ARP) to resolve IP address to MAC address, while IPv6 network uses Network Discovery Protocol (NDP) that performs basically the same as ARP.

ip arp

```
ip arp <IP address> <MAC address>
no ip arp <IP address> <MAC address>
```

Sets a static ARP entry.
The no form of the command deletes the static ARP.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>IP address</th>
<th>IPv4 address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC address</td>
<td>MAC address.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config Interface Management</td>
</tr>
<tr>
<td>History</td>
<td>3.2.0500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config interface mgmt0) #ip arp 20.20.20.20 aa:aa:aa:aa:aa:aa
switch (config interface mgmt0) # show ip arp

Total number of entries: 6

<table>
<thead>
<tr>
<th>Address</th>
<th>Type</th>
<th>MAC Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.209.1.103</td>
<td>Dynamic</td>
<td>00:02:C9:11:A1:78</td>
<td>mgmt0</td>
</tr>
<tr>
<td>10.209.1.168</td>
<td>Dynamic</td>
<td>00:02:C9:5E:C3:20</td>
<td>mgmt0</td>
</tr>
<tr>
<td>10.209.1.104</td>
<td>Dynamic</td>
<td>00:02:C9:11:A1:E6</td>
<td>mgmt0</td>
</tr>
<tr>
<td>10.209.1.153</td>
<td>Dynamic</td>
<td>00:02:C9:11:A1:B6</td>
<td>mgmt0</td>
</tr>
<tr>
<td>10.209.1.105</td>
<td>Dynamic</td>
<td>00:02:C9:5E:0B:56</td>
<td>mgmt0</td>
</tr>
<tr>
<td>10.209.0.1</td>
<td>Dynamic</td>
<td>00:00:5E:00:01:01</td>
<td>mgmt0</td>
</tr>
</tbody>
</table>
```

```
switch (config interface mgmt0) #
```

Related Commands

- show ip arp
- ip route

Notes
ip arp timeout

ip arp timeout <timeout-value>
no ip arp timeout

Sets the dynamic ARP cache timeout.
The no form of the command sets the timeout to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>timeout-value</th>
<th>Time (in seconds) that an entry remains in the ARP cache. Range: 60-28800.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>1500 seconds</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.2.0230</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # ip arp timeout 2000 switch (config) #</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>ip arp</td>
<td>show ip arp</td>
</tr>
<tr>
<td>Notes</td>
<td>This value is used as the ARP timeout whenever a new IP interface is created.</td>
<td></td>
</tr>
</tbody>
</table>
show ip arp

show ip arp [interface <type>| <ip-address> | count]

Displays ARP table.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface type</td>
<td>Filters the table according to a specific interface (i.e. mgmt0)</td>
</tr>
<tr>
<td>ip-address</td>
<td>Filters the table to the specific ip-address</td>
</tr>
<tr>
<td>count</td>
<td>Shows ARP statistics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch-626a54 [standalone: master] (config) # show ip arp

Total number of entries: 3

<table>
<thead>
<tr>
<th>Address</th>
<th>Type</th>
<th>Hardware Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dynamic</td>
<td>00:00:5E:00:01:01</td>
<td>mgmt0</td>
</tr>
<tr>
<td></td>
<td>Dynamic</td>
<td>00:02:C9:62:E8:C2</td>
<td>mgmt0</td>
</tr>
<tr>
<td></td>
<td>Dynamic</td>
<td>00:02:C9:62:E7:42</td>
<td>mgmt0</td>
</tr>
</tbody>
</table>
```

```
switch (config) # show ip arp count

ARP Table size: 3 (inband: 0, out of band: 3)
```

Related Commands

Notes
ipv6 neighbor

```
ipv6 neighbor <IPv6 address> <ifname> <MAC address>
no ipv6 neighbor <IPv6 address> <ifname> <MAC address>
```

Adds a static neighbor entry.
The no form of the command deletes the static entry.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 address</td>
<td>The IPv6 address.</td>
</tr>
<tr>
<td>ifname</td>
<td>The management interface (i.e. mgmt0, mgmt1).</td>
</tr>
<tr>
<td>MAC address</td>
<td>The MAC address.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.1.0000</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch (config) # ipv6 neighbor 2001:db8:701f::8f9 mgmt0 00:11:22:33:44:55 switch (config) #</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 neighbor</td>
</tr>
<tr>
<td>ipv6 route</td>
</tr>
<tr>
<td>arp</td>
</tr>
<tr>
<td>clear ipv6 neighbors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ARP is used only with IPv4. In IPv6 networks, Neighbor Discovery Protocol (NDP) is used similarly.</td>
</tr>
<tr>
<td>• Use The no form of the command to remove static entries. Dynamic entries can be cleared via the “clear ipv6 neighbors” command.</td>
</tr>
</tbody>
</table>
clear ipv6 neighbors

clear ipv6 neighbors

Clears the dynamic neighbors cache.

Syntax Description

N/A

Default

N/A

Configuration Mode

Config

History

3.1.0000

Role

admin

Example

switch (config) # clear ipv6 neighbors
switch (config) #

Related Commands

ipv6 neighbor
show ipv6 neighbor
arp

Notes

- Clearing Neighbor Discovery Protocol (NDP) cache removes only the dynamic entries learned and not the static entries configured
- Use the no form of the command to remove static entries
- See “clear ipv6 neighbors” on page 716 for the interface or VLAN specific command
show ipv6 neighbors

show ipv6 neighbors [static]

Displays the Neighbor Discovery Protocol (NDP) table.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>static</th>
<th>Filters only the table of the static entries.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # show ipv6 neighbors</td>
<td>IPv6 Address Age MAC Address State Interf</td>
</tr>
<tr>
<td></td>
<td>switch (config) #</td>
<td></td>
</tr>
</tbody>
</table>

Related Commands
ipv6 neighbor
clear ipv6 neighbor
show ipv6

Notes
4.1.6.5 DHCP

ip dhcp

```
ip dhcp {default-gateway yield-to-static| hostname <hostname>| primary-intf <ifname> | send-hostname }
no ip dhcp {default-gateway yield-to-static| hostname | | primary-intf | send-hostname}
```

Sets global DHCP configuration.
The no form of the command deletes the DHCP configuration.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>yield-to-static</td>
<td>Does not allow you to install a default gateway from DHCP if there is already a statically configured one.</td>
</tr>
<tr>
<td>hostname</td>
<td>Specifies the hostname to be sent during DHCP client negotiation if send-hostname is enabled.</td>
</tr>
<tr>
<td>primary-intf <ifname></td>
<td>Sets the interface from which a non-interface-specific configuration (resolver and routes) will be accepted via DHCP.</td>
</tr>
<tr>
<td>send-hostname</td>
<td>Enables the DHCP client to send a hostname during negotiation.</td>
</tr>
</tbody>
</table>

Default

no ip dhcp yield-to-static
no ip dhcp hostname
ip ip dhcp primary-intf mgmt0
no ip dhcp send-hostname

Configuration Mode

Config

History

3.1.0000

Role

admin

Example

```
switch (config) # ip dhcp default-gateway yield-to-static
switch (config) # show ip dhcp
   DHCP      DHCP      Valid
   Interface   Enabled   Running   lease
-------------------------------------
   lo          no        no        no
   mgmt0       yes       yes       yes
   mgmt1       yes       yes       no

DHCP primary interface:
   Configured: mgmt0
   Active:    mgmt0

DHCP default gateway yields to static configuration: yes

DHCP client options:
   Send Hostname: no
   Client Hostname: switch (using system hostname)
switch (config) #
```
| **Related Commands** | show ip dhcp
dhcp [renew] |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td>DHCP is supported for IPv4 networks only.</td>
</tr>
</tbody>
</table>
show ip dhcp

 Displays the DHCP configuration and status.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | `switch (config) # show ip dhcp
DHCP primary interface:
 Configured: mgmt0
 Active: mgmt0

DHCP: yield default gateway to static configuration: yes

DHCP Client Options:
 Send Hostname: no
 Client Hostname: switch (using system hostname)
switch (config) #` |
| Related Commands | ip dhcp
dhcp [renew] |
| Notes | |
4.1.6.6 IP Diagnostic Tools

ping

```
```

Sends ICMP echo requests to a specified host.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Linux Ping options</th>
<th>http://linux.about.com/od/commands/l/blcm-dl8_ping.htm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>
| Example | switch (config) # ping 172.30.2.2
PING 172.30.2.2 (172.30.2.2) 56(84) bytes of data.
64 bytes from 172.30.2.2: icmp_seq=1 ttl=64 time=0.703 ms
64 bytes from 172.30.2.2: icmp_seq=2 ttl=64 time=0.187 ms
64 bytes from 172.30.2.2: icmp_seq=3 ttl=64 time=0.166 ms
64 bytes from 172.30.2.2: icmp_seq=4 ttl=64 time=0.161 ms
64 bytes from 172.30.2.2: icmp_seq=5 ttl=64 time=0.153 ms
64 bytes from 172.30.2.2: icmp_seq=6 ttl=64 time=0.144 ms
^C
--- 172.30.2.2 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5004ms
rtt min/avg/max/mdev = 0.144/0.252/0.703/0.202 ms
switch (config) # |
| Related Commands | traceroutes | |
| Notes | | |
traceroute

traceroute [-46dFITUrnAV] [-f first_ttl] [-g gate,...] [-i device] [-m max_ttl] [-N
[-z sendwait] host [packetlen]

Traces the route packets take to a destination.
<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td>Uses IPv4.</td>
</tr>
<tr>
<td>-6</td>
<td>Uses IPv6.</td>
</tr>
<tr>
<td>-d</td>
<td>Enables socket level debugging.</td>
</tr>
<tr>
<td>-F</td>
<td>Sets DF (do not fragment bit) on.</td>
</tr>
<tr>
<td>-I</td>
<td>Uses ICMP ECHO for tracerouting.</td>
</tr>
<tr>
<td>-T</td>
<td>Uses TCP SYN for tracerouting.</td>
</tr>
<tr>
<td>-U</td>
<td>Uses UDP datagram (default) for tracerouting.</td>
</tr>
<tr>
<td>-n</td>
<td>Does not resolve IP addresses to their domain names.</td>
</tr>
<tr>
<td>-r</td>
<td>Bypasses the normal routing and send directly to a host on an attached network.</td>
</tr>
<tr>
<td>-A</td>
<td>Performs AS path lookups in routing registries and print results directly after the corresponding addresses.</td>
</tr>
<tr>
<td>-V</td>
<td>Prints version info and exit.</td>
</tr>
<tr>
<td>-f</td>
<td>Starts from the first_ttl hop (instead from 1).</td>
</tr>
<tr>
<td>-g</td>
<td>Routes packets through the specified gateway (maximum 8 for IPv4 and 127 for IPv6).</td>
</tr>
<tr>
<td>-i</td>
<td>Specifies a network interface to operate with.</td>
</tr>
<tr>
<td>-m</td>
<td>Sets the max number of hops (max TTL to be reached). Default is 30.</td>
</tr>
<tr>
<td>-N</td>
<td>Sets the number of probes to be tried simultaneously (default is 16).</td>
</tr>
<tr>
<td>-p</td>
<td>Uses destination port. It is an initial value for the UDP destination port (incremented by each probe, default is 33434), for the ICMP seq number (incremented as well, default from 1), and the constant destination port for TCP tries (default is 80).</td>
</tr>
<tr>
<td>-t</td>
<td>Sets the TOS (IPv4 type of service) or TC (IPv6 traffic class) value for outgoing packets.</td>
</tr>
<tr>
<td>-l</td>
<td>Uses specified flow_label for IPv6 packets.</td>
</tr>
<tr>
<td>-w</td>
<td>Sets the number of seconds to wait for response to a probe (default is 5.0). Non-integer (float point) values allowed too.</td>
</tr>
<tr>
<td>-q</td>
<td>Sets the number of probes per each hop. Default is 3.</td>
</tr>
<tr>
<td>-s</td>
<td>Uses source src_addr for outgoing packets.</td>
</tr>
<tr>
<td>-z</td>
<td>Sets minimal time interval between probes (default is 0). If the value is more than 10, then it specifies a number in milliseconds, else it is a number of seconds (float point values allowed too).</td>
</tr>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # traceroute 192.168.10.70
traceroute to 192.168.10.70 (192.168.10.70), 30 hops max, 40 byte packets
1 172.30.0.1 (172.30.0.1) 3.632 ms 2.849 ms 3.544 ms
2 10.222.128.46 (10.222.128.46) 3.176 ms 3.289 ms 3.656 ms
3 10.158.128.30 (10.158.128.30) 15.331 ms 15.819 ms 16.388 ms
4 10.158.128.65 (10.158.128.65) 20.468 ms 7.893 ms 12.27 ms
5 10.7.34.115 (10.7.34.115) 16.405 ms 11.985 ms 12.264 ms
6 192.168.10.70 (192.168.10.70) 16.377 ms 16.091 ms 20.475 ms
switch (config) #
```
tcpdump

tcpdump [-aAdDflLnNOpqRStuUvxX] [-c count] [-C file_size]
[-r file] [-s snaplen] [-T type] [-w file]
[-W filecount] [-y datalinktype] [-z user]
[-D list possible interfaces] [expression]

Invokes standard binary, passing command line parameters straight through. Runs in foreground, printing packets as they arrive, until the user hits Ctrl+C.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # tcpdump

 09:37:38.678812 IP 192.168.10.7.ssh > 192.168.10.1.54155: P
 1494800:1494800(176) ack 625 win 90
 <nop,nop,timestamp 5842763 858672398>
 09:37:38.678860 IP 192.168.10.7.ssh > 192.168.10.1.54155: P
 1494800:1495104(304) ack 625 win 90
 <nop,nop,timestamp 5842763 858672398>
 ...
 9141 packets captured
 9142 packets received by filter
 0 packets dropped by kernel
 switch (config) # |

| Related Commands | N/A |
| Notes | |
4.2 NTP, Clock & Time Zones

Network Time Protocol (NTP) is a networking protocol for clock synchronization between computer systems over packet-switched, variable-latency data networks. NTP is intended to synchronize all participating computers to within a few milliseconds of Coordinated Universal Time (UTC) and is designed to mitigate the effects of variable network latency. NTP can usually maintain time to within tens of milliseconds over the public Internet, and can achieve better than one millisecond accuracy in local area networks under ideal conditions.
4.2.1 Commands

clock set

clock set <hh:mm:ss> [<yyyy/mm/dd>]

Sets the time and date.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>hh:mm:ss</th>
<th>Time.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>yyyy/mm/dd</td>
<td>Date.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

switch (config) # clock set 23:23:23 2010/08/19
switch (config) # show clock
Time: 23:23:26
Date: 2010/08/19
Time zone: UTC
(Etc/UTC)
UTC offset: same as UTC
switch (config) #

Related Commands

show clock

Notes

If not specified, the date will be left the same.
clock timezone

clock timezone [<zone word>] [<zone word>] [<zone word>] [<zone word>]]

Sets the system time zone. The time zone may be specified in one of three ways:

- A nearby city whose time zone rules to follow. The system has a large list of cities which can be displayed by the help and completion system. They are organized hierarchically because there are too many of them to display in a flat list. A given city may be required to be specified in two, three, or four words, depending on the city.
- An offset from UTC. This will be in the form UTC-offset UTC, UTC-offset UTC+<0-14>, UTC-offset UTC-<1-12>.
- UTC (Universal Time, which is almost identical to GMT), and this is the default time zone

The no form of the command resets time zone to its default (GMT).

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>zone word</th>
<th>The possible forms this could take include: continent, city, continent, country, city, continent, region, country, city, ocean, and/or island.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>GMT</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>
| Example | switch (config) # clock timezone America North United_States Other New_York
switch (config) # show clock
Time: 04:21:44
Date: 2012/02/26
Time zone: America North United_States Other New_York
switch (config) # | |
| Related Commands | show clock | |
| Notes | | |
ntp

```
ntp {disable | enable | {peer | server} <IP address> [version <number> | disable]}
no ntp {disable | enable | {peer | server} <IP address> [disable]}
```

Configures NTP.
The no form of the command negates NTP options.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disable</td>
<td>Disables NTP.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables NTP.</td>
</tr>
<tr>
<td>peer or server</td>
<td>Configures an NTP peer or server node.</td>
</tr>
<tr>
<td>IP address</td>
<td>IPv4 or IPv6 address.</td>
</tr>
<tr>
<td>version <number></td>
<td>Specifies the NTP version number of this peer.</td>
</tr>
<tr>
<td></td>
<td>Possible values are 3 or 4.</td>
</tr>
</tbody>
</table>

Default

- NTP is enabled.
- NTP version number is 4.

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.0000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch (config) # no ntp peer 192.168.10.24 disable</td>
<td></td>
</tr>
<tr>
<td>switch (config) #</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ntpdate

ntpdate <IP address>

Sets the system clock using the specified SNTP server.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>IP.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.1.0000</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

| Example | switch (config) # ntpdate 192.168.10.10
26 Feb 17:25:40 ntpdate[15206]: adjust time server 192.168.10.10 offset
-0.000092 sec
switch (config) # |
|---------|--|

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
<th>This is a one-time operation and does not cause the clock to be kept in sync on an ongoing basis. It will generate an error if SNTP is enabled since the socket it requires will already be in use.</th>
</tr>
</thead>
</table>
show clock

 show clock

Displays the current system time, date and time zone.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # show clock
 Time: 04:21:44'
 Date: 2012/02/26
 Time zone: America North United_States Other New_York
 switch (config) # |
| Related Commands | N/A |
| Notes | |
show ntp

show ntp

Displays the current NTP settings.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # show ntp
NTP is enabled.
Clock is unsynchronized.
No NTP peers or servers configured.
switch (config) # |
| Related Commands | N/A |
| Notes | |

•
4.3 Software Management

4.3.1 Upgrading MLNX-OS Software – Preconditions

Prior to upgrading MLNX-OS software from version 3.2.0100 and lower, please remove any old configuration from your system.

To remove old configuration:

Step 1. Clear your system of any old configuration. Run from CMM:

```
system:switch[2]> clear -cnfg
OK
```

Step 2. Follow the steps described in Section 4.3.2, “Upgrading MLNX-OS Software,” on page 156.

4.3.2 Upgrading MLNX-OS Software

When upgrading from a software version older than 3.2.0100 to software version 3.3.0000 or higher, the upgrade procedure must be done in two steps. First update the software to 3.2.0300-100 (for InfiniBand platforms) or 3.2.0506 (for Ethernet platforms), then update to the desired software version.

The system being upgraded becomes indisposed throughout the upgrade procedure.

The upgrade procedure burns the software image as well as the firmware should there be a need.

To upgrade the MLNX-OS version of on a gateway, SM, or MLAG cluster, please refer to Section 4.3.3, “Upgrading MLNX-OS HA Groups,” on page 160.

You have to read and accept the End-User License Agreement (EULA) after image upgrade in case the EULA is modified. The EULA link is only available upon first login to CLI.

To upgrade MLNX-OS software on your system, perform the following steps:

Step 1. Change to Config mode.

```
switch > enable
switch # configure terminal
switch (config) #
```
Step 2. Obtain the previously available image (.img file). You must delete this image in the next step to make room for fetching the new image.

```
switch (config) # show images
Installed images:

  Partition 1:
  SX_PPC_M460EX 3.3.3130 2013-03-20 21:32:25 ppc

  Partition 2:
  SX_PPC_M460EX 3.3.3130 2013-03-20 21:32:25 ppc

Images available to be installed:

  image-PPC_M460EX-SX_3.3.3256.img
  SX_PPC_M460EX 3.3.3256 2013-03-20 21:32:25 ppc

Serve image files via HTTP/HTTPS: no

No image install currently in progress.

Boot manager password is set.

No image install currently in progress.

Require trusted signature in image being installed: yes (default)
```

```
switch (config) #
``` 

Step 3. Delete the old image (if one exists) that is listed under Images available to be installed prior to fetching the new image. Use the command image delete for this purpose.

```
switch (config) # image delete image-PPC_M460EX-3.0.1224.img
switch (config) #
```

When deleting an image, you delete the file but not the partition. This is recommended so as to not overload system resources.

Step 4. Fetch the new software image.

```
switch (config) # image fetch scp://username:password@192.168.10.125/var/www/html/<image_name>
Password (if required): ****** 100.0%[########################################]
switch (config) #
```
Step 5. Display the available images.

To recover from image corruption (e.g., due to power interruption), there are two installed images on the system. See the commands:

```
image boot next
image boot location.
```

```
switch (config) # show images
Installed images:
  Partition 1:
    SX <old ver> 2013-04-28 16:02:50

  Partition 2:
    SX <new ver> 2013-04-28 16:52:50

Images available to be installed:
  new_image.img
    SX <new ver> 2013-04-28 16:52:50

Serve image files via HTTP/HTTPS: no

No image install currently in progress.

Boot manager password is set.

No image install currently in progress.

Require trusted signature in image being installed: yes (default)
```

```
switch (config) #
```

Step 6. Install the new image.

```
switch (config) # image install <image_name>
Step 1 of 4: Verify Image
  100.0% [###################################################]
Step 2 of 4: Uncompress Image
  100.0% [###################################################]
Step 3 of 4: Create Filesystems
  100.0% [###################################################]
Step 4 of 4: Extract Image
  100.0% [###################################################]
switch (config) #
```

CPU utilization may go up to 100% during image upgrade.
Step 7. Have the new image activate during the next boot. Run:

```
switch (config) # image boot next
```

Step 8. Run `show images` to review your images. Run:

```
switch (config) # show images
Images available to be installed:
  new_image.img
  SX <new ver> 2011-04-28 16:52:50

Installed images:
  Partition 1:
    SX <old ver> 2011-04-28 16:02:50

  Partition 2:
    SX <new ver> 2011-04-28 16:52:50

Last boot partition: 1
Next boot partition: 2
No boot manager password is set.
```

```
switch (config) #
```

Step 9. Save current configuration. Run:

```
switch (config) # configuration write
switch (config)#
```

Step 10. Reboot the switch to run the new image. Run:

```
switch (config) # reload
Configuration has been modified; save first? [yes] yes
Configuration changes saved.
Rebooting...
switch (config)#
```

After software reboot, the software upgrade will also automatically upgrade the firmware version.

In order to upgrade the system on dual management system refer to Section 4.3.2, “Upgrading MLNX-OS Software,” on page 156.

When performing upgrade from the WebUI, make sure that the image you are trying to upgrade to is not located already in the system (i.e. fetched from the CLI).
4.3.3 Upgrading MLNX-OS HA Groups

In case fallback is ever necessary in an HA group, all cluster nodes must have the same MLNX-OS version installed and they must be immediately reloaded.

➢ **To upgrade MLNX-OS version without affecting an HA group:**

Step 1. Identify the HA group master.

```bash
switch (config)# show mlag-vip
MLAG VIP ========
MLAG group name: my-mlag-group
MLAG VIP address: 1.1.1.1/30
Active nodes: 2
```

<table>
<thead>
<tr>
<th>Hostname</th>
<th>VIP-State</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>SwitchA</td>
<td>master</td>
<td>10.10.10.1</td>
</tr>
<tr>
<td>SwitchB</td>
<td>standby</td>
<td>10.10.10.2</td>
</tr>
</tbody>
</table>

Step 2. Upgrade standby nodes in the HA group according to steps 1-8 in section Section 4.3.2, on page 156.

Step 3. Wait until all standby nodes have rejoined the group.

Step 4. Upgrade the master node in the HA group according to steps 1-8 in section Section 4.3.2, on page 156.

4.3.4 Deleting Unused Images

➢ **To delete unused images:**

Step 1. Enter Config mode. Run:

```bash
switch > enable
switch # configure terminal
switch (config) # show images
```

Step 2. Get a list of the unused images. Run

```bash
switch (config) # show images
Images available to be installed:
  image-PPC_M460EX-3.1.1224.img
```

Step 2. Get a list of the unused images. Run

```bash
switch (config) # show images
Images available to be installed:
  image-PPC_M460EX-3.1.1224.img
```

`Partitions:

Partition 1:
 SX-OS_PPC_M460EX 3.1.0000-dev-HA 2011-04-10 12:02:49 ppc
 SX-OS_PPC_M460EX 3.1.0000-dev-HA 2011-04-10 12:02:49 ppc

Last boot partition: 1
Next boot partition: 1
Boot manager password is set.
No image install currently in progress.`
Step 3. Delete the unused images. Run:

```
switch (config) # image delete image-PPC_M460EX-3.0.1224.img
switch (config) #
```

When deleting an image, you delete the file but not the partition. This is recommended so as to not overload system resources.

4.3.5 Downgrading MLNX-OS Software

IMPORTANT NOTE

If in possession of an SX65xx director switch with the notice presented in Figure 11, the lowest MLNX-OS version you can downgrade to is 3.3.5006; otherwise, the switch system will malfunction.

Figure 11: SX65xx Downgrade Attention Sticker

Prior to downgrading software, please make sure the following prerequisites are met:

Step 1. Log into your switch via the CLI using the console port.

Step 2. Backup your configuration according to the following steps:

1. Change to Config mode. Run:

   ```
   switch-112094 [standalone: master] > enable
   switch-112094 [standalone: master] # configure terminal
   switch-112094 [standalone: master] (config) #
   ```

2. Disable paging of CLI output. Run:

   ```
   switch-112094 [standalone: master] (config) # no cli default paging enable
   ```

3. Display commands to recreate current running configuration. Run:

   ```
   switch-112094 [standalone: master] (config) # show running-config
   ```

4. Copy the output to a text file.
4.3.5.1 Downloading Image

Step 1. Log into the system to obtain the serial number. Run:

```
switch-112094 [standalone: master] (config) # show inventory
```

Step 2. Download the requested MLNX-OS version from the following link:

http://support.mellanox.com/SupportWeb/

Step 3. Enter your username and password when prompted.

Step 4. Log into the switch via the CLI using the console port.

Step 5. Change to Config mode. Run:

```
switch > enable
switch # configure terminal
switch (config) #
```

Step 6. Delete all previous images from the Images available to be installed prior to fetching the new image. Run:

```
switch (config) # image delete image-EMF_PPC_M405EX-ppc-m405ex 20090531-190132.img
```

Step 7. Fetch the requested software image. Run:

```
switch (config) # image fetch scp://username:password@192.168.10.125/var/www/html/<image_name>
```

4.3.5.2 Downgrading Image

The procedure below assumes that booting and running is done from Partition 1 and the downgrade procedure is performed on Partition 2.

Step 1. Log in as admin.

Step 2. Enter config mode. Run:

```
switch > enable
switch # configure terminal
```

Step 3. Show all image files on the system. Run:

```
switch (config) # show images
Images available to be installed:
new_image.img
<downgrade version> 2010-09-19 16:52:50
Installed images:
Partition 1:
<current version> 2010-09-19 03:46:25
Partition 2:
<current version> 2010-09-19 03:46:25
Last boot partition: 1
Next boot partition: 1
No boot manager password is set.
switch (config) #
```
Step 4. Install the MLNX-OS image. Run:

```
switch (config) # image install <image_name>
```

Step 1 of 4: Verify Image

```
100.0% [####################################################]
```

Step 2 of 4: Uncompress Image

```
100.0% [####################################################]
```

Step 3 of 4: Create Filesystems

```
100.0% [####################################################]
```

Step 4 of 4: Extract Image

```
100.0% [####################################################]
```

```
switch (config) #
```

Step 5. Show all image files on the system. Run:

```
switch (config) # show images
```

Images available to be installed:

```
new_image.img
<downgrade version> 2010-09-19 16:52:50
```

Installed images:

```
Partition 1:
<current version> 2010-09-19 03:46:25
Partition 2:
<downgrade version> 2010-09-19 16:52:50
```

```
Last boot partition: 1
Next boot partition: 2
No boot manager password is set.
```

```
switch (config) #
```

Step 6. Set the boot location to be the other partition (next). Run:

```
switch (config) # image boot next
```

There are two installed images on the system. Therefore, if one of the images gets corrupted (due to power interruption, for example), in the next reboot the image will go up from the second partition.

In case you are downloading to an older software version which has never been run yet on the switch, use the following command sequence as well:

```
switch (config) # no boot next fallback-reboot enable
switch (config) # configuration write
```

Step 7. Reload the switch. Run:

```
switch (config) # reload
```

4.3.5.3 Switching to Partition with Older Software Version

The system saves a backup configuration file when upgrading from an older software version to a newer one. If the system returns to the older software partition, it uses this backup configuration file. Note that all configuration changes done with the new software are lost when returning to the older software version.
There are 2 instances where the backup configuration file does not exist:

- The user has run “reset factory” command, which clears all configuration files in the system
- The user has run “configuration switch-to” to a configuration file with different name then the backup file

Also note that the configuration file becomes empty if the switch is downgraded to a software version which has never been installed yet.

To allow switching partition to the older software version, in these cases above, follow the steps below:

Step 1. Run the command:

```
switch (config)# no boot next fallback-reboot enable
```

Step 2. Set the boot partition. Run:

```
switch (config)# image boot next
```

Step 3. Save the configuration. Run:

```
switch (config)# configuration write
```

Step 4. Reload the system. Run:

```
switch (config)# reload
```

4.3.6 Upgrading System Firmware

Each MLNX-OS software package version has a default switch firmware version. When you update the MLNX-OS software to a new version, an automatic firmware update process will be attempted by MLNX-OS. This process is described below.

4.3.6.1 After Updating MLNX-OS Software

Upon rebooting your switch system after updating the MLNX-OS software, MLNX-OS compares its default firmware version with the currently programmed firmware versions on all the switch modules (leafs and spines on director-class switches, or simply the switch card on edge switch systems).

If one or more of the switch modules is programmed with a firmware version other than the default version, then MLNX-OS automatically attempts to burn the default firmware version instead.

If a firmware update takes place, then the login process is delayed a few minutes.

To verify that the firmware update was successful, log into MLNX-OS and run the command “show asic-version” (can be run in any mode). This command lists all of the switch modules along with their firmware versions. Make sure that all the firmware versions are the same and match the default firmware version. If the firmware update failed for one or more modules, then the following warning is displayed.
Some subsystems are not updated with a default firmware.

If you detect a mismatch in firmware version for one or more modules of the switch system, please contact your assigned Mellanox Technologies field application engineer.

4.3.6.2 Importing Firmware and Changing the Default Firmware

To perform an automatic firmware update by MLNX-OS for a different switch firmware version without changing the MLNX-OS version, import the firmware package as described below. MLNX-OS sets it as the new default firmware and performs the firmware update automatically as described in the previous subsections.

Default Firmware Change on Standalone Systems

Step 1. Import the firmware image (.mfa file). Run:

```bash
switch (config) # image fetch image fetch scp://root@1.1.1.1:/tmp/fw-SX-rel-9_2_6440-FIT.tgz
Password (if required): *******
100.0% [###################################################################]  
```

```bash
switch (config) # image default-chip-fw fw-SX-rel-9_2_6440-FIT.mfa  
Installing default firmware image. Please wait...  
```

```
Default Firmware 9.2.6440 updated. Please save configuration and reboot for new FW to take effect.  
```

```bash
switch (config) # configuration write  
switch (config) #  
```

Step 2. Save the configuration. Run:

```bash
switch (config) # configuration write  
switch (config) #  
```

Step 3. Reboot the system to enable auto update.

4.3.7 Image Maintenance via Mellanox ONIE

Supported only on MSX1710-BS2F2O switch system.

The switch system MSX1710-BS2F2O allows booting ONIE and burning a different OS on the switch system.

When booting or rebooting the switch system an ONIE entry has been added to the boot loader options. For example:

```
GNU GRUB version 2.02-beta2  
X86_64 3.4.1932 2015-04-24 18:04:12 x86_64 1  
X86_64 3.4.1932 2015-04-24 18:04:12 x86_64 2  
ONIE  
```
ONIE may be selected from this prompt to allow ONIE functionality over this system. To do so, the MLNX-OS image burned must be uninstalled from the system. Once MLNX-OS is uninstalled, ONIE boots and the user is presented with ONIE command prompt which allows regular ONIE functionality according to Mellanox SwitchX ONIE Switch User Manual.

To return to MLNX-OS mode, MLNX-OS must be reinstalled using the ONIE Network OS installer file according to the preferred ONIE Network OS installation flow.

The switch system then loads from factory set configurations (automatically saved configuration is not supported).

All previous MLNX-OS installation flows are supported, therefore, the command “image fetch” or “image install” may be used to save previous configuration.
4.3.8 Commands

This chapter displays all the relevant commands used to manage the system software image.

image boot

```
image boot {location <location ID> | next}
```

Specifies the default location where the system should be booted from.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>location ID</td>
<td>Specifies the default destination location. There can be up to 2 images on the system. The possible values are 1 or 2.</td>
</tr>
<tr>
<td>next</td>
<td>Sets the boot location to be the next once after the one currently booted from, thus avoiding a cycle through all the available locations.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>enable/config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # image boot location 2
| Related Commands | show images |

Notes
boot next

boot next fallback-reboot enable
no boot next fallback-reboot enable

Sets the default setting for next boot. Normally, if the system fails to apply the configuration on startup (after attempting upgrades or downgrades, as appropriate), it will reboot to the other partition as a fallback.

The no form of the command tells the system not to do that, only for the next boot.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.2.0506</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # boot next fallback-reboot enable
switch (config) # |

Related Commands: show images

Notes:
- Normally, if the system fails to apply the configuration on startup (after attempting upgrades or downgrades, as appropriate) it reboots to the other partition as a fallback.
- The no form of this command tells the system not to do that only for the next boot. In other words, this setting is not persistent, and goes back to enabled automatically after each boot.
- When downgrading to an older software version which has never been run yet on a system, the “fallback reboot” always happens, unless the command “no boot next fallback-reboot enable” is used. However, this also happens when the older software version has been run before, but the configuration file has been switched since upgrading. In general, a downgrade only works (without having the fallback reboot forcibly disabled) if the process can find a snapshot of the configuration file (by the same name as the currently active one) which was taken before upgrading from the older software version. If that is not found, a fallback reboot is performed in preference to falling back to the initial database because the latter generally involves a loss of network connectivity, and avoiding that is of paramount importance.
boot system

`boot system {location | next}`

`no boot system next`

Configures which system image to boot by default.
The no form of the command resets the next boot location to the current active one.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
</table>
| location | Specifies location from which to boot system
| next | Boots system from next location after one currently booted |
| 1 | 1 – installs to location 1 |
| 2 | 2 – installs to location 2 |

Default

N/A

Configuration Mode

Config

History

3.2.0506

Role

admin

Example

```bash
switch (config) # boot system location 2
switch (config) #
```

Related Commands

show images

Notes
image default-chip-fw

image default-chip-fw <file name>

Sets the default firmware package to be installed.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>filename</th>
<th>Specifies the firmware filename.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```
switch (config) # image default-chip-fw image=SX_PPC_M460EX-ppc-m460ex-20120122-084759.img
switch (config) #
```

Related Commands

- image install-chip fw
- show images

Notes
image delete

```
image delete <image name>
```

Deletes the specified image file.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>image name</td>
<td>Specifies the image name.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # image delete image-MLNX-OS-201140526-010145.img
switch (config) #
```

Related Commands

- `show images`
image fetch

image fetch <URL> [<filename>]

Downloads an image from the specified URL or via SCP.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>URL</th>
<th>HTTP, HTTPS, FTP, TFTP, SCP and SFTP are supported. Example: scp://username[:password]@hostname/path/filename.</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>Specifies a filename for this image to be stored as locally.</td>
<td></td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Config

History: 3.1.0000

Role: admin

Example:
```
switch (config) # image fetch scp://<username>@192.168.10.125/var/www/html/<image_name>
Password  *****
100.0%[###################################################################]...
switch (config) #
```

Related Commands: show images

Notes:
- Please delete the previously available image, prior to fetching the new image
- See section “Upgrading MLNX-OS SX Software,” in the Mellanox SwitchX® User Manual for a full upgrade example
image install

image install <image filename> [location <location ID>] | [progress <prog-options>] | [verify <ver-options>]

Installs the specified image file.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>image filename</th>
<th>Specifies the image name.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>location ID</td>
<td>Specifies the image destination location.</td>
</tr>
<tr>
<td>prog-options</td>
<td></td>
<td>• “no-track” overrides CLI default and does not track the installation progress</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• “track” overrides CLI default and tracks the installation progress</td>
</tr>
<tr>
<td>ver-options</td>
<td></td>
<td>• “check-sig” requires an image to have either a valid signature or no signature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• “ignore-sig” allows unsigned or invalidly signed images to be installed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• “require-sig” requires from the installed image to have a valid signature. If a valid signature is not found on the image, the image cannot be installed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

switch (config) # image install SX_PPC_M460EX 3.0.0000-dev-HA 2012-01-22 08:47:59 ppc
Step 1 of 4: Verify Image
100.0%
[##
Step 2 of 4: Uncompress Image
100.0%
[##
Step 3 of 4: Create Filesystems
100.0%
[##
Step 4 of 4: Extract Image
100.0%
[##
switch (config) #

Related Commands

show images

Notes

• The image cannot be installed on the “active” location (the one which is currently being booted)
• On a two-location system, the location is chosen automatically if no location is specified
image move

`image move <src image name> <dest image name>`

Renames the specified image file.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>src image name</th>
<th>Specifies the old image name.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dest image name</td>
<td>Specifies the new image name.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config) # image move image1.img image2.img</code></td>
</tr>
<tr>
<td></td>
<td><code>switch (config) #</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td>show images</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
image options

```
image options {require-sig | serve}
no image options {require-sig | serve all}
```

Configures options and defaults for image usage.
The no form of the command disables options and defaults for image usage.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>require-sig</th>
<th>serve all</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Requires images to be signed by a trusted signature</td>
<td>Configures options for serving image files from this appliance</td>
<td>Makes all image files on this appliance available for HTTP and HTTPS download</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # image options require-sig
switch (config) # |

Related Commands

- `show images`
show bootvar

Displays the installed system images and the boot parameters.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show bootvar
Installed images:
    Partition 1:
        SX_PPC_M460EX 3.0.0000-dev-HA 2012-01-22 08:47:59 ppc
        Last dobincp: 2012/01/23 14:54:23

    Partition 2:
        SX_PPC_M460EX 3.0.0000-dev-HA 2012-01-18 09:52:41 ppc
        Last dobincp: 2012/01/19 16:48:23

Last boot partition: 1
Next boot partition: 1

Boot manager password is set.

No image install currently in progress.

Image signing: trusted signature always required
Admin require signed images: yes

Settings for next boot only:
    Fallback reboot on configuration failure: yes (default)
switch (config) #
```

Related Commands

N/A

Notes
show images

show image

Displays information about the system images and boot parameters.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td></td>
</tr>
</tbody>
</table>

switch (config) # show images
Images available to be installed:
 image-SX_PPC_M460EX-ppc-m460ex-20120122-084759.img
 SX_PPC_M460EX 3.0.0000-dev-HA 2012-01-22 08:47:59 ppc

Installed images:
 Partition 1:
 SX_PPC_M460EX 3.0.0000-dev-HA 2012-01-22 08:47:59 ppc
 Last dobincp: 2012/01/23 14:54:23

 Partition 2:
 SX_PPC_M460EX 3.0.0000-dev-HA 2012-01-18 09:52:41 ppc
 Last dobincp: 2012/01/19 16:48:23

Last boot partition: 1
Next boot partition: 1

Boot manager password is set.

No image install currently in progress.

Image signing: trusted signature always required
Admin require signed images: yes

Settings for next boot only:
 Fallback reboot on configuration failure: yes (default)

Related Commands
N/A

Notes
4.4 Configuration Management

4.4.1 Saving a Configuration File

To save the current configuration to the active configuration file, you can either use the `configuration write` command (requires running in Config mode) or the `write memory` command (requires running in Enable mode).

- To save the configuration to the active configuration file, run:
  ```
  switch (config) # configuration write
  ```

- To save the configuration to a user-specified file without making the new file the active configuration file, run:
  ```
  switch (config) # configuration write to myconf no-switch
  ```

- To save the configuration to a user-specified file and make the new file the active configuration file, run:
  ```
  switch (config) # configuration write to myconf
  ```

- To display the available configuration files and the active file, run:
  ```
  switch (config) # show configuration files
  initial
  myconf (active)
  switch (config) #
  ```

4.4.2 Loading a Configuration File

By default, or after a system reset, the system loads the default “initial” configuration file.

➢ To load a different configuration file and make it the active configuration:
  ```
  switch [standalone: master] >
  switch [standalone: master] > enable
  switch [standalone: master] # configure terminal
  switch [standalone: master] (config) # configuration switch-to myconfig
  switch [standalone: master] (config) #
  ```

4.4.3 Managing Configuration Files

There are two types of configuration files that can be applied on the switch, BIN files (binary) and text-based configuration files.

4.4.3.1 BIN Configuration Files

BIN configuration files are not human readable and cannot be edited.
- **To create a new BIN configuration file**
  ```
  switch (config) # configuration new my-filename
  ```

- **To upload a BIN configuration file from a switch to an external file server**
  ```
  switch (config) # configuration upload my-filename scp://root@my-server/root/tmp/my-filename
  ```

- **To fetch a BIN configuration file**
  ```
  switch (config) # configuration fetch scp://root@my-server/root/tmp/my-filename
  ```

- **To see the available configuration files**
  ```
  switch (config) # show configuration files
  initial (active)
  my-filename
  ```
  ```
  Active configuration: initial
  Unsaved changes: no
  ```

- **To load a BIN configuration file**:
  ```
  switch (config) # configuration switch-to my-filename
  ```

Applying a new BIN configuration file changes the whole switch’s configuration and requires system reboot which can be performed using the command `reload`.

4.4.3.2 Text Configuration Files

Text configuration files are text based and editable.

- **To create a new text-based configuration file**:
  ```
  switch (config) # configuration text generate active running save my-filename
  ```

- **To apply a text-based configuration file**:
  ```
  switch (config) # configuration text file my-filename apply
  ```

Applying a text-based configuration file to an existing/running data port configuration may result in unpredictable behavior. It is therefore suggested to first clear the switch’s configuration by applying a specific configuration file (following the procedure in Section 4.4.3.1) or by resetting the switch back to factory default.
- **To upload a text-based configuration file from a switch to an external file server**

  ```
  switch (config) # configuration text file my-filename upload scp://root@my-server/root/tmp/my-filename
  ```

- **To fetch a text-based configuration file from an external file server to a switch**

  ```
  switch (config) # configuration text fetch scp://root@my-server/root/tmp/my-filename
  ```

- **To apply a text-based configuration file:**

  ```
  switch (config) # configuration text file my-filename apply
  ```

 When applying a text-based configuration file, the configuration is appended to the switch’s existing configuration. Reboot is not required.
4.4.4 Commands

4.4.4.1 File System

devug generate dump

devug generate dump

Generates a debug dump.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # devug generate dump
| | Generated dump sysdump-switch-112104-201140526-091707.tgz
| | switch (config) # |
| Related Commands | file devug-dump |
| Notes | The dump can then be manipulated using the “file devug-dump...” commands. |
file debug-dump

```
file debug-dump {delete {<filename> | latest} | email {<filename> | latest} | upload {{<filename> | latest} <URL>}}
```

Manipulates debug dump files.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete {<filename></td>
<td>latest}</td>
</tr>
<tr>
<td>email {<filename></td>
<td>latest}</td>
</tr>
<tr>
<td>upload {{<filename></td>
<td>latest} <URL>}}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.0000</td>
<td>Initial release</td>
</tr>
<tr>
<td>3.3.4000</td>
<td>Added “latest” parameter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

Example

```
switch (config) # file debug-dump email sysdump-switch-112104-20114052-091707.tgz
switch (config) #
```

Related Commands

```
show files debug-dump
```

Notes
file stats

```plaintext
file stats {delete <filename> | move {<source filename> | <destination filename>} | upload <filename> <URL>}
```

Manipulates statistics report files.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete <filename></td>
<td>Deletes a stats report file.</td>
</tr>
<tr>
<td>move <source filename> <destination filename></td>
<td>Renames a stats report file.</td>
</tr>
<tr>
<td>upload <filename> <URL></td>
<td>Uploads a stats report file. URL - HTTP, HTTPS, FTP, TFTP, SCP and SFTP are supported. Example: scp://username[:password]@hostname/path/filename.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # file stats move memory-1.csv memory-2.csv switch (config) #</td>
</tr>
<tr>
<td>Related Commands</td>
<td>show files stats show files stats <filename></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
file tcpdump

file tcpdump {delete <filename> | upload <filename> <URL>}

Manipulates tcpdump output files.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>delete <filename></th>
<th>Deletes the specified tcpdump output file.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>upload <filename> <URL></td>
<td>Uploads the specified tcpdump output file to the specified URL.</td>
</tr>
</tbody>
</table>

URL - HTTP, HTTPS, FTP, TFTP, SCP and SFTP are supported. Example: scp://username[:password]@hostname/path/filename.

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # file tcpdump delete my-tcpdump-file.txt
switch (config) # |
| Related Commands | show files stats
tcpdump |

| Notes | |
reload

reload [force immediate | halt [noconfirm] | noconfirm]

Reboots or shuts down the system.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>force immediate</th>
<th>halt</th>
<th>noconfirm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Forces an immediate reboot of the system even if the system is busy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shuts down the system.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reboots the system without asking about unsaved changes.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config

History

3.1.0000

Role

admin

Example

```
switch (config) # reload
Configuration has been modified; save first? [yes] yes
Configuration changes saved.
...
switch (config) #
```

Related Commands

reset factory

Notes
show files debug-dump

show files debug-dump [<filename>]

Displays a list of debug dump files.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>filename</th>
<th>Displays a summary of the contents of a particular debug dump file.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

switch (config) # show files debug-dump sysdump-switch-112104-20114052-091707.tgz
System information:

Hostname: switch-112104
Version: SX_PPC 3.1.0000 2011-05-25 13:59:00 ppc
Date: 2012-01-26 09:17:07
Uptime: 0d 18h 47m 48s

===
Output of 'uname -a':

Linux switch-112104 2.6.27-MELLANOXuni-m405ex SX_PPC 3.1.0000 #1 2012-01-25 13:59:00 ppc ppc GNU/Linux

===

switch (config) #

Related Commands
file debug-dump

Notes
show files stats

`show files stats <filename>`

Displays a list of statistics report files.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>Display the contents of a particular statistics report file.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | `switch (config) # show files stats`
 | `memory-201140524-111745.csv` |
| Related Commands | file stats |
| Notes | |
show files system

show files system [detail]

Displays usage information of the file systems on the system.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Detail</th>
<th>Displays more detailed information on file-system.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show files system
Statistics for /config filesystem:
  Bytes Total       100 MB
  Bytes Used        3 MB
  Bytes Free        97 MB
  Bytes Percent Free 97%
  Bytes Available   97 MB
  Inodes Total      0
  Inodes Used       0
  Inodes Free       0
  Inodes Percent Free 0%

Statistics for /var filesystem:
  Bytes Total       860 MB
  Bytes Used        209 MB
  Bytes Free        651 MB
  Bytes Percent Free 75%
  Bytes Available   651 MB
  Inodes Total      0
  Inodes Used       0
  Inodes Free       0
  Inodes Percent Free 0%
switch (config) #
```

Related Commands

N/A

Notes
show files tcpdump

show files tcpdump

Displays a list of statistics report files.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # show files stats
test
dump3
switch (config) # |
| Related Commands | file tcpdump
tcpdump |

Notes
4.4.4.2 Configuration Files

configuration audit

`configuration audit max-changes <number>`

Chooses settings related to configuration change auditing.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
<th>Default</th>
<th>Configuration Mode</th>
<th>History</th>
<th>Role</th>
<th>Example</th>
</tr>
</thead>
</table>
| max-changes | Set maximum number of audit messages to log per change. | 1000 | Config | 3.1.0000 | admin | switch (config) # configuration audit max-changes 100
 | | | | | | switch (config) # show configuration audit
 | | | | | | Maximum number of changes to log: 100
 | | | | | | switch (config) # |

Related Commands

- show configuration

Notes

- N/A
configuration copy

`configuration copy <source name> <dest name>`

Copies a configuration file.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>source name</th>
<th>Name of source file.</th>
</tr>
</thead>
<tbody>
<tr>
<td>dest name</td>
<td></td>
<td>Name of destination file. If the file of specified filename does not exist a new file will be created with said filename.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```bash
switch (config) # configuration copy initial.bak example
switch (config) #
```

Related Commands

Notes

- This command does not affect the current running configuration
- The active configuration file may not be the target of a copy. However, it may be the source of a copy in which case the original remains active.
configuration delete

configuration delete <filename>

Deletes a configuration file.

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>Name of file to delete.</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config

History

3.1.0000

Role

admin

Example

```
switch (config) # show configuration files
example       initial       initial.bak   initial.prev
switch (config) # configuration delete example
switch (config) # show configuration files
initial       initial.bak   initial.prev
switch (config) #
```

Related Commands

show configuration

Notes

- This command does not affect the current running configuration
- The active configuration file may not be deleted
configuration fetch

configuration fetch <URL> [<name>]

Downloads a configuration file from a remote host.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>URL</th>
<th>HTTP, HTTPS, FTP, TFTP, SCP and SFTP are supported. Example: scp://username[:password]@host-name/path/filename.</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The configuration file name.</td>
<td></td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Config

History: 3.1.0000

Role: admin

Example:
```
switch (config) # configuration fetch scp://root:password@192.168.10.125/tmp/conf1
switch (config) #
```

Related Commands: configuration switch-to

Notes:
- The downloaded file should not override the active configuration file, using the <name> parameter.
- If no name is specified for a configuration fetch, it is given the same name as it had on the server.
- No configuration file may have the name “active”
configuration jump-start

configuration jump-start

Runs the initial-configuration wizard.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # configuration jump-start
Mellanox configuration wizard
Step 1: Hostname? [switch-3cc29c]
Step 2: Use DHCP on mgmt0 interface? y
Step 3: Admin password (Enter to leave unchanged)?
You have entered the following information:
1. Hostname: switch-3cc29c
2. Use DHCP on mgmt0 interface: yes
3. Enable IPv6: yes
4. Enable IPv6 autoconfig (SLAAC) on mgmt0 interface: yes
53. Admin password (Enter to leave unchanged): (unchanged)
To change an answer, enter the step number to return to.
Otherwise hit <enter> to save changes and exit.
Choice:
Configuration changes saved.
switch (config) #
```

Related Commands

N/A

Notes

- The wizard is automatically invoked whenever the CLI is launched when the active configuration file is fresh (i.e. not modified from its initial contents)
- This command invokes the wizard on demand – see chapter “Initializing the Switch for the First Time” in the Mellanox *MLNX-OS SwitchX User Manual*
configuration merge

configuration merge <filename>

Merges the “shared configuration” from one configuration file into the running configuration.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>filename</th>
<th>Name of file from which to merge settings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>
| Example | switch (config) # configuration merge new-config-file
switch (config) # |

Related Commands

Notes
• No configuration files are modified during this process
• The configuration name must be a non-active configuration file
configuration move

`configuration move <source name> <dest name>`

Moves a configuration file.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source name</td>
<td>Old name of file to move.</td>
</tr>
<tr>
<td>dest name</td>
<td>New name for moved file.</td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Config

History: 3.1.0000

Role: admin

Example

```  
switch (config) # show configuration files  
example1    initial    initial.bak    initial.prev  
switch (config) # configuration move example1 example2  
switch (config) # show configuration files  
example2    initial    initial.bak    initial.prev  
switch (config) #  
```

Related Commands

- show configuration

Notes

- This command does not affect the current running configuration
- The active configuration file may not be the target of a move
configuration new

configuration new <filename> [factory [keep-basic] [keep-connect]]

Creates a new configuration file under the specified name. The parameters specify what configuration, if any, to carry forward from the current running configuration.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>filename</th>
<th>Names for new configuration file.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>factory</td>
<td>Creates new file with only factory defaults.</td>
</tr>
<tr>
<td></td>
<td>keep-basic</td>
<td>Keeps licenses and host keys.</td>
</tr>
<tr>
<td></td>
<td>keep-connect</td>
<td>Keeps configuration necessary for connectivity (interfaces, routes, and ARP).</td>
</tr>
</tbody>
</table>

Default

Keeps licenses and host keys

Configuration Mode

Config

History

3.1.0000

Role

admin

Example

```
switch (config) # show configuration files
initial      initial.bak      initial.prev
switch (config) # configuration new example2
switch (config) # show configuration files
example2     initial      initial.bak      initial.prev
switch (config) #
```

Related Commands

show configuration

Notes
configuration switch-to

configuration switch-to <filename>

Loads the configuration from the specified file and makes it the active configuration file.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show configuration files
initial (active)
newcon
initial.prev
initial.bak
switch (config) # configuration switch-to newcon
switch (config) # show configuration files
initial
newcon (active)
initial.prev
initial.bak
switch (config) #
```

Related Commands

show configuration files

Notes

The current running configuration is lost and not automatically saved to the previous active configuration file.
configuration text fetch

configuration text fetch `<URL>` [apply | discard | fail-continue | filename | overwrite | verbose] | filename `<filename>` | overwrite [apply | filename `<filename>`]

Fetches a text configuration file (list of CLI commands) from a specified URL.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>apply</th>
<th>Applies the file to the running configuration (i.e. executes the commands in it). This option has the following parameters:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• discard: Does not keep downloaded configuration text file after applying it to the system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fail-continue: If applying commands, continues execution even if one of them fails</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• overwrite: If saving the file and the filename already exists, replaces the old file</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• verbose: Displays all commands being executed and their output instead of just those that get errors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>filename</th>
<th>Specifies filename for saving downloaded text file.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>overwrite</th>
<th>Downloads the file and saves it using the same name it had on the server. This option has the following parameters:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• apply: Applies the downloaded configuration to the running system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• filename: Specifies filename for saving downloaded text file</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.2.1000 First version</td>
</tr>
<tr>
<td></td>
<td>3.2.3000 Updated command</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config) # configuration fetch text scp://username[:password]@hostname/path/filename</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Notes</td>
<td>N/A</td>
</tr>
</tbody>
</table>
configuration text file

```
configuration text file <filename> {apply [fail-continue] [verbose] | delete | rename <filename> | upload < URL>}
```

Performs operations on text-based configuration files.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename <file></td>
<td>Specifies the filename.</td>
</tr>
<tr>
<td>apply</td>
<td>Applies the configuration on the system.</td>
</tr>
<tr>
<td>fail-continue</td>
<td>Continues execution of the commands even if some commands fail.</td>
</tr>
<tr>
<td>verbose</td>
<td>Displays all commands being executed and their output, instead of just those that get errors.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes the file.</td>
</tr>
<tr>
<td>rename <filename></td>
<td>Renames the file.</td>
</tr>
<tr>
<td>upload <URL></td>
<td>Supported types are HTTP, HTTPS, FTP, TFTP, SCP and SFTP. For example: scp://username[:password]@hostname/path/filename.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # configuration text file my-config-file delete switch (config) #</td>
</tr>
<tr>
<td>Related Commands</td>
<td>show configuration files</td>
</tr>
</tbody>
</table>

Notes
configuration text generate

configuration text generate \{active \{running | saved\} | file <filename> \} \{save <filename> | upload <URL>\}

Generates a new text-based configuration file from this system's configuration.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>active</td>
<td>Generates from currently active configuration.</td>
</tr>
<tr>
<td>running</td>
<td>Uses running configuration.</td>
</tr>
<tr>
<td>saved</td>
<td>Uses saved configuration.</td>
</tr>
<tr>
<td>file <filename></td>
<td>Generates from inactive saved configuration.</td>
</tr>
<tr>
<td>save</td>
<td>Saves new file to local persistent storage.</td>
</tr>
<tr>
<td>upload <URL></td>
<td>Supported types are HTTP, HTTPS, FTP, TFTP, SCP and SFTP. For example: scp://username[:password]@hostname/path/filename.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # configuration text generate file initial.prev save example \nswitch (config) # show configuration files \ninitial (active) \ninitial.prev \ninitial.bak \nActive configuration: initial \nUnsaved changes: yes \nswitch (config) #</td>
</tr>
<tr>
<td>Related Commands</td>
<td>show configuration files</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
configuration upload

configuration upload {active | <name>} <URL or scp or sftp://username:password@hostname[:port]/path/filename>

Uploads a configuration file to a remote host.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>active</th>
<th>Upload the active configuration file.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # configuration upload active scp://root:password@192.168.10.125/tmp/conf1 switch (config) #</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>No configuration file may have the name “active”.</td>
<td></td>
</tr>
</tbody>
</table>
configuration write

configuration write [local | to <filename> [no-switch]]

Saves the running configuration to the active configuration file.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>local</th>
<th>Saves the running configuration locally (same as “write memory local”)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>to <filename></td>
<td>Saves the running configuration to a new file under a different name and makes it the active file</td>
</tr>
<tr>
<td></td>
<td>no-switch</td>
<td>Saves the running configuration to this file but keep the current one active</td>
</tr>
</tbody>
</table>

Default	N/A
Configuration Mode	Config
History	3.1.0000
Role	admin
Example	switch (config) # configuration write
switch (config) # |

Related Commands

write

Notes
write

write \{memory \{local\} | terminal\}

Saves or displays the running configuration.

Syntax Description	memory	Saves running configuration to the active configuration file. It is the same as “configuration write”.
	local	Saves the running configuration only on the local node. It is the same as “configuration write local”.
	terminal	Displays commands to recreate current running configuration. It is the same as “show running-config”.

Default: N/A

Configuration Mode: Config

History: 3.1.0000

Role: admin

Example:

```
switch (config) # write terminal
##
## Running database "initial"
## Generated at 2014/05/27 10:05:16 +0000
## Hostname: switch
##
##
## Network interface configuration
##
## interface mgmt0 comment ""
interface mgmt0 create
interface mgmt0 dhcp
interface mgmt0 display
interface mgmt0 duplex auto
interface mgmt0 mtu 1500
no interface mgmt0 shutdown
interface mgmt0 speed auto
no interface mgmt0 zeroconf
##
## Local user account configuration
##
username a** capability admin
no username a** disable
username a** disable password
......
switch (config) #
```

Related Commands: show running-config, configuration write

Notes
show configuration

show configuration [audit | files [<filename>] | running | text files]

Displays a list of CLI commands that will bring the state of a fresh system up to match the current persistent state of this system.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>audit</th>
<th>Displays settings for configuration change auditing.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>files [<filename>]</td>
<td>Displays a list of configuration files in persistent storage if no filename is specified. If a filename is specified, it displays the commands to recreate the configuration in that file. In the latter case, only non-default commands are shown, as for the normal “show configuration” command.</td>
</tr>
<tr>
<td></td>
<td>running</td>
<td>Displays commands to recreate current running configuration. Same as “show configuration” except that it applies to the currently running configuration, rather than the current persisted configuration.</td>
</tr>
<tr>
<td></td>
<td>text files</td>
<td>Displays names of available text-based configuration files.</td>
</tr>
</tbody>
</table>

Default
N/A

Configuration Mode
Config

History
3.1.0000

3.3.5006 Removed “running full” and “full” parameters

Role
monitor/admin

Example

```
switch (config) # show configuration
##
## Active saved database "newcon"
## Generated at 20114/05/25 10:18:52 +0000
## Hostname: switch-3cc29c
##
##
## Network interface configuration
##
## interface mgmt0 comment ""
interface mgmt0 create
dhcp
interface mgmt0 display
duplex auto
interface mgmt0 mtu 1500
no interface mgmt0 shutdown
display auto
delete zeroconf
```

Related Commands

Notes
show running-config

show running-config

Displays commands to recreate current running configuration.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td></td>
<td>3.3.4402 Removed “full” parameter</td>
</tr>
<tr>
<td>Role</td>
<td>monitor/admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show running-config
##
## Running database "initial"
## Generated at 2012/02/28 14:59:02 +0000
## Hostname: switch-5ea5d8
##
## License keys
##
## license install LK2-EMF_SX-5M11-5K11-5HGL-0KAL-6QK-8C2Q-60Q3-6C1G
##
## Network interface configuration
##
## interface mgmt0 create
## interface mgmt0 comment ""
## interface mgmt0 dhcp
## interface mgmt0 display
## interface mgmt0 duplex auto
## interface mgmt0 mtu 1500
no interface mgmt0 shutdown
...
switch (config) #
```

Related Commands

Notes
4.5 Logging

4.5.1 Monitor

➢ To print logging events to the terminal:

Set the modules or events you wish to print to the terminal. For example, run:

```
switch (config) # logging monitor events notice
switch (config) # logging monitor sx-sdk warning
```

These commands print system events in severity “notice” and sx-sdk module notifications in severity “warning” to the screen. For example, in case of interface-down event, the following gets printed to the screen.

```
switch (config) #
Wed Jul 10 11:30:42 2013: Interface IB1/17 changed state to DOWN
Wed Jul 10 11:30:43 2013: Interface IB1/18 changed state to DOWN
switch (config) #
```

To see a list of the events, refer to Table 18, “Supported Event Notifications and MIB Mapping,” on page 247.

4.5.2 Remote Logging

➢ To configure remote syslog to send syslog messages to a remote syslog server:

Step 1. Enter Config mode. Run:

```
switch >
switch > enable
switch # configure terminal
```

Step 2. Set remote syslog server. Run

```
switch (config) # logging <IP address>
```

Step 3. Set the minimum severity of the log level to info. Run:

```
switch (config) # logging <IP address> trap info
```

Step 4. Override the log levels on a per-class basis. Run:

```
switch (config) # logging <IP address> trap override class <class name> priority <level>
```

4.5.3 Switch Power-On Self-Test

As the switch powers on, it begins the Power On Self-Test (POST), a series of tests as part of its power-up procedure to ensure that the switch functions properly. During the POST, the switch logs any errors encountered. Some POST errors are critical, others are not.

The updated POST diagnostic code gets stored inside the “POST Diagnostic Register”.

Table 17 lists the POST return codes and their meanings.

Table 17 - POST Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Severity</th>
<th>Meaning</th>
<th>POST Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x5</td>
<td>Critical</td>
<td>System initialization failure.</td>
<td>Standard POST</td>
</tr>
</tbody>
</table>
Table 17 - POST Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Severity</th>
<th>Meaning</th>
<th>POST Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x10</td>
<td>Critical</td>
<td>Failure connecting to the main management process.</td>
<td>Standard POST</td>
</tr>
<tr>
<td>0x15</td>
<td>Critical</td>
<td>VPD initialization failure.</td>
<td>Standard POST</td>
</tr>
<tr>
<td>0x20</td>
<td>Critical</td>
<td>CPLD initialization failure.</td>
<td>Standard POST</td>
</tr>
<tr>
<td>0x25</td>
<td>Critical</td>
<td>Default IP configuration failure.</td>
<td>Standard POST</td>
</tr>
<tr>
<td>0x30</td>
<td>Critical</td>
<td>Temperature sensors failure.</td>
<td>Extended POST</td>
</tr>
<tr>
<td>0x35</td>
<td>Critical</td>
<td>Voltage sensors failure.</td>
<td>Extended POST</td>
</tr>
<tr>
<td>0x40</td>
<td>Critical</td>
<td>RAM memory failure.</td>
<td>Full POST</td>
</tr>
<tr>
<td>0x45</td>
<td>Critical</td>
<td>NAND memory failure.</td>
<td>Full POST</td>
</tr>
<tr>
<td>0x80</td>
<td>Non-critical</td>
<td>Incorrect firmware version.</td>
<td>Standard POST</td>
</tr>
<tr>
<td>0xff</td>
<td>Non-critical</td>
<td>POST ended successfully</td>
<td>Standard POST</td>
</tr>
</tbody>
</table>
4.5.4 Commands

logging <syslog IP address>

logging <syslog IP address> [trap {<log-level> | override class <class> priority <log-level>}]
no logging <syslog IP address> [trap {<log-level> | override class <class> priority <log-level}>]

Enables (by setting the IP address) sending logging messages, with ability to filter the logging messages according to their classes.
The no form of the command stops sending messages to the remote syslog server.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>syslog IP address</th>
<th>IPv4 address of the remote syslog server.</th>
</tr>
</thead>
<tbody>
<tr>
<td>log-level</td>
<td></td>
<td>• alert - alert notification, action must be taken immediately</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• crit - critical condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• debug - debug level messages</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• emerg - system is unusable (emergency)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• err - error condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• info - informational condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• none - disables the logging locally and remotely</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• notice - normal, but significant condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• warning - warning condition</td>
</tr>
</tbody>
</table>
| class | | Sets or removes a per-class override on the logging level. All classes which do not have an override set will use the global logging level set with “logging local <log level>””. Classes that do have an override will do as the override specifies. If “none” is specified for the log level, MLNX-OS will not log anything from this class. Classes available:
| | | • iss-modules - protocol stack |
| | | • mgmt-back - system management back-end |
| | | • mgmt-core - system management core |
| | | • mgmt-front - system management front-end |
| | | • mlx-daemons - management daemons |
| | | • sx-sdk - switch SDK |
| log-level | | • alert - alert notification, action must be taken immediately |
| | | • crit - critical condition |
| | | • debug - debug level messages |
| | | • emerg - system is unusable (emergency) |
| | | • err - error condition |
| | | • info - informational condition |
| | | • none - disables the logging locally and remotely |
| | | • notice - normal, but significant condition |
| | | • warning - warning condition |

Default
Remote logging is disabled

Configuration Mode
Config

History
3.1.0000

Role
admin
Example

```bash
switch (config) # logging local info
switch (config) # show logging
Local logging level: info
Default remote logging level: notice
No remote syslog servers configured.
Allow receiving of messages from remote hosts: no
Number of archived log files to keep: 10
Log rotation size threshold: 5.000% of partition (43 megabytes)
Log format: standard
Subsecond timestamp field: disabled
Levels at which messages are logged:
  CLI commands: notice
  Audit messages: notice
switch (config) #
```

Related Commands

- show logging
- logging local override

Notes
logging debug-files

logging debug-files {delete {current | oldest} | rotation {criteria | force | max-num} | update {<number> | current} | upload <log-file> <upload URL>}

Configures settings for debug log files.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete {current</td>
<td>oldest}</td>
</tr>
<tr>
<td>• current: Deletes the current active debug-log file</td>
<td></td>
</tr>
<tr>
<td>• oldest: Deletes some of the oldest debug-log files</td>
<td></td>
</tr>
<tr>
<td>rotation {criteria</td>
<td>frequency {daily</td>
</tr>
<tr>
<td>• criteria: Sets how the system decides when to rotate debug files.</td>
<td></td>
</tr>
<tr>
<td>• frequency: Rotate log files on a fixed time-based schedule</td>
<td></td>
</tr>
<tr>
<td>• size: Rotate log files when they pass a size threshold in megabytes</td>
<td></td>
</tr>
<tr>
<td>• size-pct: Rotate logs when they surpass a specified percentage of disk</td>
<td></td>
</tr>
<tr>
<td>• force: Forces an immediate rotation of the log files</td>
<td></td>
</tr>
<tr>
<td>• max-num: Specifies the maximum number of old log files to keep</td>
<td></td>
</tr>
<tr>
<td>update {<number></td>
<td>current}</td>
</tr>
<tr>
<td>• current: Uploads log file “messages” to a remote host</td>
<td></td>
</tr>
<tr>
<td>• number: Uploads compressed log file “debug.<number>.gz” to a remote host. Range is 1-10</td>
<td></td>
</tr>
<tr>
<td>upload</td>
<td>Uploads debug log file to a remote host</td>
</tr>
<tr>
<td>log-file</td>
<td>Possible values: 1-7, or current</td>
</tr>
<tr>
<td>upload URL</td>
<td>HTTP, HTTPS, FTP, TFTP, SCP and SFTP are supported (e.g.: scp://username[:password]@hostname/path/filename)</td>
</tr>
</tbody>
</table>

Default	N/A
Configuration Mode	Config
History	3.3.4150
Role	admin

Example

switch (config) # logging debug-files delete current
switch (config) #

Related Commands

Notes
logging local override

logging local override [class <class> priority <log-level>]
no logging local override [class <class> priority <log-level>]

Enables class-specific overrides to the local log level. The no form of the command disables all class-specific overrides to the local log level without deleting them from the configuration, but disables them so that the logging level for all classes is determined solely by the global setting.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>override</th>
<th>Enables class-specific overrides to the local log level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>class</td>
<td>Sets or removes a per-class override on the logging level. All classes which do not have an override set will use the global logging level set with “logging local <log level>”. Classes that do have an override will do as the override specifies. If “none” is specified for the log level, MLNX-OS will not log anything from this class. Classes available:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• debug-module - debug module functionality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• protocol-stack - protocol stack modules functionality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• mgmt-back - system management back-end components</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• mgmt-core - system management core</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• mgmt-front - system management front-end components</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• mlx-daemons - management daemons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• sx-sdk - switch SDK</td>
<td></td>
</tr>
<tr>
<td>log-level</td>
<td>• alert - alert notification, action must be taken immediately</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• crit - critical condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• debug - debug level messages</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• emerg - system is unusable (emergency)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• err - error condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• info - informational condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• none - disables the logging locally and remotely</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• notice - normal, but significant condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• warning - warning condition</td>
<td></td>
</tr>
</tbody>
</table>

Default: Override is disabled.

Configuration Mode: Config

History:

3.1.0000

3.3.4150 Added debug-module class

Changed iss-modules with protocol-stack

Role: admin
Example

switch (config) # logging local override class mgmt-front priority warning
switch (config) # show logging
Local logging level: info
 Override for class mgmt-front: warning
Default remote logging level: notice
No remote syslog servers configured.
Allow receiving of messages from remote hosts: no
Number of archived log files to keep: 10
Log rotation size threshold: 5.000% of partition (43 megabytes)
Log format: standard
Subsecond timestamp field: disabled
Levels at which messages are logged:
 CLI commands: notice
 Audit messages: notice
switch (config) #

Related Commands

show logging
logging local

Notes
logging fields

logging fields seconds {enable | fractional-digits <f-digit> | whole-digits <w-digit>}
no logging fields seconds {enable | fractional-digits <f-digit> | whole-digits <w-digit>}

Specifies whether to include an additional field in each log message that shows the number of seconds since the Epoch or not.
The no form of the command disallows including an additional field in each log message that shows the number of seconds since the Epoch.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>Specifies whether to include an additional field in each log message that shows the number of seconds since the Epoch or not.</th>
</tr>
</thead>
<tbody>
<tr>
<td>f-digit</td>
<td></td>
<td>The fractional-digits parameter controls the number of digits to the right of the decimal point. Truncation is done from the right. Possible values are: 1, 2, 3, or 6.</td>
</tr>
<tr>
<td>w-digit</td>
<td></td>
<td>The whole-digits parameter controls the number of digits to the left of the decimal point. Truncation is done from the left. Except for the year, all of these digits are redundant with syslog's own date and time. Possible values: 1, 6, or all.</td>
</tr>
</tbody>
</table>

Default: disabled

Configuration Mode: Config

History: 3.1.0000

Role: admin

Example:

```
switch (config) # logging fields seconds enable
switch (config) # logging fields seconds whole-digits 1
switch (config) # show logging
Local logging level: info
  Override for class mgmt-front: warning
Default remote logging level: notice
No remote syslog servers configured. Allow receiving of messages from remote hosts: no
Number of archived log files to keep: 10
Log rotation size threshold: 5.000% of partition (43 megabytes)
Log format: standard
Subsecond timestamp field: enabled
Subsecond timestamp precision: 1 whole digit; 3 fractional digits
Levels at which messages are logged:
  CLI commands: notice
  Audit messages: notice
switch (config) #
```
Related Commands

show logging

Notes

This is independent of the standard syslog date and time at the beginning of each message in the format of “July 15 18:00:00”. Aside from indicating the year at full precision, its main purpose is to provide subsecond precision.
logging files delete

logging files delete {current | oldest [<number of files>]}

Deletes the current or oldest log files.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>current</td>
<td>Deletes current log file.</td>
</tr>
<tr>
<td>oldest</td>
<td>Deletes oldest log file.</td>
</tr>
<tr>
<td>number of files</td>
<td>Sets the number of files to be deleted.</td>
</tr>
</tbody>
</table>

Default

CLI commands and audit message are set to notice logging level

Configuration Mode

Config

History

3.1.0000

Role

classic

Example

switch (config) # logging files delete current
switch (config) #

Related Commands

show logging
show log files

Notes
logging files rotation

logging files rotation \{criteria \{ frequency <freq> | size <size-mb>| size-pct <size-percentage>\} | force | max-number <number-of-files>\}

Sets the rotation criteria of the logging files.

| Syntax Description | freq | Sets rotation criteria according to time. Possible options are:
| | | • Daily
| | | • Weekly
| | | • Monthly
| size-mb | Sets rotation criteria according to size in mega bytes. The range is 1-9999.
| size-percentage | Sets rotation criteria according to size in percentage of the partition where the logging files are kept in. The percentage given is truncated to three decimal points (thousandths of a percent).
| force | Forces an immediate rotation of the log files. This does not affect the schedule of auto-rotation if it was done based on time: the next automatic rotation will still occur at the same time for which it was previously scheduled. Naturally, if the auto-rotation was based on size, this will delay it somewhat as it reduces the size of the active log file to zero.
| number-of-files | The number of log files will be kept. If the number of log files ever exceeds this number (either at rotation time, or when this setting is lowered), the system will delete as many files as necessary to bring it down to this number, starting with the oldest.

Default 10 files are kept by default with rotation criteria of 5% of the log partition size

Configuration Mode Config

History 3.1.0000

Role admin
Example

switch (config) # logging files rotation criteria size-pct 6
switch (config) # show logging
Local logging level: info
 Override for class mgmt-front: warning
Default remote logging level: notice
No remote syslog servers configured.
Allow receiving of messages from remote hosts: no
Number of archived log files to keep: 10
Log rotation size threshold: 6.000% of partition (51.60 megabytes)
Log format: standard
Subsecond timestamp field: enabled
Subsecond timestamp precision: 1 whole digit; 3 fractional digits
Levels at which messages are logged:
 CLI commands: info
 Audit messages: notice
switch (config)

Related Commands
show logging
show log files

Notes
logging files upload

logging files upload \{current | <file-number>\} <url>

Uploads a log file to a remote host.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>current</td>
<td>The current log file. The current log file will have the name “messages” if you do not specify a new name for it in the upload URL.</td>
</tr>
<tr>
<td>file-number</td>
<td>An archived log file. The archived log file will have the name “messages<n>.gz” (while “n” is the file number) if you do not specify a new name for it in the upload URL. The file will be compressed with gzip.</td>
</tr>
<tr>
<td>url</td>
<td>Uploads URL path. FTP, TFTP, SCP, and SFTP are supported. For example: scp://username:[password]@hostname/path/filename.</td>
</tr>
</tbody>
</table>

Default
10 files are kept by default with rotation criteria of 5% of the log partition size

Configuration Mode
Config

History
3.1.0000

Role
admin

Example
switch (config) # logging files upload 1 scp://admin@scpserver

Related Commands
show logging
show log files

Notes
logging format

logging format {standard | welf [fw-name <hostname>]}
no logging format {standard | welf [fw-name <hostname>]}

Sets the format of the logging messages.
The no form of the command resets the format to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>standard</th>
<th>Standard format.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>welf</td>
<td>WebTrends Enhanced Log file (WELF) format.</td>
</tr>
<tr>
<td></td>
<td>hostname</td>
<td>Specifies the firewall hostname that should be associated with each message logged in WELF format. If no firewall name is set, the hostname is used by default.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>standard</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.1.0000</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

| Example | switch (config) # logging format standard
switch (config) # show logging
Local logging level: info
Default remote logging level: notice
No remote syslog servers configured.
Allow receiving of messages from remote hosts: yes
Number of archived log files to keep: 10
Log rotation size threshold: 5.000% of partition (43 megabytes)
Log format: standard
Subsecond timestamp field: disabled
Levels at which messages are logged:
 CLI commands: notice
 Audit messages: notice
switch (config) # |

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>show logging</th>
</tr>
</thead>
</table>

| Notes | |
|-------| |
logging level

logging level {cli commands <log-level> | audit mgmt <log-level>}

Sets the severity level at which CLI commands or the management audit message that the user executes are logged. This includes auditing of both configuration changes and actions.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>cli commands</th>
<th>Sets the severity level at which CLI commands which the user executes are logged.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>audit mgmt</td>
<td>Sets the severity level at which all network management audit messages are logged.</td>
</tr>
<tr>
<td>log-level</td>
<td></td>
<td>• alert - alert notification, action must be taken immediately</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• crit - critical condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• debug - debug level messages</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• emerg - system is unusable (emergency)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• err - error condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• info - informational condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• none - disables the logging locally and remotely</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• notice - normal, but significant condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• warning - warning condition</td>
</tr>
</tbody>
</table>

Default

CLI commands and audit message are set to notice logging level

Configuration Mode

Config

History

3.1.0000

Role

admin

Example

```
switch (config) # logging level cli commands info
switch (config) # show logging
Local logging level: info
   Override for class mgmt-front: warning
Default remote logging level: notice
No remote syslog servers configured.
Allow receiving of messages from remote hosts: no
Number of archived log files to keep: 10
Log rotation size threshold: 5.000% of partition (43 megabytes)
Log format: standard
Subsecond timestamp field: enabled
Subsecond timestamp precision: 1 whole digit; 3 fractional digits
Levels at which messages are logged:
   CLI commands: info
   Audit messages: notice
switch (config) #
```

Related Commands

show logging

Notes
logging monitor

logging monitor <facility> <priority-level>
no logging monitor <facility> <priority-level>

Sets monitor log facility and level to print to the terminal.
The no form of the command disables printing logs of facilities to the terminal.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>facility</th>
<th>mgmt-front</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mgmt-back</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mgmt-core</td>
<td></td>
</tr>
<tr>
<td></td>
<td>events</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sx-sdk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mlnx-daemons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iss-modules</td>
<td></td>
</tr>
</tbody>
</table>

priority-level

<table>
<thead>
<tr>
<th>priority-level</th>
<th>none</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>emerg</td>
</tr>
<tr>
<td></td>
<td>alert</td>
</tr>
<tr>
<td></td>
<td>crit</td>
</tr>
<tr>
<td></td>
<td>err</td>
</tr>
<tr>
<td></td>
<td>warming</td>
</tr>
<tr>
<td></td>
<td>notice</td>
</tr>
<tr>
<td></td>
<td>info</td>
</tr>
<tr>
<td></td>
<td>debug</td>
</tr>
</tbody>
</table>

Default

no logging monitor

Configuration Mode

Config

History

3.3.4000

Role

admin

Example

switch (config) # logging monitor events notice
switch (config) #

Related Commands

Notes
logging receive

logging receive

no logging receive

Enables receiving logging messages from a remote host.
The no form of the command disables the option of receiving logging messages from a remote host.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Receiving logging is disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```plaintext
switch (config) # logging receive
switch (config) # show logging
Local logging level: info
Default remote logging level: notice
No remote syslog servers configured.
Allow receiving of messages from remote hosts: yes
Number of archived log files to keep: 10
Log rotation size threshold: 5.000% of partition (43 megabytes)
Log format: standard
Subsecond timestamp field: disabled
Levels at which messages are logged:
  CLI commands: notice
  Audit messages: notice
switch (config) #
```

Related Commands

- show logging
- logging local
- logging local override

Notes

- This does not log to the console TTY port
- In-band management should be enabled in order to open a channel from the host to the CPU
- If enabled, only log messages matching or exceeding the minimum severity specified with the “logging local” command will be logged, regardless of what is sent from the remote host
logging trap

logging trap
no logging trap

Configures the minimum severity of log messages sent to syslog servers. The no form of the command disables sending event log messages to syslog servers.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>severity level</th>
<th>The minimum severity level for all configured syslog servers:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>none – disable logging</td>
<td></td>
</tr>
<tr>
<td></td>
<td>emerg – emergency: system is unusable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>alert – action must be taken immediately</td>
<td></td>
</tr>
<tr>
<td></td>
<td>crit – critical conditions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>err – error conditions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>warning – warning conditions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>notice – normal but significant condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>info – informational messages</td>
<td></td>
</tr>
<tr>
<td></td>
<td>debug – debug-level messages</td>
<td></td>
</tr>
</tbody>
</table>

Default: Receiving logging is disabled

Configuration Mode: Config

History: 3.1.0000

Role: admin

Example:

```
switch (config) # logging trap info
switch (config) #
```

Related Commands

Notes
show logging

show logging

Displays the logging configurations.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show logging
Local logging level: info
Override for class mgmt-front: warning
Default remote logging level: notice
No remote syslog servers configured.
Allow receiving of messages from remote hosts: no
Number of archived log files to keep: 10
Log rotation size threshold: 5.000% of partition (43 megabytes)
Log format: standard
Subsecond timestamp field: enabled
Subsecond timestamp precision: 1 whole digit; 3 fractional digits
Levels at which messages are logged:
  CLI commands: info
  Audit messages: notice
switch (config) #
```

Related Commands

- logging fields
- logging files rotation
- logging level
- logging local
- logging receive
- logging <syslog IP address>

Notes
show log

show log [continues | files [<file-number>]] [not matching <reg-exp>]

Displays the log file with optional filter criteria.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>continues</th>
<th>Displays the last few lines of the current log file and then continues to display new lines as they come in until the user hits Ctrl+C, similar to LINUX “tail” utility.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>files</td>
<td>Displays the list of log files.</td>
</tr>
<tr>
<td></td>
<td><file-number></td>
<td>Displays an archived log file, where the number may range from 1 up to the number of archived log files available.</td>
</tr>
<tr>
<td></td>
<td>[not] matching <reg-exp></td>
<td>The file is piped through a LINUX “grep” utility to only include lines either matching, or not matching, the provided regular expression.</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Any Command Mode

History

3.1.0000

3.3.4402 Updated example and added note

Role

admin

Example

```
switch (config) # show log matching "Executing|Action"
Jan 19 10:55:38 arc-switch14 cli28202: [cli.NOTICE]: user admin: Executing command: en
Jan 19 11:19:32 arc-switch14 cli28202: [cli.NOTICE]: user admin: Executing command: image install image-SX_PPC_M460EX-ppc-m460ex-20140119-115026.img
Jan 19 11:19:32 arc-switch14 mgmtd4064: [mgmtd.NOTICE]: Action ID 326: requested by: user admin (System Administrator) via CLI
Jan 19 11:19:32 arc-switch14 mgmtd4064: [mgmtd.NOTICE]: Action ID 326: descr: install system software image
Jan 19 11:19:32 arc-switch14 mgmtd4064: [mgmtd.NOTICE]: Action ID 326: param: switch next boot location after install: no
switch (config) #
```

Related Commands

- logging fields
- logging files rotation
- logging level
- logging local
- logging receive
- logging <syslog IP address>
- show logging

Notes

When using a regular expression containing | (OR), the expression should be surrounded by quotes (“<expression>”), otherwise it is parsed as filter (PIPE) command.
4.6 Debugging

➢ To use the debugging logs feature:

Step 1. Enable debugging. Run:
Step 2. Display the debug level set. Run:
Step 3. Display the logs. Run:
4.6.1 Commands

debug ethernet all

debug ethernet all
no debug ethernet all

Enables debug traces for Ethernet modules.
The no form of the command disables the debug traces for all Ethernet modules.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4150</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # debug ethernet all
switch (config) # |

<table>
<thead>
<tr>
<th>Related Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
</tr>
</tbody>
</table>
debug ethernet dcbx

d debug ethernet dcbx {all | management | fail-all | control-panel | tlv}

Configures the trace level for DCBX.
The no form of the command disables the configured DCBX debug traces.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>all</th>
<th>Enables all traces.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>management</td>
<td>Management messages.</td>
</tr>
<tr>
<td></td>
<td>fail-all</td>
<td>All failure traces.</td>
</tr>
<tr>
<td></td>
<td>control-panel</td>
<td>Control plane traces.</td>
</tr>
<tr>
<td></td>
<td>tlv</td>
<td>TLV related trace configuration.</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config

History

3.3.4150

Role

admin

Example

switch (config) # debug ethernet dcbx all
switch (config) #

Related Commands

null

Notes

null
debug ethernet ip all

debug ethernet ip all

Enables debug traces for all routing modules.
The no form of the command disables debug traces for all routing modules.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4150</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # debug ethernet ip all
| | switch (config) # |
| Related Commands | |
| Notes | |
debug ethernet ip arp all

```
ddebug ethernet ip arp all
nno debug ethernet ip arp all
```

Enables the trace level for ARP.
The no form of the command disables the trace level for ARP.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4150</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | `switch (config) # debug ethernet ip arp all
switch (config) #` |

Related Commands

Notes
debug ethernet ip bgp

The `debug ethernet ip bgp` command enables the trace level for BGP. The no form of the command disables tracking a specified level.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enable track traces</td>
</tr>
<tr>
<td>control-path</td>
<td>Control path dump trace</td>
</tr>
<tr>
<td>dampening</td>
<td>Dampening information</td>
</tr>
<tr>
<td>graceful-restart</td>
<td>Graceful-restart events</td>
</tr>
<tr>
<td>internal</td>
<td>Internal events</td>
</tr>
<tr>
<td>keep-alive</td>
<td>Keep-alive packets exchange</td>
</tr>
<tr>
<td>neighbor</td>
<td>Peer connection/state changes traces</td>
</tr>
<tr>
<td>receive</td>
<td>All received packets</td>
</tr>
<tr>
<td>resources</td>
<td>OS Resource trace</td>
</tr>
<tr>
<td>rtm</td>
<td>Route change notifications</td>
</tr>
<tr>
<td>transmit</td>
<td>All transmitted packets</td>
</tr>
<tr>
<td>update</td>
<td>Update packets exchange</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config

History

3.3.4150

Role

admin

Example

```bash
switch (config) # debug ethernet ip arp all
switch (config) #
```

Related Commands

- debug ethernet ip arp

Notes
debug ethernet ip dhcp-relay

```
debug ethernet ip dhcp-relay {all | error}
no debug ethernet ip dhcp-relay {all | error}
```

Configures the trace level for DHCP.
The no form of the command disables tracking a specified level.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>all</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enables track traces</td>
<td>Error code debug messages</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.3.4150</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

| Example | switch (config) # debug ethernet ip dhcp-relay all
switch (config) # |
|---------|--|

<table>
<thead>
<tr>
<th>Related Commands</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
</table>
debug ethernet ip igmp-l3

```plaintext
debug ethernet ip igmp-l3 {all | control-plane | data-path | fail-all | init-shut | management | memory | packet-path | resources}
no debug ethernet ip igmp-l3 {all | control-plane | data-path | fail-all | init-shut | management | memory | packet-path | resources}
```

Configures the trace level for IGMP.
The no form of the command disables tracking a specified level.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>all</th>
<th>Control plane traces</th>
</tr>
</thead>
<tbody>
<tr>
<td>control-plane</td>
<td>data-path</td>
<td>IP packet dump trace</td>
</tr>
<tr>
<td>fail-all</td>
<td>init-shut</td>
<td>Init and shutdown messages</td>
</tr>
<tr>
<td>management</td>
<td>management</td>
<td>Management messages</td>
</tr>
<tr>
<td>memory</td>
<td>packet-dump</td>
<td>Packet dump messages</td>
</tr>
<tr>
<td>resources</td>
<td></td>
<td>OS resource trace</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4150</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td></td>
</tr>
</tbody>
</table>

```plaintext
switch (config) # debug ethernet ip igmp-l3 all
switch (config) #
```
debug ethernet ip igmp-snooping

ddebug ethernet ip igmp-snooping \{all | forward-db-messages | group-info | init-shut | packet-dump | query | source-info | system-resources-management | timer | vlan-info\}

no debug ethernet ip igmp-snooping \{all | forward-db-messages | group-info | init-shut | packet-dump | query | source-info | system-resources-management | timer | vlan-info\}

Configures the trace level for IGMP snooping.
The no form of the command disables tracking a specified level.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>all</th>
<th>Enable track traces</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>forward-db-messages</td>
<td>Forwarding database messages</td>
</tr>
<tr>
<td></td>
<td>group-info</td>
<td>Group information messages</td>
</tr>
<tr>
<td></td>
<td>init-shut</td>
<td>Init and shutdown messages</td>
</tr>
<tr>
<td></td>
<td>packet-dump</td>
<td>Packet dump messages</td>
</tr>
<tr>
<td></td>
<td>query</td>
<td>Query related messages</td>
</tr>
<tr>
<td></td>
<td>source-info</td>
<td>Source information messages</td>
</tr>
<tr>
<td></td>
<td>system-resources-management</td>
<td>System resources management messages</td>
</tr>
<tr>
<td></td>
<td>timer</td>
<td>Timer messages</td>
</tr>
<tr>
<td></td>
<td>vlan-info</td>
<td>VLAN information messages</td>
</tr>
</tbody>
</table>

Default	N/A
Configuration Mode	Config
History	3.3.4150
Role	admin

Example

```
switch (config) # debug ethernet ip igmp-snooping all
switch (config) #
```

Related Commands

Notes
debug ethernet ip interface

debug ethernet ip interface {all | arp-packet-dump | buffer | enet-packet-dump | error | fail-all | filter | trace-error | trace-event}
no debug ethernet ip interface {all | arp-packet-dump | buffer | enet-packet-dump | error | fail-all | filter | trace-error | trace-event}

Configures the trace level for interface.
The no form of the command disables tracking a specified level.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enable track traces</td>
</tr>
<tr>
<td>arp-packet-dump</td>
<td>ARP packet dump trace</td>
</tr>
<tr>
<td>buffer</td>
<td>Buffer trace</td>
</tr>
<tr>
<td>enet-packet-dump</td>
<td>ENET packet dump trace</td>
</tr>
<tr>
<td>error</td>
<td>Trace error messages</td>
</tr>
<tr>
<td>fail-all</td>
<td>All failures including Packet Validation Trace</td>
</tr>
<tr>
<td>filter</td>
<td>Lower layer traces</td>
</tr>
<tr>
<td>trace-error</td>
<td>Trace error messages</td>
</tr>
<tr>
<td>trace-event</td>
<td>Trace event messages</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4150</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # debug ethernet ip interface all
switch (config) #
```

Related Commands

Notes
debug ethernet ip ospf

```
d.debug ethernet ip ospf {adjacency | all | configuration | ddp-packet | helper |
Interface | ism | lrq-packet | lsa_packet | lsu-packet}
```

Configures the trace level for OSPF.
The no form of the command disables tracking a specified level.

| Syntax Description | adjacency | Adjacency formation debug messages
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td></td>
<td>Enable track traces</td>
</tr>
<tr>
<td>configuration</td>
<td></td>
<td>Configuration debug messages</td>
</tr>
<tr>
<td>ddp-packet</td>
<td></td>
<td>DDP packet debug messages</td>
</tr>
<tr>
<td>helper</td>
<td></td>
<td>Helper debug messages</td>
</tr>
<tr>
<td>Interface</td>
<td></td>
<td>Interface debug messages</td>
</tr>
<tr>
<td>ism</td>
<td></td>
<td>Interface State Machine debug messages</td>
</tr>
<tr>
<td>lrq-packet</td>
<td></td>
<td>Link State Request Packet debug messages</td>
</tr>
<tr>
<td>lsa_packet</td>
<td></td>
<td>Link State Acknowledge Packet debug messages</td>
</tr>
<tr>
<td>lsu-packet</td>
<td></td>
<td>Link State Update Packet debug messages</td>
</tr>
<tr>
<td>nsm</td>
<td></td>
<td>Neighbor State Machine debug messages</td>
</tr>
</tbody>
</table>

Default: N/A
Configuration Mode: Config
History: 3.3.4150
Role: admin
Example:
```
switch (config) # debug ethernet ip ospf all
switch (config) #
```

Related Commands

Notes
debug ethernet lacp

```
debug ethernet lacp {all | all-resource | data-path | fail-all | init-shut |
management | memory | packet}
no debug ethernet lacp {all | all-resources | data-path | fail-all | init-shut |
management | memory | packet}
```

Configures the trace level for LACP.
The no form of the command disables the configured LACP debug traces.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>all</th>
<th>all-resource</th>
<th>data-path</th>
<th>fail-all</th>
<th>init-shut</th>
<th>management</th>
<th>memory</th>
<th>packet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enables all traces. BPDU related messages. Init and shutdown traces. Management messages. Memory related messages. IP packet dump trace. All failure traces. OS resource trace.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Config

History: 3.3.4150

Role: admin

Example

```
switch (config) # debug ethernet lacp all
switch (config) #
```

Related Commands

Notes
debug ethernet lldp

debug ethernet lldp {all | control-panel | critical-event | data-path | fail-all | init-shut | management | memory | neigh-add | neigh-age-out | neigh-del | neigh-updt | tlv}
no debug ethernet lldp {all | control-panel | critical-event | data-path | fail-all | init-shut | management | memory | neigh-add | neigh-age-out | neigh-del | neigh-drop | neigh-updt | tlv}

Configures the trace level for LLDP.
The no form of the command disables the configured LLDP debug traces.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables all traces.</td>
</tr>
<tr>
<td>control-panel</td>
<td>Control plane traces.</td>
</tr>
<tr>
<td>critical-event</td>
<td>Critical traces.</td>
</tr>
<tr>
<td>data-path</td>
<td>IP packet dump trace.</td>
</tr>
<tr>
<td>fail-all</td>
<td>All failure traces.</td>
</tr>
<tr>
<td>init-shut</td>
<td>Init and shutdown traces.</td>
</tr>
<tr>
<td>management</td>
<td>Management messages.</td>
</tr>
<tr>
<td>memory</td>
<td>Memory related messages.</td>
</tr>
<tr>
<td>neigh-add</td>
<td>Neighbor add traces.</td>
</tr>
<tr>
<td>neigh-age-out</td>
<td>Neighbor ageout traces.</td>
</tr>
<tr>
<td>neigh-del</td>
<td>Neighbor delete traces.</td>
</tr>
<tr>
<td>neigh-drop</td>
<td>Neighbor drop traces.</td>
</tr>
<tr>
<td>neigh-updt</td>
<td>Neighbor update traces.</td>
</tr>
<tr>
<td>tlv</td>
<td>TLV related trace configuration</td>
</tr>
</tbody>
</table>

Default: N/A
Configuration Mode: Config
History: 3.3.4150
Role: admin

Example:

switch (config) # debug ethernet lldp all
switch (config) #
debug ethernet port

d debug ethernet port all

Configures the trace level for port.
The no form of the command disables the configured port debug traces.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4150</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # debug ethernet port all
switch (config) # |

Related Commands

Notes
debug ethernet qos

```plaintext
debug ethernet qos {all | all-resource | control-panel | fail-all | filters | init-shut | management | memory | packet}
no debug ethernet qos {all | all-resource | control-panel | fail-all | filters | init-shut | management | memory | packet}
```

Configures the trace level for QoS.
The no form of the command disables the configured QoS debug traces.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>all</th>
<th>Enables all traces.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>all-resource</td>
<td>OS resource traces.</td>
</tr>
<tr>
<td></td>
<td>control-panel</td>
<td>Control plane traces.</td>
</tr>
<tr>
<td></td>
<td>fail-all</td>
<td>All failure traces.</td>
</tr>
<tr>
<td></td>
<td>filters</td>
<td>Lower layer traces.</td>
</tr>
<tr>
<td></td>
<td>init-shut</td>
<td>Init and shutdown traces.</td>
</tr>
<tr>
<td></td>
<td>management</td>
<td>Management messages.</td>
</tr>
<tr>
<td></td>
<td>memory</td>
<td>Memory related messages.</td>
</tr>
<tr>
<td></td>
<td>packet</td>
<td>BPDU related messages.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4150</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```plaintext
switch (config) # debug ethernet port all
switch (config) 
```

Related Commands

Notes
debug ethernet spanning-tree

Configures the trace level for spanning-tree.
The no form of the command disables the configured spanning-tree debug traces.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables all traces.</td>
</tr>
<tr>
<td>error</td>
<td>Error messages trace.</td>
</tr>
<tr>
<td>event</td>
<td>Events related messages.</td>
</tr>
<tr>
<td>filters</td>
<td>Lower later traces.</td>
</tr>
<tr>
<td>init-shut</td>
<td>Init and shutdown traces.</td>
</tr>
<tr>
<td>management</td>
<td>Management messages.</td>
</tr>
<tr>
<td>memory</td>
<td>Memory related messages.</td>
</tr>
<tr>
<td>packet</td>
<td>BPDU related messages.</td>
</tr>
<tr>
<td>port-info-state-machine</td>
<td>Port information messages.</td>
</tr>
<tr>
<td>port-receive-state-machine</td>
<td>Port received messages.</td>
</tr>
<tr>
<td>port-role-selection-state-machine</td>
<td>Port role selection messages.</td>
</tr>
<tr>
<td>port-transit-state-machine</td>
<td>Port transition messages.</td>
</tr>
<tr>
<td>port-transmit-state-machine</td>
<td>Port transmission messages.</td>
</tr>
<tr>
<td>protocol-migration-state-machine</td>
<td>Protocol migration messages.</td>
</tr>
<tr>
<td>timers</td>
<td>Timer modules message.</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config

History

3.3.4150

Role

admin

Example

switch (config) # debug ethernet spanning-tree all
switch (config) #
debug ethernet vlan

debug ethernet vlan {all | fwd | priority | filters}
no debug ethernet vlan {all | fwd | priority | filters}

Configures the trace level for VLAN.
The no form of the command disables the configured VLAN debug traces.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>all</th>
<th>Enables all traces</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fwd</td>
<td>Forward.</td>
</tr>
<tr>
<td></td>
<td>priority</td>
<td>Priority.</td>
</tr>
<tr>
<td></td>
<td>filters</td>
<td>Lower layer traces.</td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Config

History: 3.3.4150

Role: admin

Example:

```
switch (config) # debug ethernet vlan all
switch (config) #
```

Related Commands

Notes
show debug ethernet

show debug ethernet {dcbx | ip {arp | dhcp-relay | igmp-snooping | interface | ospf} | lacp | lldp | port | qos | spanning-tree | vlan}

Displays debug level configuration on a specific switch.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>dc bx</th>
<th>Displays the trace level for spanning tree.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip</td>
<td>Displays debug trace level for ethernet routing module.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• arp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dhcp-relay</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• igmp-snooping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• interface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ospf</td>
<td></td>
</tr>
<tr>
<td>lacp</td>
<td>Displays the trace level for LACP.</td>
<td></td>
</tr>
<tr>
<td>lldp</td>
<td>Displays the trace level for LLDP.</td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Displays the trace level for port.</td>
<td></td>
</tr>
<tr>
<td>qos</td>
<td>Displays the trace level for QoS.</td>
<td></td>
</tr>
<tr>
<td>spanning-tree</td>
<td>Displays the trace level for spanning tree.</td>
<td></td>
</tr>
<tr>
<td>vlan</td>
<td>Displays the trace level for VLAN.</td>
<td></td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Any Command Mode

History: 3.3.4150

Role: admin

Example:
switch (config) # show debug ethernet dc bx
dc bx protocol :
 management is ON
 fail-all is ON
 control-panel is ON
 tlv is ON
switch (config) #

Related Commands

Notes
show log debug

show log debug [continuous | files | matching | not]

Displays current event debug-log file in a scrollable pager.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>continuous</td>
<td>Displays new event log messages as they arrive.</td>
</tr>
<tr>
<td>files</td>
<td>Displays archived debug log files.</td>
</tr>
<tr>
<td>matching</td>
<td>Displays event debug logs that match a given regular expression.</td>
</tr>
<tr>
<td>not</td>
<td>Displays event debug logs that do not meet certain criteria.</td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Any Command Mode

History: 3.3.4150

Role: admin

Example:
```bash
switch (config) # show log debug
Jun 15 16:20:47 switch-627e4c last message repeated 7 times
Jun 15 16:20:47 switch-627e4c last message repeated 7 times
Jun 15 16:20:47 switch-627e4c last message repeated 7 times
Jun 15 16:20:48 switch-627e4c last message repeated 7 times
Jun 15 16:20:48 switch-627e4c last message repeated 7 times
Jun 15 16:20:49 switch-627e4c last message repeated 7 times
Jun 15 16:20:49 switch-627e4c last message repeated 7 times
Jun 15 16:20:49 switch-627e4c last message repeated 7 times
Jun 15 16:20:49 switch-627e4c last message repeated 7 times
```

Related Commands

Notes
4.7 Event Notifications

MLNX-OS features a variety of supported events. Events are printed in the system log file, and, optionally, can be sent to the system administrator via email, SNMP trap or directly prompted to the terminal.

4.7.1 Supported Events

The following table presents the supported events and maps them to their relevant MIB OID.

Table 18 - Supported Event Notifications and MIB Mapping

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Event Description</th>
<th>MIB OID</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>asic-chip-down</td>
<td>ASIC (chip) down</td>
<td>Mellanox-EFM-MIB: asicChipDown</td>
<td>Not supported</td>
</tr>
<tr>
<td>cpu-util-high</td>
<td>CPU utilization has risen too high</td>
<td>Mellanox-EFM-MIB: cpuUtilHigh</td>
<td></td>
</tr>
<tr>
<td>disk-space-low</td>
<td>File system free space has fallen too low</td>
<td>Mellanox-EFM-MIB: diskSpaceLow</td>
<td></td>
</tr>
<tr>
<td>health-module-status</td>
<td>Health module status changed</td>
<td>Mellanox-EFM-MIB: systemHealthStatus</td>
<td></td>
</tr>
<tr>
<td>insufficient-fans</td>
<td>Insufficient amount of fans in system</td>
<td>Mellanox-EFM-MIB: insufficientFans</td>
<td></td>
</tr>
<tr>
<td>insufficient-fans-recover</td>
<td>Insufficient amount of fans in system recovered</td>
<td>Mellanox-EFM-MIB: insufficientFansRecover</td>
<td></td>
</tr>
<tr>
<td>insufficient-power</td>
<td>Insufficient power supply</td>
<td>Mellanox-EFM-MIB: insufficientPower</td>
<td></td>
</tr>
<tr>
<td>interface-down</td>
<td>An interface’s link state has changed to DOWN</td>
<td>RFC1213: linkdown (SNMPv1)</td>
<td>Supported for Ethernet, InfiniBand and management interfaces for 1U and blade systems</td>
</tr>
<tr>
<td>interface-up</td>
<td>An interface’s link state has changed to UP</td>
<td>RFC1213: linkup (SNMPv1)</td>
<td>Supported for Ethernet, InfiniBand and management interfaces for 1U and blade systems</td>
</tr>
<tr>
<td>internal-bus-error</td>
<td>Internal bus (I^2C) error</td>
<td>Mellanox-EFM-MIB: internalBusError</td>
<td></td>
</tr>
<tr>
<td>liveness-failure</td>
<td>A process in the system is detected as hung</td>
<td>Not implemented</td>
<td></td>
</tr>
<tr>
<td>low-power</td>
<td>Low power supply</td>
<td>Mellanox-EFM-MIB: lowPower</td>
<td></td>
</tr>
<tr>
<td>low-power-recover</td>
<td>Low power supply recover</td>
<td>Mellanox-EFM-MIB: lowPowerRecover</td>
<td></td>
</tr>
</tbody>
</table>
Table 18 - Supported Event Notifications and MIB Mapping

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Event Description</th>
<th>MIB OID</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>new_root</td>
<td>Local bridge became a root bridge</td>
<td>Bridge-MIB: newRoot</td>
<td>Supported for Ethernet</td>
</tr>
<tr>
<td>paging-high</td>
<td>Paging activity has risen too high</td>
<td>N/A</td>
<td>Not supported</td>
</tr>
<tr>
<td>power-redundancy-mismatch</td>
<td>Power redundancy mismatch</td>
<td>Mellanox-EFM-MIB: powerRedundancyMismatch</td>
<td>Supported for SX65xx only systems</td>
</tr>
<tr>
<td>process-crash</td>
<td>A process in the system has crashed</td>
<td>Mellanox-EFM-MIB: procCrash</td>
<td></td>
</tr>
<tr>
<td>process-exit</td>
<td>A process in the system unexpectedly exited</td>
<td>Mellanox-EFM-MIB: procUnexpectedExit</td>
<td></td>
</tr>
<tr>
<td>snmp-authtrap</td>
<td>An SNMPv3 request has failed authentication</td>
<td>Not implemented</td>
<td></td>
</tr>
<tr>
<td>topology_change</td>
<td>Topology change triggered by a local bridge</td>
<td>Bridge-MIB: topology-Change</td>
<td>Supported for Ethernet</td>
</tr>
<tr>
<td>unexpected-shutdown</td>
<td>Unexpected system shutdown</td>
<td>Mellanox-EFM-MIB: unexpectedShutdown</td>
<td></td>
</tr>
<tr>
<td>To send, use the CLI command: snmp-server notify send-test</td>
<td>Send a testing event</td>
<td>testTrap</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>Reset occurred due to over-heating of ASIC</td>
<td>Mellanox-EFM-MIB: asicOverTempReset</td>
<td>Not supported</td>
</tr>
<tr>
<td>temperature-too-high</td>
<td>Temperature is too high</td>
<td>Mellanox-EFM-MIB: asicOverTemp</td>
<td></td>
</tr>
</tbody>
</table>

4.7.2 Terminal Notifications

- **To print events to the terminal:**

Set the events you wish to print to the terminal. Run:

```bash
switch (config) # logging monitor events notice
```

This command prints system events in the severity “notice” to the screen. For example, in case of interface-down event, the following gets printed to the screen.

```bash
switch (config) #
Wed Jul 10 11:30:42 2013: Interface IB1/17 changed state to DOWN
Wed Jul 10 11:30:43 2013: Interface IB1/18 changed state to DOWN
switch (config) #
```
4.7.3 Email Notifications

➢ To configure MLNX-OS to send you emails for all configured events and failures:

Step 1. Enter to Config mode. Run:

```
switch >
switch > enable
switch # configure terminal
```

Step 2. Set your mailhub to the IP address to be your mail client’s server – for example, Microsoft Outlook exchange server.

```
switch (config) # email mailhub <IP address>
```

Step 3. Add your email address for notifications. Run:

```
switch (config) # email notify recipient <email address>
```

Step 4. Configure the system to send notifications for a specific event. Run:

```
switch (config) # email notify event <event name>
```

Step 5. Show the list of events for which an email is sent. Run:

```
switch (config) # show email events
```

Failure events for which emails will be sent:
- process-crash: A process in the system has crashed
- unexpected-shutdown: Unexpected system shutdown

Informational events for which emails will be sent:
-asic-chip-down: ASIC (Chip) Down
- cpu-util-high: CPU utilization has risen too high
- cpu-util-ok: CPU utilization has fallen back to normal levels
- disk-io-high: Disk I/O per second has risen too high
- disk-io-ok: Disk I/O per second has fallen back to acceptable levels
- disk-space-low: Filesystem free space has fallen too low

```
switch (config) #
```

Step 6. Have the system send you a test email. Run:

```
switch # email send-test
```

The last command should generate the following email:

-----Original Message-----
From: Admin User [mailto:do-not-reply@switch.]
Sent: Sunday, May 01, 2011 11:17 AM
To: <name>
Subject: System event on switch: Test email for event notification

==== System information:
Hostname: switch
Date: 2011/05/01 08:17:29
Uptime: 17h 8m 28.060s

This is a test email.
==== Done.
4.7.4 Commands

4.7.4.1 Email Notification

email autosupport enable

```bash
email autosupport enable
no email autosupport enable
```

Sends automatic support notifications via email.
The no form of the command stops sending automatic support notifications via email.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.2.3000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # email autosupport enable</td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
email autosupport event

email autosupport event <event>
no email autosupport event

Specifies for which events to send auto-support notification emails.
The no form of the command resets auto-support email security mode to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>event</th>
</tr>
</thead>
<tbody>
<tr>
<td>process-crash</td>
<td>a process has crashed</td>
</tr>
<tr>
<td>process-exit</td>
<td>a process unexpectedly exited</td>
</tr>
<tr>
<td>liveness-failure</td>
<td>a process is detected as hung</td>
</tr>
<tr>
<td>cpu-util-high</td>
<td>CPU utilization has risen too high</td>
</tr>
<tr>
<td>cpu-util-ok</td>
<td>CPU utilization has fallen back to normal levels</td>
</tr>
<tr>
<td>paging-high</td>
<td>paging activity has risen too high</td>
</tr>
<tr>
<td>paging-ok</td>
<td>paging activity has fallen back to normal levels</td>
</tr>
<tr>
<td>disk-space-low</td>
<td>filesystem free space has fallen too low</td>
</tr>
<tr>
<td>disk-space-ok</td>
<td>filesystem free space is back in the normal range</td>
</tr>
<tr>
<td>memusage-high</td>
<td>memory usage has risen too high</td>
</tr>
<tr>
<td>memusage-ok</td>
<td>memory usage has fallen back to acceptable levels</td>
</tr>
<tr>
<td>netusage-high</td>
<td>network utilization has risen too high</td>
</tr>
<tr>
<td>netusage-ok</td>
<td>network utilization has fallen back to acceptable levels</td>
</tr>
<tr>
<td>disk-io-high</td>
<td>disk I/O per second has risen too high</td>
</tr>
<tr>
<td>disk-io-ok</td>
<td>disk I/O per second has fallen back to acceptable levels</td>
</tr>
<tr>
<td>unexpected-cluster-join</td>
<td>node has unexpectedly joined the cluster</td>
</tr>
<tr>
<td>unexpected-cluster-leave</td>
<td>node has unexpectedly left the cluster</td>
</tr>
<tr>
<td>unexpected-cluster-size</td>
<td>the number of nodes in the cluster is unexpected</td>
</tr>
<tr>
<td>unexpected-shutdown</td>
<td>unexpected system shutdown</td>
</tr>
<tr>
<td>interface-up</td>
<td>an interface’s link state has changed to up</td>
</tr>
<tr>
<td>interface-down</td>
<td>an interface's link state has changed to down</td>
</tr>
<tr>
<td>user-login</td>
<td>a user has logged into the system</td>
</tr>
<tr>
<td>user-logout</td>
<td>a user has logged out of the system</td>
</tr>
<tr>
<td>health-module-status</td>
<td>health module Status</td>
</tr>
<tr>
<td>temperature-too-high</td>
<td>temperature has risen too high</td>
</tr>
<tr>
<td>low-power</td>
<td>low power supply</td>
</tr>
<tr>
<td>low-power-recover</td>
<td>low power supply Recover</td>
</tr>
<tr>
<td>insufficient-power</td>
<td>insufficient power supply</td>
</tr>
<tr>
<td>power-redundancy-mismatch</td>
<td>power redundancy mismatch</td>
</tr>
<tr>
<td>insufficient-fans</td>
<td>insufficient amount of fans in system</td>
</tr>
<tr>
<td>insufficient-fans-recover</td>
<td>insufficient amount of fans in system recovered</td>
</tr>
<tr>
<td>asic-chip-down</td>
<td>ASIC (Chip) Down</td>
</tr>
<tr>
<td>internal-bus-error</td>
<td>internal bus (I2C) Error</td>
</tr>
<tr>
<td>internal-link-speed-mismatch</td>
<td>internal links speed mismatch</td>
</tr>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.2.3000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config) # email autosupport event process-crash</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Notes
email autosupport ssl mode

email autosupport ssl mode {none | tls | tls-none}

no email autosupport ssl mode

Configures type of security to use for auto-support email. The no form of the command resets auto-support email security mode to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Does not use TLS to secure auto-support email.</td>
</tr>
<tr>
<td>tls</td>
<td>Uses TLS over the default server port to secure auto-support email and does not send an email if TLS fails.</td>
</tr>
<tr>
<td>tls-none</td>
<td>Attempts TLS over the default server port to secure auto-support email, and falls back on plaintext if this fails.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>tls-none</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.2.3000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # email autosupport ssl mode tls</td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
email autosupport ssl cert-verify

email autosupport ssl cert-verify
no email autosupport ssl cert-verify

Verifies server certificates.
The no form of the command does not verify server certificates.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.2.3000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # email autosupport ssl cert-verify</td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Notes</td>
<td>N/A</td>
</tr>
</tbody>
</table>
email autosupport ssl ca-list

email autosupport ssl ca-list `<ca-list-name> | default_ca_list | none`

no email autosupport ssl ca-list

Configures supplemental CA certificates for verification of server certificates. The no form of the command removes supplemental CA certificate list.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>default_ca_list</th>
<th>Default supplemental CA certificate list.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>none</td>
<td>No supplemental list; uses built-in list only.</td>
</tr>
</tbody>
</table>

Default
default_ca_list

Configuration Mode
Config

History
3.2.3000

Role
admin

Example
switch (config) # email autosupport ssl ca-list default_ca_list

Related Commands
N/A

Notes
email dead-letter

email dead-letter {cleanup max-age <duration> | enable}
no email dead-letter

Configures settings for saving undeliverable emails. The no form of the command disables sending of emails to vendor auto-support upon certain failures.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Duration</th>
<th>Example: “5d4h3m2s” for 5 days, 4 hours, 3 minutes, 2 seconds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td></td>
<td>Saves dead-letter files for undeliverable emails.</td>
</tr>
</tbody>
</table>

Default
Save dead letter is enabled
The default duration is 14 days

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.1.0000</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

| Example | switch (config) # email dead-letter enable
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>switch (config) #</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>show email</th>
</tr>
</thead>
</table>

| Notes | |
email domain

email domain <hostname or IP address>
no email domain

Sets the domain name from which the emails will appear to come from (provided that the return address is not already fully-qualified). This is used in conjunction with the system hostname to form the full name of the host from which the email appears to come.
The no form of the command clears email domain override.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname or IP address</td>
<td>IP address.</td>
</tr>
</tbody>
</table>

Default	No email domain
Configuration Mode	Config
History	3.1.0000
Role	admin

Example

```
switch (config) # email domain mellanox
switch (config) # show email
Mail hub: 10.0.8.11
Mail hub port: 125
Domain: mellanox
Return address: do-not-reply
Include hostname in return address: yes
...
switch (config) #
```

Related Commands

show emails

Notes
email mailhub

email mailhub <hostname or IP address>
no email mailhub

Sets the mail relay to be used to send notification emails.
The no form of the command clears the mail relay to be used to send notification emails.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>hostname or IP address</th>
<th>Hostname or IP address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```
switch (config) # email mailhub 10.0.8.11
switch (config) # show email
Mail hub: 10.0.8.11
Mail hub port: 25
Domain: (not specified)
Return address: do-not-reply
Include hostname in return address: yes
...
switch (config) #
```

Related Commands

show email [events]

Notes
email mailhub-port

```plaintext
email mailhub-port <hostname or IP address>
no email mailhub-port
```

Sets the mail relay port to be used to send notification emails. The no form of the command resets the port to its default.

Syntax Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax Description</td>
<td>hostname or IP address</td>
</tr>
</tbody>
</table>

Default

<table>
<thead>
<tr>
<th>Default</th>
<th>25</th>
</tr>
</thead>
</table>

Configuration Mode

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config</th>
</tr>
</thead>
</table>

History

<table>
<thead>
<tr>
<th>History</th>
<th>3.1.0000</th>
</tr>
</thead>
</table>

Role

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

Example

```
switch (config) # email mailhub-port 125
switch (config) # show email
Mail hub: 10.0.8.11
Mail hub port: 125
Domain: (system domain name)
Return address: do-not-reply
Include hostname in return address: yes
... switch (config) #
```

Related Commands

show email

Notes

-
email notify event

email notify event <event name>
no email notify event <event name>

Enables sending email notifications for the specified event type. The no form of the command disables sending email notifications for the specified event type.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>event name</th>
<th>Example event names would include “process-crash” and “cpu-util-high”.</th>
</tr>
</thead>
</table>

Default

No events are enabled

Configuration Mode

Config

History

3.1.0000

Role

admin

Example

switch (config) # email notify event process-crash
switch (config) # show email events
Failure events for which emails will be sent:
process-crash: A process in the system has crashed
unexpected-shutdown: Unexpected system shutdown

Informational events for which emails will be sent:
liveness-failure: A process in the system was detected as hung
process-exit: A process in the system unexpectedly exited
cpu-util-ok: CPU utilization has fallen back to normal levels
cpu-util-high: CPU utilization has risen too high
disk-io-ok: Disk I/O per second has fallen back to acceptable levels
... temperature-too-high: Temperature has risen too high

All events for which autosupport emails will be sent:
process-crash: A process in the system has crashed
liveness-failure: A process in the system was detected as hung

switch (config) #
switch (config) #

Related Commands

show email

Notes

This does not affect auto-support emails. Auto-support can be disabled overall, but if it is enabled, all auto-support events are sent as emails.
email notify recipient

email notify recipient <email addr> [class {info | failure} | detail]
no email notify recipient <email addr> [class {info | failure} | detail]

Adds an email address from the list of addresses to which to send email notifications of events. The no form of the command removes an email address from the list of addresses to which to send email notifications of events.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>email addr</td>
<td>Email address of intended recipient.</td>
</tr>
<tr>
<td>class</td>
<td>Specifies which types of events are sent to this recipient.</td>
</tr>
<tr>
<td>info</td>
<td>Sends informational events to this recipient.</td>
</tr>
<tr>
<td>failure</td>
<td>Sends failure events to this recipient.</td>
</tr>
<tr>
<td>detail</td>
<td>Sends detailed event emails to this recipient.</td>
</tr>
</tbody>
</table>

Default
No recipients are added

Configuration Mode
Config

History
3.1.0000

Role
admin

Example
```
switch (config) # email notify recipient user2@autosupport.mellanox.com
switch (config) # show email
Mail hub:
Mail hub port: 25
Domain: (not specified)
Return address: user1
Include hostname in return address: no
Dead letter settings:
Save dead.letter files: yes
Dead letter max age: (none)
Email notification recipients:
user2@autosupport.mellanox.com (all events, in detail)
Autosupport emails
Enabled: no
Recipient: autosupport@autosupport.mellanox.com
Mail hub: autosupport.mellanox.com
switch (config) #
```

Related Commands
show email

Notes
email return-addr

email return-addr <username>
no email domain

Sets the username or fully-qualified return address from which email notifications are sent.

- If the string provided contains an “@” character, it is considered to be fully-qualified and used as-is.
- Otherwise, it is considered to be just the username, and we append “@<hostname>.<domain>”. The default is “do-not-reply”, but this can be changed to “admin” or whatnot in case something along the line does not like fictitious addresses.

The no form of the command resets this attribute to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Username</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>do-not-reply</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```bash
switch (config) # email return-addr user1
switch (config) # show email
Mail hub:
Mail hub port: 25
Domain: (not specified)
Return address: user1
Include hostname in return address: yes
... switch (config) #
```

Related Commands

show email

Notes
email return-host

email return-host
no email return-host

Includes the hostname in the return address for emails.
The no form of the command does not include the hostname in the return address for emails.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>No return host</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

switch (config) # no email return-host
switch (config) # show email
Mail hub:
Mail hub port: 25
Domain: (system domain name)
Return address: my-address
Include hostname in return address: no

Current reply address: host@localdomain

Dead letter settings:
 Save dead.letter files: yes
 Dead letter max age: 5 days

No recipients configured.

Autosupport emails
 Enabled: no
 Recipient: autosupport@autosupport.mellanox.com
 Mail hub: autosupport.mellanox.com

Related Commands show email

Notes This only takes effect if the return address does not contain an “@” character.
email send-test

Sends test-email to all configured event and failure recipients.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # email autosupport enable
| | switch (config) # |
| Related Commands | show email [events] |
| Notes | |
email ssl mode

email ssl mode {none | tls | tls-none}
no email ssl mode

Sets the security mode(s) to try for sending email.
The no form of the command resets the email SSL mode to its default.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>No security mode, operates in plaintext.</td>
</tr>
<tr>
<td>tls</td>
<td>Attempts to use TLS on the regular mailhub port, with STARTTLS. If this fails, it gives up.</td>
</tr>
<tr>
<td>tls-none</td>
<td>Attempts to use TLS on the regular mailhub port, with STARTTLS. If this fails, it falls back on plaintext.</td>
</tr>
</tbody>
</table>

Default

default-cert

Configuration Mode

Config

History

3.2.3000

Role

admin

Example

switch (config) # email ssl mode tls-none

Related Commands

N/A

Notes

N/A
email ssl cert-verify

email ssl cert-verify
no email ssl cert-verify

Enables verification of SSL/TLS server certificates for email. The no form of the command disables verification of SSL/TLS server certificates for email.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.2.3000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config) # email ssl cert-verify</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Notes</td>
<td>This command has no impact unless TLS is used.</td>
</tr>
</tbody>
</table>
email ssl ca-list

email ssl ca-list `<ca-list-name> | default-ca-list | none`

no email ssl ca-list

Specifies the list of supplemental certificates of authority (CA) from the certificate configuration database that is to be used for verification of server certificates when sending email using TLS, if any.

The no form of the command uses no list of supplemental certificates.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ca-list-name</th>
<th>Specifies CA list name.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>default-ca-list</td>
<td>Uses default supplemental CA certificate list.</td>
</tr>
<tr>
<td></td>
<td>none</td>
<td>Uses no list of supplemental certificates.</td>
</tr>
</tbody>
</table>

Default

default-ca-list

Configuration Mode

Config

History

3.2.3000

Role

admin

Example

switch (config) # email ssl ca-list none

Related Commands

N/A

Notes

This command has no impact unless TLS is used, and certificate verification is enabled.
show email

show email [events]

Shows email configuration or events for which email should be sent upon.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>events</th>
<th>show event list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
switch (config) # show email
Mail hub:
Mail hub port: 25
Domain: (system domain name)
Return address: my-address
Include hostname in return address: no

Current reply address: host@localdomain

Dead letter settings:
   Save dead.letter files: yes
   Dead letter max age: 5 days

No recipients configured.

Autosupport emails
   Enabled: no
   Recipient: autosupport@autosupport.mellanox.com
   Mail hub: autosupport.mellanox.com
```

Related Commands

- show email

Notes
4.8 mDNS

Multicast DNS (mDNS) protocol is used by the SM HA to deliver control information between the InfiniBand nodes via the management interface. To block sending mDNS traffic from the management interface run the command `no ha dns enable`.
4.8.1 Commands

ha dns enable

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # no ha dns enable
| | switch (config) # |
| Related Commands | |
| Notes | |
4.9 User Management and Security

4.9.1 User Accounts

There are two general user account types: admin and monitor. As admin, the user is privileged to execute all the available operations. As monitor, the user can execute operations that display system configuration and status, or set terminal settings.

Table 19 - User Roles (Accounts) and Default Passwords

<table>
<thead>
<tr>
<th>User Role</th>
<th>Default Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td>admin</td>
</tr>
<tr>
<td>monitor</td>
<td>monitor</td>
</tr>
<tr>
<td>xmladmin</td>
<td>xmladmin</td>
</tr>
<tr>
<td>xmluser</td>
<td>xmluser</td>
</tr>
</tbody>
</table>

To remove passwords from the XML users, run the command `username <username> nopassword`.

4.9.2 Authentication, Authorization and Accounting (AAA)

AAA is a term describing a framework for intelligently controlling access to computer resources, enforcing policies, auditing usage, and providing the information necessary to bill for services. These combined processes are considered important for effective network management and security. The AAA feature allows you to verify the identity of, grant access to, and track the actions of users managing the MLNX-OS switch. The MLNX-OS switch supports Remote Access Dial-In User Service (RADIUS) or Terminal Access Controller Access Control device Plus (TACACS+) protocols.

- **Authentication** - authentication provides the initial method of identifying each individual user, typically by entering a valid username and password before access is granted. The AAA server compares a user's authentication credentials with the user credentials stored in a database. If the credentials match, the user is granted access to the network or devices. If the credentials do not match, authentication fails and network access is denied.

- **Authorization** - following the authentication, a user must gain authorization for performing certain tasks. After logging into a system, for instance, the user may try to issue commands. The authorization process determines whether the user has the authority to issue such commands. Simply put, authorization is the process of enforcing policies: determining what types or qualities of activities, resources, or services a user is permitted. Usually, authorization occurs within the context of authentication. Once you have authenticated a user, they may be authorized for different types of access or activity.

- **Accounting** - the last level is accounting, which measures the resources a user consumes during access. This includes the amount of system time or the amount of data a user has sent and/or received during a session. Accounting is carried out by logging of session statistics and usage information, and is used for authorization control, billing, trend analysis, resource utilization, and capacity planning activities.
Authentication, authorization, and accounting services are often provided by a dedicated AAA server, a program that performs these functions. Network access servers interface with AAA servers using the Remote Authentication Dial-In User Service (RADIUS) protocol.

4.9.2.1 RADIUS

RADIUS (Remote Authentication Dial-In User Service), widely used in network environments, is a client/server protocol and software that enables remote access servers to communicate with a central server to authenticate dial-in users and authorize their access to the requested system or service. It is commonly used for embedded network devices such as routers, modem servers, switches and so on. RADIUS is currently the de-facto standard for remote authentication. It is prevalent in both new and legacy systems.

It is used for several reasons:

• RADIUS facilitates centralized user administration
• RADIUS consistently provides some level of protection against an active attacker

4.9.2.2 TACACS+

TACACS (Terminal Access Controller Access Control System), widely used in network environments, is a client/server protocol that enables remote access servers to communicate with a central server to authenticate dial-in users and authorize their access to the requested system or service. It is commonly used for providing NAS (Network Access Security). NAS ensures secure access from remotely connected users. TACACS implements the TACACS Client and provides the AAA (Authentication, Authorization and Accounting) functionalities.

TACACS is used for several reasons:

• Facilitates centralized user administration
• Uses TCP for transport to ensure reliable delivery
• Supports inbound authentication, outbound authentication and change password request for the authentication service
• Provides some level of protection against an active attacker

4.9.2.3 LDAP

LDAP (Lightweight Directory Access Protocol) is an authentication protocol that allows a remote access server to forward a user's logon password to an authentication server to determine whether access can be allowed to a given system. LDAP is based on a client/server model. The switch acts as a client to the LDAP server. A remote user (the remote administrator) interacts only with the switch, not the back-end server and database.

LDAP authentication consists of the following components:

• A protocol with a frame format that utilizes TCP over IP
• A centralized server that stores all the user authorization information
• A client: in this case, the switch

Each entry in the LDAP server is referenced by its Distinguished Name (DN). The DN consists of the user-account name concatenated with the LDAP domain name. If the user-account name is John, the following is an example DN:

uid=John, ou=people, dc=domain, dc=com
4.9.3 Commands

4.9.3.1 User Accounts

username

```
username <username> [capability <cap> | disable [login | password] | full-name <name> | nopassword | password [0 | 7] <password>]
no username <username> [capability | disable [login | password] | full-name]
```

Creates a user and sets its capabilities, password and name. The no form of the command deletes the user configuration.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>username</td>
<td>Specifies a username and creates a user account. New users are created initially with admin privileges but is disabled.</td>
</tr>
<tr>
<td>capability <cap></td>
<td>Defines user capabilities.</td>
</tr>
<tr>
<td></td>
<td>- admin - full administrative capabilities</td>
</tr>
<tr>
<td></td>
<td>- monitor - read only capabilities, can not change the running configuration</td>
</tr>
<tr>
<td></td>
<td>- unpriv – can only query the most basic information, and cannot take any actions or change any configuration</td>
</tr>
<tr>
<td></td>
<td>- v_admin – basic administrator capabilities</td>
</tr>
<tr>
<td>disable [login</td>
<td>password]</td>
</tr>
<tr>
<td></td>
<td>- Disable - disable this account</td>
</tr>
<tr>
<td></td>
<td>- Disable login - disable all logins to this account</td>
</tr>
<tr>
<td></td>
<td>- Disable password - disable login to this account using a local password</td>
</tr>
<tr>
<td>name</td>
<td>Full name of the user.</td>
</tr>
<tr>
<td>nopassword</td>
<td>The next login of the user will not require password.</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>- 0: specifies a login password in cleartext</td>
</tr>
<tr>
<td></td>
<td>- 7: specifies a login password in encrypted text</td>
</tr>
<tr>
<td>password</td>
<td>Specifies a password for the user in string form. If [0</td>
</tr>
</tbody>
</table>

Default

The following usernames are available by default:

- admin
- monitor
- xmladmin
- xmluser

Configuration Mode

Config

History

- 3.1.0000
- 3.3.5050 Updated Example
- 3.4.1100 Updated Example

Role

admin
Example

```
switch (config) # username monitor full-name smith
switch (config) # show usernames
USERNAME   FULL NAME               CAPABILITY  ACCOUNT STATUS
USERID     System Administrator    admin       Password set
admin      System Administrator    admin       Password set
monitor    smith                   monitor     Password set (SHA512)
xmladmin   XML Admin User          admin       Password set (SHA512)
xmluser    XML Monitor User        monitor     Password set (SHA512)
switch (config) #
```

Related Commands

- show usernames
- show users

Notes

- To enable a user account, just set a password on it (or use the command `username <user> nopassword` to enable it with no password required for login)
- Removing a user account does not terminate any current sessions that user has open; it just prevents new sessions from being established
- Encrypted password is useful for the command `show configuration`, since the cleartext password cannot be recovered after it is set
show usernames

show usernames

Displays list of users and their capabilities.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show usernames
USERNAME   FULL NAME               CAPABILITY  ACCOUNT STATUS
USERID     System Administrator    admin       Password set
admin      System Administrator    admin       Password set
monitor    smith                   monitor     Password set (SHA512)
xmladmin   XML Admin User          admin       No password required
xmluser    XML Monitor User        monitor     No password required
switch (config) 
```

Related Commands

username
show users

Notes
show users

show users [history]

Displays logged in users and related information such as idle time and what host they have connected from.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>history</th>
<th>Displays current and historical sessions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show users
USERNAME   FULL NAME                LINE    HOST               IDLE
admin      System Administrator     pts/0   172.22.237.174     0d0h34m4s
admin      System Administrator     pts/1   172.30.0.127       1d3h30m49s
admin      System Administrator     pts/3   172.22.237.34      0d0h0m0s
switch (config) # show users history
admin    pts/3 172.22.237.34    Wed Feb  1 11:56   still logged in
admin    pts/3 172.22.237.34    Wed Feb  1 11:42 - 11:46  (00:04)
wttmp begins Wed Feb  1 11:38:10 2012
switch (config) #
```

Related Commands

username
show usernames

Notes
show whoami

show whoami

Displays username and capabilities of user currently logged in.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```plaintext
switch (config) # show whoami
Current user: admin
Capabilities: admin
switch (config) #
```

Related Commands

- username
- show usernames
- show users

Notes
4.9.3.2 AAA Methods

aaa accounting

`aaa accounting changes default stop-only tacacs+`

`no aaa accounting changes default stop-only tacacs+`

Enables logging of system changes to an AAA accounting server. The no form of the command disables the accounting.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Default</th>
<th>Configuration Mode</th>
<th>History</th>
<th>Role</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A</td>
<td>Config</td>
<td>3.1.0000</td>
<td>admin</td>
<td>switch (config) # aaa accounting changes default stop-only tacacs+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.2.3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Removed ‘time’ parameter from the command.</td>
</tr>
</tbody>
</table>

Related Commands

show aaa

Notes

- TACACS+ is presently the only accounting service method supported
- Change accounting covers both configuration changes and system actions that are visible under audit logging, however this feature operates independently of audit logging, so it is unaffected by the “logging level audit mgmt” or “configuration audit” commands
- Configured TACACS+ servers are contacted in the order in which they appear in the configuration until one accepts the accounting data, or the server list is exhausted
- Despite the name of the “stop-only” keyword, which indicates that this feature logs a TACACS+ accounting “stop” message, and in contrast to configuration change accounting, which happens after configuration database changes, system actions are logged when the action is started, not when the action has completed
aaa authentication login

aaa authentication login default <auth method> [<auth method> [<auth method> [<auth method> [<auth method>]]]]
no aaa authentication login

Sets a sequence of authentication methods. Up to four methods can be configured. The no form of the command resets the configuration to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>auth-method</th>
<th>local</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>radius</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tacacs+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ldap</td>
</tr>
</tbody>
</table>

Default: local

Configuration Mode: Any Command Mode

History: 3.1.0000

Role: admin

Example:

switch (config) # aaa authentication login default local radius tacacs+ ldap
switch (config) # show aaa
AAA authorization:
 Default User: admin
 Map Order: local-only
 Authentication method(s):
 local
 radius
 tacacs+
 ldap
Accounting method(s):
 tacacs+
switch (config) #

Related Commands: show aaa

Notes:
The order in which the methods are specified is the order in which the authentication is attempted. It is required that “local” is one of the methods selected. It is recommended that “local” be listed first to avoid potential problems logging in to local accounts in the face of network or remote server issues.
aaa authentication attempts track

aaa authentication attempts track {downcase | enable}
no aaa authentication attempts track {downcase | enable}

Configure tracking for failed authentication attempts.
The no form of the command clears configuration for tracking authentication failures.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>downcase</th>
<th>Does not convert all usernames to lowercase (for authentication failure tracking purposes only).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Disables tracking of failed authentication attempts</td>
</tr>
</tbody>
</table>

Default
N/A

Configuration Mode
Config

History
3.2.3000

Role
admin

Example
switch (config) # aaa authentication attempts track enable

Related Commands
N/A

Notes
- This is required for the lockout functionality described below, but can also be used on its own for informational purposes.
- Disabling tracking does not clear any records of past authentication failures, or the locks in the database. However, it does prevent any updates to this database from being made: no new failures are recorded. It also disables lockout, preventing new lockouts from being recorded and existing lockouts from being enforced.
aaa authentication attempts lockout

aaa authentication attempts lockout {enable | lock-time | max-fail | unlock-time}
no aaa authentication attempts lockout {enable | lock-time | max-fail | unlock-time}

Configures lockout of accounts based on failed authentication attempts. The no form of the command clears configuration for lockout of accounts based on failed authentication attempts.
Syntax Description	enable
Enables locking out of user accounts based on authentication failures. This both suspends enforcement of any existing lockouts, and prevents any new lockouts from being recorded. If lockouts are later re-enabled, any lockouts that had been recorded previously resume being enforced; but accounts which have passed the max-fail limit in the meantime are NOT automatically locked at this time. They would be permitted one more attempt, and then locked, because of how the locking is done: lockouts are applied after an authentication failure, if the user has surpassed the threshold at that time. Lockouts only work if tracking is enabled. Enabling lockouts automatically enables tracking. Disabling tracking automatically disables lockouts.

Syntax Description	lock-time
Sets maximum permitted consecutive authentication failures before locking out users. Unlike the “max-fail” setting, this does take effect immediately for all accounts. If both unlock-time and lock-time are set, the unlock-time must be greater than the lock-time. This is not based on the number of consecutive failures, and is therefore divorced from most of the rest of the tally feature, except for the tracking of the last login failure.

Syntax Description	max-fail
Sets maximum permitted consecutive authentication failures before locking out users. This setting only impacts what lockouts are imposed while the setting is active; it is not retroactive to previous logins. So if max-fail is disabled or changed, this does not immediately cause any users to be changed from locked to unlocked or vice-versa.

Syntax Description	unlock-time
Enables the auto-unlock of an account after a specified number of seconds if a user account is locked due to authentication failures, counting from the last valid login attempt. Unlike the “max-fail” setting, this does take effect immediately for all accounts. If both unlock-time and lock-time are set, the unlock-time must be greater than the lock-time. Careful with disabling the unlock-time, particularly if you have max-fail set to something, and have not overridden the behavior for the admin (i.e. they are subject to lockouts also). If the admin account gets locked out, and there are no other administrators who can aid, the user may be forced to boot single-user and use the pam_tallybyname command-line utility to unlock your account manually. Even if one is careful not to incur this many authentication failures, it makes the system more subject to DOS attacks.
<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.2.3000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config) # aaa authentication attempts lockout enable</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
aaa authentication attempts class-override

aaa authentication attempts class-override {admin [no-lockout] | unknown {no-track | hash-username}}
no aaa authentication attempts class-override {admin | unknown {no-track | hash-username}}

Overrides the global settings for tracking and lockouts for a type of account. The no form of the command removes this override and lets the admin be handled according to the global settings.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td>Overrides the global settings for tracking and lockouts for the admin account. This applies only to the single account with the username “admin”. It does not apply to any other users with administrative privileges.</td>
</tr>
<tr>
<td>no-lockout</td>
<td>Prevents the admin user from being locked out, though the authentication failure history is still tracked (if tracking is enabled overall).</td>
</tr>
</tbody>
</table>
| unknown | Overrides the global settings for tracking and lockouts for unknown accounts. The “unknown” class here contains the following categories:
 - Real remote usernames which simply failed authentication
 - Mis-typed remote usernames
 - Passwords accidentally entered as usernames
 - Bogus usernames made up as part of an attack on the system |
| hash-username | Applies a hash function to the username, and stores the hashed result in lieu of the original. |
| no-track | Does not track authentication for such users (which of course also implies no-lockout). |

Default

N/A

Configuration Mode

Config

History

3.2.3000

Role

admin

Example

```bash
switch (config) # aaa authentication attempts class-override admin no-lockout
```

Related Commands

N/A

Notes

N/A
aaa authentication attempts reset

aaa authentication attempts reset {all | user <username>} [{no-clear-history | no-unlock}]

Clears the authentication history for and/or unlocks specified users.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Applies function to all users.</td>
</tr>
<tr>
<td>user</td>
<td>Applies function to specified user.</td>
</tr>
<tr>
<td>no-clear-history</td>
<td>Leaves the history of login failures but unlocks the account.</td>
</tr>
<tr>
<td>no-unlock</td>
<td>Leaves the account locked but clears the history of login failures.</td>
</tr>
</tbody>
</table>

Default: N/A
Configuration Mode: Config
History: 3.2.3000
Role: admin
Example: switch (config) # aaa authentication attempts reset user admin all
Related Commands: N/A
Notes:
clear aaa authentication attempts

clear aaa authentication attempts {all | user <username>} [no-clear-history | no-unlock]

Clears the authentication history for and/or unlocks specified users

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Applies function to all users.</td>
</tr>
<tr>
<td>user</td>
<td>Applies function to specified user.</td>
</tr>
<tr>
<td>no-clear-history</td>
<td>Clears the history of login failures.</td>
</tr>
<tr>
<td>no-unlock</td>
<td>Unlocks the account.</td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Config

History: 3.2.3000

Role: admin

Example:

switch (config) # aaa authentication attempts reset user admin no-clear-history

Related Commands: N/A

Notes: N/A
aaa authorization

aaa authorization map [default-user <username> | order <policy>]
no aaa authorization map [default-user | order]

Sets the mapping permissions of a user in case a remote authentication is done. The no form of the command resets the attributes to default.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>username</td>
<td>Specifies what local account the authenticated user will be logged on as when a user is authenticated (via RADIUS or TACACS+) and does not have a local account. If the username is local, this mapping is ignored.</td>
</tr>
</tbody>
</table>
| order <policy> | Sets the user mapping behavior when authenticating users via RADIUS or TACACS+ to one of three choices. The order determines how the remote user mapping behaves. If the authenticated username is valid locally, no mapping is performed. The setting has the following three possible behaviors:
 - remote-first – if a local-user mapping attribute is returned and it is a valid local username, it maps the authenticated user to the local user specified in the attribute. Otherwise, it uses the user specified by the default-user command.
 - remote-only – maps a remote authenticated user if the authentication server sends a local-user mapping attribute. If the attribute does not specify a valid local user, no further mapping is tried.
 - local-only – maps all remote users to the user specified by the “aaa authorization map default-user <user name>” command. Any vendor attributes received by an authentication server are ignored. |

Default

Default user - admin
Map order - remote-first

Configuration Mode

Config

History

3.1.0000

Role

admin

Example

```
switch (config) # aaa authorization map default-user admin
switch (config) # show aaa
AAA authorization:
  Default User: admin
  Map Order: remote-first
Authentication method(s):
  local
Accounting method(s):
  tacacs+
switch (config) #
```
Related Commands

- `show aaa username`

Notes

- If, for example, the user is locally defined to have admin permission, but in a remote server such as RADIUS the user is authenticated as monitor and the order is remote-first, then the user is given monitor permissions.
- If AAA authorization order policy is configured to remote-only, then when upgrading to 3.4.3000 or later from an older MLNX-OS version, this policy is changed to remote-first.
show aaa

Displays the AAA configuration.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # show aaa
AAA authorization:
 Default User: admin
 Map Order: remote-first
Authentication method(s):
 local
Accounting method(s):
 tacacs+
switch (config) # |

| Related Commands | aaa accounting
 | aaa authentication
 | aaa authorization
 | show aaa
 | show usernames
 | username |

| Notes | |
show aaa authentication attempts

show aaa authentication attempts [configured | status user <username>]

Shows the current authentication, authorization and accounting settings.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>authentication attempts</td>
<td>Displays configuration and history of authentication failures.</td>
</tr>
<tr>
<td>configured</td>
<td>Displays configuration of authentication failure tracking.</td>
</tr>
<tr>
<td>status user</td>
<td>Displays status of authentication failure tracking and lockouts for specific user.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Any Command Mode</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.2.1000</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch (config) # show aaa authentication attempts</td>
</tr>
<tr>
<td>Configuration for authentication failure tracking and locking:</td>
</tr>
<tr>
<td>Track authentication failures: yes</td>
</tr>
<tr>
<td>Lock accounts based on authentication failures: yes</td>
</tr>
<tr>
<td>Override treatment of 'admin' user: (none)</td>
</tr>
<tr>
<td>Override treatment of unknown usernames: hash-usernames</td>
</tr>
<tr>
<td>Configuration for lockouts based on authentication failures:</td>
</tr>
<tr>
<td>Lock account after consecutive auth failures: 5</td>
</tr>
<tr>
<td>Allow retry on locked accounts (unlock time): after 15 second(s)</td>
</tr>
<tr>
<td>Temp lock after each auth failure (lock time): none</td>
</tr>
<tr>
<td>Username</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>0Q72B43EHK4T8CB5AF5PGRX3U3B3TUL4CYJP93N(*) no no 1 2012/08/20 14:29:19 ttySG</td>
</tr>
<tr>
<td>(*) Hashed for security reasons</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
<th>N/A</th>
</tr>
</thead>
</table>
4.9.3.3 RADIUS

radius-server

```
radius-server {key <secret>| retransmit <retries> | timeout <seconds>}
no radius-server {key | retransmit | timeout}
```

Sets global RADIUS server attributes.
The no form of the command resets the attributes to their default values.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>secret</td>
<td>Sets a secret key (shared hidden text string), known to the system and to the RADIUS server.</td>
</tr>
<tr>
<td>retries</td>
<td>Number of retries (0-5) before exhausting from the authentication.</td>
</tr>
<tr>
<td>seconds</td>
<td>Timeout in seconds between each retry (1-60).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>3 seconds, 1 retry</th>
</tr>
</thead>
</table>

Configuration Mode

- Config

History

- 3.1.0000

Role

- admin

Example

```
switch (config) #radius-server retransmit 3
switch (config) # show radius
RADIUS defaults:
  Key: 3333
  Timeout: 3
  Retransmit: 1
No RADIUS servers configured.
```

Related Commands

- aaa authorization
- radius-server host
- show radius

Notes

Each RADIUS server can override those global parameters using the command “radius-server host”.
radius-server host

radius-server host <IP address> [enable | auth-port <port> | key <secret> | prompt-key | retransmit <retries> | timeout <seconds>]
no radius-server host <IP address> [auth-port | enable]

Configures RADIUS server attributes.
The no form of the command resets the attributes to their default values and deletes
the RADIUS server.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>IP address</th>
<th>RADIUS server IP address</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Administrative enable of the RADIUS server</td>
<td></td>
</tr>
<tr>
<td>auth-port</td>
<td>Configures authentication port to use with this RADIUS server</td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>RADIUS server UDP port number</td>
<td></td>
</tr>
<tr>
<td>key</td>
<td>Configures shared secret to use with this RADIUS server</td>
<td></td>
</tr>
<tr>
<td>prompt-key</td>
<td>Prompt for key, rather than entering on command line</td>
<td></td>
</tr>
<tr>
<td>retransmit</td>
<td>Configures retransmit count to use with this RADIUS server</td>
<td></td>
</tr>
<tr>
<td>retries</td>
<td>Number of retries (0-5) before exhausting from the authentication</td>
<td></td>
</tr>
<tr>
<td>timeout</td>
<td>Configures timeout between each try</td>
<td></td>
</tr>
<tr>
<td>seconds</td>
<td>Timeout in seconds between each retry (1-60)</td>
<td></td>
</tr>
</tbody>
</table>

Default
3 seconds, 1 retry
Default UDP port is 1812

Configuration Mode
Config

History
3.1.0000

Role
dev

Example
switch (config) # radius-server host 40.40.40.40
switch (config) # show radius
RADIUS defaults:
 Key: 3333
 Timeout: 3
 Retransmit: 1
RADIUS servers:
 40.40.40.40:1812
 Enabled: yes
 Key: 3333 (default)
 Timeout: 3 (default)
 Retransmit: 1 (default)
switch (config) #
Related Commands

- aaa authorization
- radius-server
- show radius

Notes

- RADIUS servers are tried in the order they are configured
- If you do not specify a parameter for this configured RADIUS server, the configuration will be taken from the global RADIUS server configuration. Refer to “radius-server” command.
show radius

show radius

Displays RADIUS configurations.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```bash
switch (config) # show radius
RADIUS defaults:
    Key:             3333
    Timeout:         3
    Retransmit:      1
RADIUS servers:
    40.40.40.40:1812
        Enabled:         yes
        Key:             3333 (default)
        Timeout:         3 (default)
        Retransmit:      1 (default)
switch (config) #
```

Related Commands

- aaa authorization
- radius-server
- radius-server host

Notes
4.9.3.4 TACACS+

tacacs-server

```plaintext
tacacs-server {key <secret>| retransmit <retries> | timeout <seconds>}
no tacacs-server {key | retransmit | timeout}
```

Sets global TACACS+ server attributes.
The no form of the command resets the attributes to default values.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>secret</td>
<td>Set a secret key (shared hidden text string), known to the system and to the TACACS+ server.</td>
</tr>
<tr>
<td>retries</td>
<td>Number of retries (0-5) before exhausting from the authentication.</td>
</tr>
<tr>
<td>seconds</td>
<td>Timeout in seconds between each retry (1-60).</td>
</tr>
</tbody>
</table>

Default	3 seconds, 1 retry
Configuration Mode	Config
History	3.1.0000
Role	admin

Example

```plaintext
switch (config) #tacacs-server retransmit 3
switch (config) # show tacacs
TACACS+ defaults:
    Key:          3333
    Timeout:      3
    Retransmit:   1
No TACACS+ servers configured.
switch (config) #
```

Related Commands

- aaa authorization
- show radius
- show tacacs
- tacacs-server host

Notes

Each TACACS+ server can override those global parameters using the command “tacacs-server host”.

tacacs-server host

tacacs-server host <IP address> {enable | auth-port <port> | auth-type <type> | key <secret> | prompt-key | retransmit <retries> | timeout <seconds>}

no tacacs-server host <IP address> {enable | auth-port}

Configures TACACS+ server attributes. The no form of the command resets the attributes to their default values and deletes the TACACS+ server.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>IP address</th>
<th>TACACS+ server IP address</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Administrative enable for the TACACS+ server</td>
<td></td>
</tr>
<tr>
<td>auth-port</td>
<td>Configures authentication port to use with this TACACS+ server</td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>TACACS+ server UDP port number</td>
<td></td>
</tr>
<tr>
<td>auth-type</td>
<td>Configures authentication type to use with this TACACS+ server</td>
<td></td>
</tr>
</tbody>
</table>
| type | Authentication type. Possible values are:
| | - ASCII
| | - PAP (Password Authentication Protocol) |
| key | Configures shared secret to use with this TACACS+ server |
| secret | Sets a secret key (shared hidden text string), known to the system and to the TACACS+ server |
| prompt-key | Prompts for key, rather than entering key on command line |
| retransmit | Configures retransmit count to use with this TACACS+ server |
| retries | Number of retries (0-5) before exhausting from the authentication |
| timeout | Configures timeout to use with this TACACS+ server |
| seconds | Timeout in seconds between each retry (1-60) |

Default

3 seconds, 1 retry
Default TCP port is 49
Default auth-type is PAP

Configuration Mode

Conf

History

3.1.0000

Role

admin
Example

switch (config) # tacacs-server host 40.40.40.40
switch (config) # show tacacs
TACACS+ defaults:
 Key: 3333
 Timeout: 3
 Retransmit: 1
TACACS+ servers:
 40.40.40.40:49
 Enabled: yes
 Auth-type PAP
 Key: 3333 (default)
 Timeout: 3 (default)
 Retransmit: 1 (default)
switch (config) #

Related Commands
aaa authorization
show tacacs
tacacs-server

Notes
- TACACS+ servers are tried in the order they are configured
- A PAP auth-type similar to an ASCII login, except that the username and password arrive at the network access server in a PAP protocol packet instead of being typed in by the user, so the user is not prompted
- If the user does not specify a parameter for this configured TACACS+ server, the configuration will be taken from the global TACACS+ server configuration. Refer to “tacacs-server” command.
show tacacs

 Displays TACACS+ configurations.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show tacacs
TACACS+ defaults:
  Key:     3333
  Timeout: 3
  Retransmit: 1
TACACS+ servers:
  40.40.40.40:49
    Enabled: yes
    Auth-type: PAP
    Key: 3333 (default)
    Timeout: 3 (default)
    Retransmit: 1 (default)
```

Related Commands

- aaa authorization
- tacacs-server
- tacacs-server host

Notes
4.9.3.5 LDAP

ldap base-dn

```plaintext
ldap base-dn <string>
no ldap base-dn
```

Sets the base distinguished name (location) of the user information in the schema of the LDAP server.
The no form of the command resets the attribute to its default values.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>A case-sensitive string that specifies the location in the LDAP hierarchy where the server should begin searching when it receives an authorization request. For example: “ou=users,dc=example,dc=com”, with no spaces. when: ou - Organizational unit dc - Domain component cn - Common name sn - Surname</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>ou=users,dc=example,dc=com</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.1.0000</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3.3.5050</th>
<th>Updated Example</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

Example

```plaintext
switch (config) # ldap base-dn ou=department,dc=example,dc=com
switch (config) # show ldap
User base DN : ou=department,dc=example,dc=com
User search scope : subtree
Login attribute : sAMAccountName
Bind DN :
Bind password :
Group base DN :
Group attribute : member
LDAP version : 3
Referrals : yes
Server port : 389
Search Timeout : 5
Bind Timeout : 5
SSL mode : none
Server SSL port : 636 (not active)
SSL ciphers : TLS1.2 (not active)
SSL cert verify : yes
SSL ca-list : default-ca-list

LDAP servers:
  1: 10.10.10.10
  2: 10.10.10.12
switch (config) #
```
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>show ldap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
ldap bind-dn/bind-password

```plaintext
ldap {bind-dn | bind-password} <string>
no ldap {bind-dn | bind-password}
```

Gives the distinguished name or password to bind to on the LDAP server. This can be left empty for anonymous login (the default). The no form of the command resets the attribute to its default values.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>A case-sensitive string that specifies distinguished name or password to bind to on the LDAP server.</td>
</tr>
</tbody>
</table>

Default

```
***
```

Configuration Mode

Config

History

3.1.0000

3.3.5050 Updated Example

Role

admin

Example

```plaintext
switch (config) # ldap bind-dn my-dn
switch (config) # ldap bind-password my-password
switch (config) # show ldap
User base DN : ou=department,dc=example,dc=com
User search scope : subtree
Login attribute : sAMAccountName
Bind DN : my-dn
Bind password : my-password
Group base DN :
Group attribute : member
LDAP version : 3
Referrals : yes
Server port : 389
Search Timeout : 5
Bind Timeout : 5
SSL mode : none
Server SSL port : 636 (not active)
SSL ciphers : TLS1.2 (not active)
SSL cert verify : yes
SSL ca-list : default-ca-list

LDAP servers:
1: 10.10.10.10
2: 10.10.10.12
```

Related Commands

show ldap

Notes

For anonymous login, bind-dn and bind-password should be empty strings "***".
ldap group-attribute/group-dn

```plaintext
ldap {group-attribute {<group-att> |member | uniqueMember} | group-dn <group-dn>}
no ldap {group-attribute | group-dn}
```

Sets the distinguished name or attribute name of a group on the LDAP server. The no form of the command resets the attribute to its default values.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>group-att</th>
<th>Specifies a custom attribute name.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>member</td>
<td>groupOfNames or group membership attribute.</td>
</tr>
<tr>
<td></td>
<td>uniqueMember</td>
<td>groupOfUniqueNames membership attribute.</td>
</tr>
<tr>
<td></td>
<td>group-dn</td>
<td>DN of group required for authorization.</td>
</tr>
</tbody>
</table>

Default

- group-att: member
- group-dn: ""

Configuration Mode

Config

History

- 3.1.0000
- 3.3.5050 Updated Example

Role

admin

Example

```plaintext
switch (config) # ldap group-attribute member
switch (config) # ldap group-dn my-group-dn
switch (config) # show ldap
User base DN : ou=department,dc=example,dc=com
User search scope : subtree
Login attribute   : sAMAccountName
Bind DN           : my-dn
Bind password     : my-password
Group base DN     : my-group-dn
Group attribute   : member
LDAP version      : 3
Referrals         : yes
Server port       : 389
Search Timeout    : 5
Bind Timeout      : 5
SSL mode          : none
Server SSL port   : 636 (not active)
SSL ciphers       : TLS1.2 (not active)
SSL cert verify   : yes
SSL ca-list       : default-ca-list

LDAP servers:
    1: 10.10.10.10
    2: 10.10.10.12
switch (config) #
```
Related Commands
show ldap

Notes
- The user’s distinguished name must be listed as one of the values of this attribute, or the user will not be authorized to log in
- After login authentication, if the group-dn is set, a user must be a member of this group or the user will not be authorized to log in. If the group is not set ("" - the default) no authorization checks are done.
ldap host

ldap host <IP Address> [order <number> last]

no ldap host <IP Address>

Adds an LDAP server to the set of servers used for authentication.
The no form of the command deletes the LDAP host.

Syntax Description

<table>
<thead>
<tr>
<th>IP Address</th>
<th>IPv4 or IPv6 address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>The order of the LDAP server.</td>
</tr>
<tr>
<td>last</td>
<td>The LDAP server will be added in the last location.</td>
</tr>
</tbody>
</table>

Default

No hosts configured

Configuration Mode

Config

History

3.1.0000

3.3.5050 Updated Example

Role

admin

Example

```
switch (config) # ldap host 10.10.10.10
switch (config) # show ldap
User base DN : ou=department,dc=example,dc=com
User search scope : subtree
Login attribute : sAMAccountName
Bind DN : my-dn
Bind password : my-password
Group base DN : my-group-dn
Group attribute : member
LDAP version : 3
Referrals : yes
Server port : 389
Search Timeout : 5
Bind Timeout : 5
SSL mode : none
Server SSL port : 636 (not active)
SSL ciphers : TLS1.2 (not active)
SSL cert verify : yes
SSL ca-list : default-ca-list

LDAP servers:
  1: 10.10.10.10
  2: 10.10.10.12
```

Related Commands

show aaa

show ldap

Notes

- The system will select the LDAP host to try according to its order
- New servers are by default added at the end of the list of servers
ldap login-attribute

```
ldap login-attribute {<string> | uid | sAMAccountName}
no ldap login-attribute
```

Sets the attribute name which contains the login name of the user. The no form of the command resets this attribute to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>string</th>
<th>Custom attribute name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>uid</td>
<td>uid</td>
<td>LDAP login name is taken from the user login username.</td>
</tr>
<tr>
<td>sAMAccountName</td>
<td>sAMAccountName</td>
<td>SAM Account name, active directory login name.</td>
</tr>
</tbody>
</table>

Default
sAMAccountName

Configuration Mode
Config

History
3.1.0000
3.3.5050 Updated Example

Role
admin

Example
```
switch (config) # ldap login-attribute uid
switch (config) # show ldap
User base DN : ou=department,dc=example,dc=com
User search scope : subtree
Login attribute : uid
Bind DN : my-dn
Bind password : my-password
Group base DN : my-group-dn
Group attribute : member
LDAP version : 3
Referrals : yes
Server port : 389
Search Timeout : 5
Bind Timeout : 5
SSL mode : none
Server SSL port : 636 (not active)
SSL ciphers : TLS1.2 (not active)
SSL cert verify : yes
SSL ca-list : default-ca-list

LDAP servers:
1: 10.10.10.10
2: 10.10.10.12
```

Related Commands
show aaa
show ldap

Notes
ldap port

`ldap port <port>`

`no ldap port`

Sets the TCP port on the LDAP server to connect to for authentication. The no form of the command resets this attribute to its default value.

Syntax Description

<table>
<thead>
<tr>
<th>Default</th>
<th>port</th>
<th>TCP port number.</th>
</tr>
</thead>
<tbody>
<tr>
<td>389</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Mode

Config

History

3.1.0000

3.3.5050 Updated Example

Role

admin

Example

```
switch (config) # ldap port 1111
switch (config) # show ldap
User base DN : ou=department,dc=example,dc=com
User search scope : subtree
Login attribute : uid
Bind DN : my-dn
Bind password : my-password
Group base DN : my-group-dn
Group attribute : member
LDAP version : 3
Referrals : yes
Server port : 1111
Search Timeout : 5
Bind Timeout : 5
SSL mode : none
Server SSL port : 636 (not active)
SSL ciphers : TLS1.2 (not active)
SSL cert verify : yes
SSL ca-list : default-ca-list
LDAP servers:
  1: 10.10.10.10
  2: 10.10.10.12
switch (config) #
```
ldap referrals

ldap referrals

no ldap referrals

Enables LDAP referrals.
The no form of the command disables LDAP referrals.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>LDAP referrals are enabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td></td>
<td>3.3.5050</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # no ldap referrals
switch (config) # show ldap
User base DN : ou=department,dc-example,dc=com
User search scope : subtree
Login attribute : uid
Bind DN : my-dn
Bind password : my-password
Group base DN : my-group-dn
Group attribute : member
LDAP version : 3
Referrals : no
Server port : 1111
Search Timeout : 5
Bind Timeout : 5
SSL mode : none
Server SSL port : 636 (not active)
SSL ciphers : TLS1.2 (not active)
SSL cert verify : yes
SSL ca-list : default-ca-list

LDAP servers:
1: 10.10.10.10
2: 10.10.10.12
switch (config) # |

| Related Commands | show aaa
show ldap |

| Notes | Referral is the process by which an LDAP server, instead of returning a result, will return a referral (a reference) to another LDAP server which may contain further information. |
ldap scope

ldap scope <scope>
no ldap scope

Specifies the extent of the search in the LDAP hierarchy that the server should make when it receives an authorization request. The no form of the command resets the attribute to its default value.

Syntax Description

| scope | • one-level - searches the immediate children of the base dn
| | • subtree - searches at the base DN and all its children |

Default: subtree

Configuration Mode: Config

History

- 3.1.0000
- 3.3.5050 Updated Example

Role: admin

Example

```
switch (config) # ldap scope subtree
switch (config) # show ldap
User base DN : ou=department,dc=example,dc=com
User search scope : subtree
Login attribute : uid
Bind DN : my-dn
Bind password : my-password
Group base DN : my-group-dn
Group attribute : member
LDAP version : 3
Referrals : no
Server port : 1111
Search Timeout : 5
Bind Timeout : 5
SSL mode : none
Server SSL port : 636 (not active)
SSL ciphers : TLS1.2 (not active)
SSL cert verify : yes
SSL ca-list : default-ca-list

LDAP servers:
1: 10.10.10.10
2: 10.10.10.12
```

Related Commands: show aaa
show ldap

Notes
ldap ssl

```
ldap ssl {ca-list <options> | cert-verify | ciphers {all | TLS1.2} | mode <mode> | port <port-number>}
no ldap ssl {cert-verify | ciphers | mode | port}
```

Sets SSL parameter for LDAP.
The no form of the command resets the attribute to its default value.

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| options | This command specifies the list of supplemental certificates of authority (CAs) from the certificate configuration database that is to be used by LDAP for authentication of servers when in TLS or SSL mode. The options are:
| | • default-ca-list - uses default supplemental CA certificate list
| | • none - no supplemental list, uses the built-in one only
| cert-verify | Enables verification of SSL/TLS server certificates. This may be required if the server's certificate is self-signed, or does not match the name of the server.
| ciphers {all | TLS1.2} | Sets SSL mode to be used.
| mode | Sets the security mode for connections to the LDAP server.
| | • none – requests no encryption for the LDAP connection
| | • ssl – the SSL-port configuration is used, an SSL connection is made before LDAP requests are sent (LDAP over SSL)
| | • start-tls – the normal LDAP port is used, an LDAP connection is initiated, and then TLS is started on this existing connection
| port-number | Sets the port on the LDAP server to connect to for authentication when the SSL security mode is enabled (LDAP over SSL).

Default

- cert-verify: enabled
- mode: none (LDAP SSL is not activated)
- port-number: 636
- ciphers: all
Configuration Mode

| Role | admin |

Example

```bash
switch (config) # ldap ssl mode ssl
switch (config) # show ldap
User base DN : ou=department,dc=example,dc=com
User search scope : subtree
Login attribute : uid
Bind DN : my-dn
Bind password : my-password
Group base DN : my-group-dn
Group attribute : member
LDAP version : 3
Referrals : no
Server port : 1111
Search Timeout : 5
Bind Timeout : 5
SSL mode : ssl
Server SSL port : 636 (not active)
SSL ciphers : TLS1.2 (not active)
SSL cert verify : yes
SSL ca-list : default-ca-list

LDAP servers:
1: 10.10.10.10
2: 10.10.10.12
switch (config) #
```

Related Commands

- show aaa
- show ldap

Notes

- If available, the TLS mode is recommended, as it is standardized, and may also be of higher security
- The port number is used only for SSL mode. In case the mode is TLS, the LDAP port number will be used.
ldap timeout

`ldap {timeout-bind | timeout-search} <seconds>`
`no ldap {timeout-bind | timeout-search}`

Sets a global communication timeout in seconds for all LDAP servers to specify the extent of the search in the LDAP hierarchy that the server should make when it receives an authorization request.

The no form of the command resets the attribute to its default value.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>timeout-bind</th>
<th>Sets the global LDAP bind timeout for all LDAP servers.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>timeout-search</td>
<td>Sets the global LDAP search timeout for all LDAP servers.</td>
</tr>
<tr>
<td>seconds</td>
<td>Range: 1-60 seconds.</td>
<td></td>
</tr>
</tbody>
</table>

Default

| 5 seconds |

Configuration Mode

| Config |

History

| 3.1.0000 |

Updated Example

| 3.3.5050 |

Role

| admin |

Example

```
switch (config) # ldap timeout-bind 10
switch (config) # show ldap
User base DN : ou=department,dc=example,dc=com
User search scope : subtree
Login attribute : uid
Bind DN : my-dn
Bind password : my-password
Group base DN : my-group-dn
Group attribute : member
LDAP version : 3
Referrals : no
Server port : 1111
Search Timeout : 5
Bind Timeout : 10
SSL mode : none
Server SSL port : 636 (not active)
SSL ciphers : TLS1.2 (not active)
SSL cert verify : yes
SSL ca-list : default-ca-list

LDAP servers:
    1: 10.10.10.10
    2: 10.10.10.12
```

Related Commands

| show aaa |

| show ldap |

Notes
ldap version

ldap version `<version>`
no ldap version

Sets the LDAP version.
The no form of the command resets the attribute to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>version</th>
<th>Sets the LDAP version. Values: 2 and 3.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>3.3.5050</td>
<td>Updated Example</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

Example

```bash
switch (config) # ldap version 3
switch (config) # show ldap
User base DN        : ou=department,dc=example,dc=com
User search scope   : subtree
Login attribute     : uid
Bind DN             : my-dn
Bind password       : my-password
Group base DN       : my-group-dn
Group attribute     : member
LDAP version        : 3
Referrals           : no
Server port         : 1111
Search Timeout      : 5
Bind Timeout        : 10
SSL mode            : none
Server SSL port     : 636 (not active)
SSL ciphers         : TLS1.2 (not active)
SSL cert verify     : yes
SSL ca-list         : default-ca-list

LDAP servers:
  1: 10.10.10.10
  2: 10.10.10.12
```

Related Commands

show aaa
show ldap

Notes
show ldap

show ldap
Displays LDAP configurations.

Syntax Description
N/A

Default
N/A

Configuration Mode
Any Command Mode

History
3.1.0000
3.3.5050 Updated Example

Role
admin

Example
switch (config) # show ldap
User base DN : ou=department,dc=example,dc=com
User search scope : subtree
Login attribute : uid
Bind DN : my-dn
Bind password : my-password
Group base DN : my-group-dn
Group attribute : member
LDAP version : 3
Referrals : no
Server port : 1111
Search Timeout : 5
Bind Timeout : 10
SSL mode : none
Server SSL port : 636 (not active)
SSL ciphers : TLS1.2 (not active)
SSL cert verify : yes
SSL ca-list : default-ca-list

LDAP servers:
1: 10.10.10.10
2: 10.10.10.12

switch (config) #

Related Commands
show aaa
show ldap

Notes
4.10 Cryptographic (X.509, IPSec)

This chapter contains commands for configuring, generating and modifying x.509 certificates used in the system. Certificates are used for creating a trusted SSL connection to the system. Crypto commands also cover IPSec configuration commands used for establishing a secure connection between hosts over IP layer which is useful for transferring sensitive information.
4.10.1 Commands

crypto ipsec ike

```
crypto ipsec ike {clear sa [peer {any | <IPv4 or IPv6 address>} local <IPv4 or IPv6 address>] | restart}
```

Manage the IKE (ISAKMP) process or database state

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear</td>
<td>Clears IKE (ISAKMP) peering state</td>
</tr>
<tr>
<td>sa</td>
<td>Clears IKE generated ISAKMP and IPSec security associations (remote peers are affected)</td>
</tr>
<tr>
<td>peer</td>
<td>Clears security associations for the specified IKE peer (remote peers are affected)</td>
</tr>
<tr>
<td>all</td>
<td>Clears security associations for all IKE peerings (remote peers are affected)</td>
</tr>
<tr>
<td>IPv4 or IPv6 address</td>
<td>Clears security associations for the specified IKE peering (remote peer is affected)</td>
</tr>
<tr>
<td>local</td>
<td>Clear security associations for the specified/all IKE peering (remote peer is affected)</td>
</tr>
<tr>
<td>restart</td>
<td>Restarts the IKE (ISAKMP) daemon (clears all IKE state, peers may be affected)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.2.3000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config)# crypto ipsec ike restart</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Notes</td>
<td>N/A</td>
</tr>
</tbody>
</table>
crypto ipsec peer local

`crypto ipsec peer <IPv4 or IPv6 address> local <IPv4 or IPv6 address> {enable | keying {ike [auth {hmac-md5 | hmac-sha1 | hmac-sha256 | null} | dh-group | disable | encrypt | exchange-mode | lifetime | local | mode | peer-identity | pfs-group | preshared-key | prompt-preshared-key | transform-set | manual [auth | disable | encrypt | local-spi | mode | remote-spi]}}}`

Configures IPSec in the system.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>Enables IPSec peering.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ike</td>
<td></td>
<td>Configures IPSec peering using IKE ISAKMP to manage SA keys. It has the following optional parameters:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• auth: Configures the authentication algorithm for IPSec peering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• dh-group: Configures the phase1 Diffie-Hellman group proposed for secure IKE key exchange</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• disable: Configures this IPSec peering administratively disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• encrypt: Configures the encryption algorithm for IPSec peering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• exchange-mode: Configures the IKE key exchange mode to propose for peering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• lifetime: Configures the SA lifetime to propose for this IPSec peering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• local-identity: Configures the ISAKMP payload identification value to send as local endpoint's identity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• mode: Configures the peering mode for this IPSec peering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• peer-identity: Configures the identification value to match against the peer's ISAKMP payload identification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• pfs-group: Configures the phase2 PFS (Perfect Forwarding Secrecy) group to propose for Diffie-Hellman exchange for this IPSec peering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• preshared-key: Configures the IKE pre-shared key for the IPSec peering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• prompt-preshared-key: Prompts for the pre-shared key, rather than entering it on the command line</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• transform-set: Configures transform proposal parameters</td>
</tr>
<tr>
<td>keying</td>
<td></td>
<td>Configures key management for this IPSec peering:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• auth: Configures the authentication algorithm for this IPSec peering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• disable: Configures this IPSec peering administratively disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• encrypt: Configures the encryption algorithm for this IPSec peering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• local-spi: Configures the local SPI for this manual IPSec peering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• mode: Configures the peering mode for this IPSec peering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• remote-spi: Configures the remote SPI for this manual IPSec peering</td>
</tr>
</tbody>
</table>

<p>| manual | | Configures IPSec peering using manual keys. |</p>
<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.2.3000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config)# crypto ipsec peer 10.10.10.10 local 10.7.34.139 enable switch (config)#</td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Notes</td>
<td>N/A</td>
</tr>
</tbody>
</table>
crypto certificate ca-list

```
crypto certificate ca-list [default-ca-list name {<cert-name> | system-self-signed}]
no crypto certificate ca-list [default-ca-list name {<cert-name> | system-self-signed}]
```

Adds the specified CA certificate to the default CA certificate list. The no form of the command removes the certificate from the default CA certificate list.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cert-name</td>
<td>The name of the certificate.</td>
</tr>
</tbody>
</table>

Default	N/A
Configuration Mode	Config
History	3.2.3000
Role	admin
Example	`switch (config) # crypto certificate default-cert name test`
Related Commands	N/A

Notes
- Two certificates with the same subject and issuer fields cannot both be placed onto the CA list
- The no form of the command does not delete the certificate from the certificate database
- Unless specified otherwise, applications that use CA certificates will still consult the well-known certificate bundle before looking at the default-ca-list
crypto certificate default-cert

crypto certificate default-cert name {<cert-name> | system-self-signed}
no crypto certificate default-cert name {<cert-name> | system-self-signed}

Designates the named certificate as the global default certificate role for authentica-
tion of this system to clients.
The no form of the command reverts the default-cert name to “system-self-signed”
(the “cert-name” value is optional and ignored).

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cert-name</td>
<td>The name of the certificate.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.2.3000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # crypto certificate default-cert name test</td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
</tbody>
</table>
| Notes | • A certificate must already be defined before it can be configured in the default-cert role
• If the named default-cert is deleted from the database, the default-cert automatically becomes reconfigured to the factory default, the “system-self-signed” certificate |
crypto certificate generation

```
crypto certificate generation default {country-code | days-valid | email-addr |
hash-algorithm {sha1 | sha256} | key-size-bits | locality | org-unit | organization | |
state-or-prov}
```

Configures default values for certificate generation.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>country-code</td>
<td>country-code</td>
<td>Configures the default certificate value for country code with a two-alphanumeric-character code or -- for none.</td>
</tr>
<tr>
<td>days-valid</td>
<td>days-valid</td>
<td>Configures the default certificate value for days valid.</td>
</tr>
<tr>
<td>email-addr</td>
<td>email-addr</td>
<td>Configures the default certificate value for email address.</td>
</tr>
<tr>
<td>hash-algorithm</td>
<td>hash-algorithm {sha1</td>
<td>sha256}</td>
</tr>
<tr>
<td>key-size-bits</td>
<td>key-size-bits</td>
<td>Configures the default certificate value for private key size. (Private key length in bits – at least 1024, but 2048 is strongly recommended.)</td>
</tr>
<tr>
<td>locality</td>
<td>locality</td>
<td>Configures the default certificate value for locality.</td>
</tr>
<tr>
<td>org-unit</td>
<td>org-unit</td>
<td>Configures the default certificate value for organizational unit.</td>
</tr>
<tr>
<td>organization</td>
<td>organization</td>
<td>Configures the default certificate value for the organization name.</td>
</tr>
<tr>
<td>state-or-prov</td>
<td>state-or-prov</td>
<td>Configures the default certificate value for state or province.</td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Config

History:
- 3.2.1000: First version
- 3.3.4350: Added “hash-algorithm” parameter

Role: admin

Example:
```
switch (config) # crypto certificate generation default hash-algorithm sha256
```

Related Commands: N/A

Notes: The default hashing algorithm used is sha1.
crypto certificate name

```
crypto certificate name {<cert-name> | system-self-signed} {comment <new comment> | generate self-signed [comment <cert-comment> | common-name <domain> | country-code <code> | days-valid <days> | email-addr <address> | hash-algorithm {sha1 | sha256} | key-size-bits <bits> | locality <name> | org-unit <name> | organization <name> | serial-num <number> | state-or-prov <name>]} | private-key pem <PEM string> | prompt-private-key | public-cert [comment <comment string> | pem <PEM string>] | regenerate days-valid <days> | rename <new name>}
```

The no form of the command clears/deletes certain certificate settings.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cert-name</td>
<td>Unique name by which the certificate is identified.</td>
</tr>
<tr>
<td>comment</td>
<td>Specifies a certificate comment.</td>
</tr>
<tr>
<td>generate self-signed</td>
<td>Generates certificates. This option has the following parameters which may be entered sequentially in any order:</td>
</tr>
<tr>
<td></td>
<td>• comment: Specifies a certificate comment (free string)</td>
</tr>
<tr>
<td></td>
<td>• common-name: Specifies the common name of the issuer and subject (e.g. a domain name)</td>
</tr>
<tr>
<td></td>
<td>• country-code: Specifies the country codwo-alphanu-meric-character country code, or “--” for none)</td>
</tr>
<tr>
<td></td>
<td>• days-valid: Specifies the number of days the certificate is valid</td>
</tr>
<tr>
<td></td>
<td>• email-addr: Specifies the email address</td>
</tr>
<tr>
<td></td>
<td>• hash-algorithm: Specifies the hashing function used for signature algorithm</td>
</tr>
<tr>
<td></td>
<td>• key-size-bits: Specifies the size of the private key in bits (private key length in bits - at least 1024 but 2048 is strongly recommended)</td>
</tr>
<tr>
<td></td>
<td>• locality: Specifies the locality name</td>
</tr>
<tr>
<td></td>
<td>• org-unit: Specifies the organizational unit name</td>
</tr>
<tr>
<td></td>
<td>• organization: Specifies the organization name</td>
</tr>
<tr>
<td></td>
<td>• serial-num: Specifies the serial number for the certificate (a lower-case hexadecimal serial number prefixed with “0x”)</td>
</tr>
<tr>
<td></td>
<td>• state-or-prov: Specifies the state or province name</td>
</tr>
<tr>
<td>private-key pem</td>
<td>Specifies certificate contents in PEM format.</td>
</tr>
<tr>
<td>prompt-private-key</td>
<td>Prompts for certificate private key with secure echo.</td>
</tr>
<tr>
<td>public-cert</td>
<td>Installs a certificate.</td>
</tr>
<tr>
<td>regenerate</td>
<td>Regenerates the named certificate using configured certificate generation default values for the specified validity period</td>
</tr>
<tr>
<td>rename</td>
<td>Renames the certificate.</td>
</tr>
</tbody>
</table>

Default

N/A
<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>3.2.3000</td>
</tr>
<tr>
<td></td>
<td>3.3.4402</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config) # crypto certificate name system-self-signed generate self-signed hash-algorithm sha256</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
crypto certificate system-self-signed

crypto certificate system-self-signed regenerate [days-valid <days>]

Configures default values for certificate generation.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>days-valid</th>
<th>Specifies the number of days the certificate is valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.2.1000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # crypto certificate system-self-signed regenerate days-valid 3</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show crypto certificate

```bash
show crypto certificate [detail | public-pem | default-cert [detail | public-pem] | name <cert-name> [detail | public-pem] | ca-list [default-ca-list]]
```

Displays information about all certificates in the certificate database.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ca-list</td>
<td></td>
<td>Displays the list of supplemental certificates configured for the global default system CA certificate role.</td>
</tr>
<tr>
<td>default-ca-list</td>
<td></td>
<td>Displays information about the currently configured default certificates of the CA list.</td>
</tr>
<tr>
<td>default-cert</td>
<td></td>
<td>Displays information about the currently configured default certificate.</td>
</tr>
<tr>
<td>detail</td>
<td></td>
<td>Displays all attributes related to the certificate.</td>
</tr>
<tr>
<td>name</td>
<td></td>
<td>Displays information about the certificate specified.</td>
</tr>
<tr>
<td>public-pem</td>
<td></td>
<td>Displays the uninterpreted public certificate as a PEM formatted data string</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

```
switch (config)# show crypto certificate
Certificate with name 'system-self-signed' (default-cert)
  Comment: system-generated self-signed certificate
  Private Key: present
  Serial Number: 0x546c935511bcafc21ac0e8249fbe0844
  SHA-1 Fingerprint: fe6df38dd26801971cb2d44f62d-be492b6063c5f

  Validity:
    Starts: 2012/12/02 13:45:05
    Expires: 2013/12/02 13:45:05

  Subject:
    Common Name: IBM-DEV-Bay4
    Country: IS
    State or Province:
    Locality:
    Organization:
    Organizational Unit:
    E-mail Address:

  Issuer:
    Common Name: IBM-DEV-Bay4
    Country: IS
    State or Province:
    Locality:
    Organization:
    Organizational Unit:
    E-mail Address:
```

Related Commands

N/A

Notes
show crypto ipsec

show crypto ipsec [brief | configured | ike | policy | sa]

Displays information ipsec configuration.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.2.1000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config)# show crypto ipsec
IPSec Summary

Crypto IKE is using pluto (Openswan) daemon.
Daemon process state is stopped.
No IPSec peers configured.

IPSec IKE Peering State

Crypto IKE is using pluto (Openswan) daemon.
Daemon process state is stopped.
No active IPSec IKE peers.

IPSec Policy State

No active IPSec policies.

IPSec Security Association State

No active IPSec security associations.
switch (config)# |
4.11 Scheduled Jobs

Use the commands in this section to manage and schedule the execution of jobs

4.11.1 Commands

job

```
job <job ID>
no job <job ID>
```

Creates a job.
The no form of the command deletes the job.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>job ID</th>
<th>An integer.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>
| Example | switch (config) # job 100
switch (config job 100) # |
| Related Commands | show jobs | |
| Notes | Job state is lost on reboot. |
command

`command <sequence #> | <command>`

`no command <sequence #>`

Adds a CLI command to the job.
The no form of the command deletes the command from the job.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequence #</td>
<td>An integer that controls the order the command is executed relative to other commands in this job. The commands are executed in an ascending order.</td>
</tr>
<tr>
<td>command</td>
<td>A CLI command.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config job</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config)# job 100
switch (config job 100) # command 10 "show power"
switch (config job 100) #
```

Related Commands

- `show jobs`

Notes

- The command must be defined with inverted commas (""").
- The command must be added as it was executed from the "config" mode. For example, in order to change the interface description you need to add the command: "interface <type> <number> description my-description".
comment

```plaintext
comment <comment>
no comment
```

Adds a comment to the job.
The no form of the command deletes the comment.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>comment</td>
<td>The comment to be added (string).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>""</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config job</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```plaintext
switch (config)# job 100
switch (config job 100) # comment Job_for_example
switch (config job 100) #
```

Related Commands

show jobs

Notes
enable

enable
no enable

Enables the specified job.
The no form of the command disables the specified job.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config job</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config)# job 100
switch (config job 100) # enable
switch (config job 100) # |
| Related Commands | show jobs |
| Notes | If a job is disabled, it will not be executed automatically according to its schedule; nor can it be executed manually. |
execute

execute

Forces an immediate execution of the job.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config job</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```plaintext
switch (config)# job 100
switch (config job 100) # execute
switch (config job 100) #
```

Related Commands

- show jobs

Notes

- The job timer (if set) is not canceled and the job state is not changed: i.e. the time of the next automatic execution is not affected
- The job will not be run if not currently enabled
fail-continue

fail-continue
no fail-continue

Continues the job execution regardless of any job failures. The no form of the command returns fail-continue to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>A job will halt execution as soon as any of its commands fails</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config job</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config)# job 100
switch (config job 100) # fail-continue
switch (config job 100) # |
| Related Commands | show jobs |
| Notes | |
name

name <job name>
no name

Configures a name for this job.
The no form of the command resets the name to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>name</th>
<th>Specifies a name for the job (string).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>"""."</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config job</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>
| Example | switch (config)# job 100
switch (config job 100) # name my-job
switch (config job 100) # | |
| Related Commands | show jobs | |
| Notes | | |
schedule type

```
schedule type <recurrence type>
no schedule type
```

Sets the type of schedule the job will automatically execute on. The no form of the command resets the schedule type to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>recurrence type</th>
<th>The available schedule types are:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• daily - the job is executed every day at a specified time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• weekly - the job is executed on a weekly basis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• monthly - the job is executed every month on a specified day of the month</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• once - the job is executed once at a single specified date and time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• periodic - the job is executed on a specified fixed time interval, starting from a fixed point in time.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>once</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config job</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config)# job 100
 switch (config job 100) # schedule type once
 switch (config job 100) # |
| Related Commands | show jobs |
| Notes | A schedule type is essentially a structure for specifying one or more future dates and times for a job to execute. |
schedule <recurrence type>

schedule <recurrence type> <interval and date>
no schedule

Sets the type of schedule the job will automatically execute on.
The no form of the command resets the schedule type to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>recurrence type</th>
<th>The available schedule types are:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• daily - the job is executed every day at a specified time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• weekly - the job is executed on a weekly basis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• monthly - the job is executed every month on a specified day of the month</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• once - the job is executed once at a single specified date and time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• periodic - the job is executed on a specified fixed time interval, starting from a fixed point in time.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>once</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config job</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

switch (config)# job 100
switch (config job 100) # schedule monthly interval 10
switch (config job 100) #

Related Commands

show jobs

Notes

A schedule type is essentially a structure for specifying one or more future dates and times for a job to execute.
show jobs

show jobs [<job-id>]

Displays configuration and state (including results of last execution, if any exist) of all jobs, or of one job if a job ID is specified.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>job-id</th>
<th>Job ID.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

switch (config) # show jobs 10

Job 10:
- Status: inactive
- Enabled: yes
- Continue on failure: no
- Schedule Type: once
- Time and date: 1970/01/01 00:00:00 +0000
- Last Exec Time: Thu 2012/04/05 13:11:42 +0000
- Next Exec Time: N/A
- Commands:
 - Command 10: show power
- Last Output:

```
+-----------------+-------+
| Module          | Status|
+-----------------+-------+
| PS1             | OK    |
| PS2             | NOT PRESENT |
```

switch (config) #
4.12 Statistics and Alarms

4.12.1 Commands

stats alarm <alarm-id> clear

Clears alarm state.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>alarm ID</th>
<th>Alarms supported by the system, for example:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• cpu_util_indiv - Average CPU utilization too high: percent utilization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• disk_io - Operating System Disk I/O per second too high: kilobytes per second</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fs_mnt - Free filesystem space too low: percent of disk space free</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• intf_util - Network utilization too high: bytes per second</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• memory_pct_used - Too much memory in use: percent of physical memory used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• paging - Paging activity too high: page faults</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• temperature - Temperature is too high: degrees</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config) # stats alarm cpu_util_indiv clear</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td><code>show stats alarm</code></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>

Mellanox Technologies Confidential
stats alarm <alarm-id> enable

Enables the alarm.
The no form of the command disables the alarm, notifications will not be received.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Alarm ID</th>
<th>Alarms supported by the system, for example:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• cpu_util_indiv - Average CPU utilization too high: percent utilization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• disk_io - Operating System Disk I/O per second too high: kilobytes per second</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fs_mnt - Free filesystem space too low: percent of disk space free</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• intf_util - Network utilization too high: bytes per second</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• memory_pct_used - Too much memory in use: percent of physical memory used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• paging - Paging activity too high: page faults</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• temperature - Temperature is too high: degrees</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>The default is different per alarm-id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # stats alarm cpu_util_indiv enable</td>
</tr>
<tr>
<td></td>
<td>switch (config) #</td>
</tr>
<tr>
<td>Related Commands</td>
<td>show stats alarm</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
stats alarm <alarm-id> event-repeat

stats alarm <alarm ID> event-repeat {single | while-not-cleared}
no stats alarm <alarm ID> event-repeat

Configures repetition of events from this alarm.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>alarm ID</th>
<th>Alarms supported by the system, for example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td></td>
<td>Does not repeat events: only sends one event whenever the alarm changes state.</td>
</tr>
<tr>
<td>while-not-cleared</td>
<td></td>
<td>Repeats error events until the alarm clears.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>single</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>monitor/admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # stats alarm cpu_util_indiv event-repeat single
switch (config) #
```

Related Commands

show stats alarm

Notes
stats alarm <alarm-id> {rising | falling}

stats alarm <alarm ID> {rising | falling} {clear-threshold | error-threshold} <threshold-value>

Configure alarms thresholds.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>alarm ID</th>
<th>Alarms supported by the system, for example:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• cpu_util_indiv - Average CPU utilization too high: percent utilization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• disk_io - Operating System Disk I/O per second too high: kilobytes per second</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fs_mnt - Free filesystem space too low: percent of disk space free</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• intf_util - Network utilization too high: bytes per second</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• memory_pct_used - Too much memory in use: percent of physical memory used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• paging - Paging activity too high: page faults</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• temperature - Temperature is too high: degrees</td>
</tr>
</tbody>
</table>

	falling	Configures alarm for when the statistic falls too low.
	rising	Configures alarm for when the statistic rises too high.
	error-threshold	Sets threshold to trigger falling or rising alarm.
	clear-threshold	Sets threshold to clear falling or rising alarm.
	threshold-value	The desired threshold value, different per alarm.

<table>
<thead>
<tr>
<th>Default</th>
<th>Default is different per alarm-id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # stats alarm cpu_util_indiv falling clear-threshold 10 switch (config) #</td>
</tr>
<tr>
<td>Related Commands</td>
<td>show stats alarm</td>
</tr>
<tr>
<td>Notes</td>
<td>Not all alarms support all four thresholds.</td>
</tr>
</tbody>
</table>
stats alarm <alarm-id> rate-limit

stats alarm <alarm ID> rate-limit {count <count-type> <count> | reset | window <window-type> <duration>}

Configures alarms rate limit.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>alarm ID</th>
<th>Alarms supported by the system, for example:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• cpu_util_indiv - Average CPU utilization too high: percent utilization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• disk_io - Operating System Disk I/O per second too high: kilobytes per second</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fs_mnt - Free filesystem space too low: percent of disk space free</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• intf_util - Network utilization too high: bytes per second</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• memory_pct_used - Too much memory in use: percent of physical memory used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• paging - Paging activity too high: page faults</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• temperature - Temperature is too high: degrees</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>count-type</th>
<th>Long medium, or short count (number of alarms).</th>
</tr>
</thead>
<tbody>
<tr>
<td>reset</td>
<td>Set the count and window durations to default values for this alarm.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>window-type</th>
<th>Long medium, or short count, in seconds.</th>
</tr>
</thead>
</table>

Default: Short window: 5 alarms in 1 hour
Medium window: 20 alarms in 1 day
Long window: 50 alarms in 7 days

Configuration Mode: Config

History: 3.1.0000

Role: monitor/admin

Example

```
switch (config) # stats alarm paging rate-limit window long 2000
switch (config) #
```

Related Commands
show stats alarm

Notes
stats chd <chd-id> clear

Clears CHD counters.

Syntax Description

<table>
<thead>
<tr>
<th>CHD ID</th>
<th>CHD supported by the system, for example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• cpu_util - CPU utilization: percentage of time spent</td>
<td></td>
</tr>
<tr>
<td>• cpu_util_ave - CPU utilization average: percentage of time spent</td>
<td></td>
</tr>
<tr>
<td>• cpu_util_day - CPU utilization average: percentage of time spent</td>
<td></td>
</tr>
<tr>
<td>• disk_device_io_hour - Storage device I/O read/write statistics for the last hour: bytes</td>
<td></td>
</tr>
<tr>
<td>• disk_io - Operating system aggregate disk I/O average (KB/sec)</td>
<td></td>
</tr>
<tr>
<td>• eth_day</td>
<td></td>
</tr>
<tr>
<td>• eth_hour</td>
<td></td>
</tr>
<tr>
<td>• eth_ip_day</td>
<td></td>
</tr>
<tr>
<td>• eth_ip_hour</td>
<td></td>
</tr>
<tr>
<td>• fs_mnt_day - Filesystem system usage average: bytes</td>
<td></td>
</tr>
<tr>
<td>• fs_mnt_month - Filesystem system usage average: bytes</td>
<td></td>
</tr>
<tr>
<td>• fs_mnt_week - Filesystem system usage average: bytes</td>
<td></td>
</tr>
<tr>
<td>• ib_day</td>
<td></td>
</tr>
<tr>
<td>• ib_hour</td>
<td></td>
</tr>
<tr>
<td>• intf_day - Network interface statistics aggregation: bytes</td>
<td></td>
</tr>
<tr>
<td>• intf_hour - Network interface statistics (same as “interface” sample)</td>
<td></td>
</tr>
<tr>
<td>• intf_util - Aggregate network utilization across all interfaces</td>
<td></td>
</tr>
<tr>
<td>• memory_day - Average physical memory usage: bytes</td>
<td></td>
</tr>
<tr>
<td>• memory_pct - Average physical memory usage</td>
<td></td>
</tr>
<tr>
<td>• paging - Paging activity: page faults</td>
<td></td>
</tr>
<tr>
<td>• paging_day - Paging activity: page faults</td>
<td></td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config

History

3.1.0000

Role

admin

Example

```bash
switch (config) # stats chd memory_day clear
switch (config) #
```

Related Commands

show stats chd

Notes
stats chd <chd-id> enable

Enables the CHD.
The no form of the command disabling the CHD.

Syntax Description

<table>
<thead>
<tr>
<th>CHD supported by the system, for example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• cpu_util - CPU utilization: percentage of time spent</td>
</tr>
<tr>
<td>• cpu_util_ave - CPU utilization average: percentage of time spent</td>
</tr>
<tr>
<td>• cpu_util_day - CPU utilization average: percentage of time spent</td>
</tr>
<tr>
<td>• disk_device_io_hour - Storage device I/O read/write statistics for the last hour: bytes</td>
</tr>
<tr>
<td>• disk_io - Operating system aggregate disk I/O average: KB/sec</td>
</tr>
<tr>
<td>• eth_day</td>
</tr>
<tr>
<td>• eth_hour</td>
</tr>
<tr>
<td>• fs_mnt_day - Filesystem system usage average: bytes</td>
</tr>
<tr>
<td>• fs_mnt_month - Filesystem system usage average: bytes</td>
</tr>
<tr>
<td>• fs_mnt_week - Filesystem system usage average: bytes</td>
</tr>
<tr>
<td>• ib_day</td>
</tr>
<tr>
<td>• ib_hour</td>
</tr>
<tr>
<td>• intf_day - Network interface statistics aggregation: bytes</td>
</tr>
<tr>
<td>• intf_hour - Network interface statistics (same as “interface” sample)</td>
</tr>
<tr>
<td>• intf_util - Aggregate network utilization across all interfaces</td>
</tr>
<tr>
<td>• memory_day - Average physical memory usage: bytes</td>
</tr>
<tr>
<td>• memory_pct - Average physical memory usage</td>
</tr>
<tr>
<td>• paging - Paging activity: page faults</td>
</tr>
<tr>
<td>• paging_day - Paging activity: page faults</td>
</tr>
</tbody>
</table>

Default

Enabled

Configuration Mode

Config

History

3.1.0000

Role

monitor/admin

Example

```
switch (config) # stats chd memory_day enable
switch (config) #
```

Related Commands

show stats chd

Notes
stats chd <chd-id> compute time

stats chd <CHD ID> compute time {interval | range} <number of seconds>

Sets parameters for when this CHD is computed.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>CHD ID</th>
<th>Possible IDs:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• cpu_util - CPU utilization: percentage of time spent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• cpu_util_ave - CPU utilization average: percentage of time spent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• cpu_util_day - CPU utilization average: percentage of time spent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• disk_device_io_hour - Storage device I/O read/write statistics for the last hour: bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• disk_io - Operating system aggregate disk I/O average: KB/sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• eth_day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• eth_hour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fs_mnt_day - Filesystem system usage average: bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fs_mnt_month - Filesystem system usage average: bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fs_mnt_week - Filesystem system usage average: bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ib_day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ib_hour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• intf_day - Network interface statistics aggregation: bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• intf_hour - Network interface statistics (same as “interface” sample)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• intf_util - Aggregate network utilization across all interfaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• memory_day - Average physical memory usage: bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• memory_pct - Average physical memory usage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• paging - Paging activity: page faults</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• paging_day - Paging activity: page faults</td>
</tr>
</tbody>
</table>

interval	Specifies calculation interval (how often to do a new calculation) in number of seconds.
range	Specifies calculation range, in number of seconds.
number of seconds	Number of seconds.

<table>
<thead>
<tr>
<th>Default</th>
<th>Different per CHD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>monitor/admin</td>
</tr>
<tr>
<td>Example</td>
<td></td>
</tr>
</tbody>
</table>

```bash
switch (config) # stats chd memory_day compute time interval 120
switch (config) # show stats chd memory_day
CHD "memory_day" (Average physical memory usage: bytes):
Source dataset: sample "memory"
Computation basis: time
Interval: 120 second(s)
Range: 1800 second(s)
switch (config) #
```
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>show stats chd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
stats sample <sample-id> clear

Clears sample history.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>sample ID</th>
<th>Possible sample IDs are:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• congested</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• cpu_util - CPU utilization: milliseconds of time spent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• disk_device_io - Storage device I/O statistics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• disk_io - Operating system aggregate disk I/O: KB/sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• eth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• eth-abs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• eth_ip</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fan - Fan speed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fs_mnt_bytes - Filesystem usage: bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fs_mnt_inodes - Filesystem usage: inodes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ib</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• interface - Network interface statistics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• intf_util - Network interface utilization: bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• memory - System memory utilization: bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• paging - Paging activity: page faults</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• power - Power supply usage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• power-consumption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• temperature - Modules temperature</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
</table>

Configuration Mode
- Config

History
- 3.1.0000

Role
- admin

Example
```snippet
switch (config) # stats sample temperature clear
switch (config) #
```

Related Commands
- show stats sample

Notes
stats sample <sample-id> enable

Enables the sample.
The no form of the command disables the sample.

Syntax Description

- **sample-id**
 - Possible sample IDs are:
 - congested
 - cpu_util - CPU utilization: milliseconds of time spent
 - disk_device_io - Storage device I/O statistics
 - disk_io - Operating system aggregate disk I/O: KB/sec
 - eth
 - fan - Fan speed
 - fs_mnt_bytes - Filesystem usage: bytes
 - fs_mnt_inodes - Filesystem usage: inodes
 - ib
 - interface - Network interface statistics
 - intf_util - Network interface utilization: bytes
 - memory - System memory utilization: bytes
 - paging - Paging activity: page faults
 - power - Power supply usage
 - power-consumption
 - temperature - Modules temperature

Default

- Enabled

Configuration Mode

- Config

History

- 3.1.0000

Role

- admin

Example

```bash
switch (config) # stats sample temperature enable
switch (config) #
```

Related Commands

- show stats sample

Notes
The `stats sample <sample-id> interval` command sets the amount of time between samples for the specified group of sample data.

Syntax Description

- **sample ID**
 - Possible sample IDs are:
 - congested
 - cpu_util - CPU utilization: milliseconds of time spent
 - disk_device_io - Storage device I/O statistics
 - disk_io - Operating system aggregate disk I/O: KB/sec
 - eth
 - fan - Fan speed
 - fs_mnt_bytes - Filesystem usage: bytes
 - fs_mnt_inodes - Filesystem usage: inodes
 - ib
 - interface - Network interface statistics
 - intf_util - Network interface utilization: bytes
 - memory - System memory utilization: bytes
 - paging - Paging activity: page faults
 - power - Power supply usage
 - power-consumption
 - temperature - Modules temperature

- **number of seconds**
 - Interval in seconds.

Default
- Different per sample

Configuration Mode
- Config

History
- 3.1.0000

Role
- admin

Example

```bash
switch (config) # stats sample temperature interval 1
switch (config) # show stats sample temperature
Sample "temperature" (Modules temperature):
   Enabled: yes
   Sampling interval: 1 second
switch (config) #
```

Related Commands
- show stats sample

Notes
stats clear-all

stats clear all

Clears data for all samples, CHDs, and status for all alarms.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # stats clear-all
 | switch (config) # |
| Related Commands | N/A |
| Notes | |
stats export

stats export <format> <report name> [{after | before} <yyyy/mm/dd> <hh:mm:ss>] [filename <filename>]

Exports statistics to a file.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>format</td>
<td>Currently the only supported value for <format> is “csv” (comma-separated value).</td>
</tr>
<tr>
<td>report name</td>
<td>Determines dataset to be exported. Possible report names are: • memory - Memory utilization • paging - Paging I/O • cpu_util - CPU utilization</td>
</tr>
<tr>
<td>after</td>
<td>Only includes stats collected after or before a specific time.</td>
</tr>
<tr>
<td>yyyy/mm/dd</td>
<td>Date: It must be between 1970/01/01 and 2038/01/19.</td>
</tr>
<tr>
<td>hh:mm:ss</td>
<td>Time: It must be between 00:00:00 and 03:14:07 UTC and is treated as local time.</td>
</tr>
<tr>
<td>filename</td>
<td>Specifies filename to give new report. If a filename is specified, the stats will be exported to a file of that name; otherwise a name will be chosen automatically and will contain the name of the report and the time and date of the export. Any automatically-chosen name will be given a .csv extension.</td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Config

History: 3.1.0000

Role: admin

Example:

```
switch (config) # stats export csv memory filename mellanoxexample before 2000/08/14 15:59:50 after 2000/08/14 15:01:50
Generated report file: mellanoxexample.csv
switch (config) # show files stats
mellanoxexample.csv
switch (config) #
```

Related Commands: show files stats

Notes: show files stats
show stats alarm

/show stats alarm [<Alarm ID> [rate-limit]]

Displays status of all alarms or the specified alarm.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Alarm ID</th>
<th>May be:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• cpu_util_indiv - Average CPU utilization too high: percent utilization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• disk_io - Operating System Disk I/O per second too high: kilobytes per second</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fs_mnt - Free filesystem space too low: percent of disk space free</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• intf_util - Network utilization too high: bytes per second</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• memory_pct_used - Too much memory in use: percent of physical memory used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• paging - Paging activity too high: page faults</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• temperature - Temperature is too high: degrees</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rate-limit</th>
<th>Displays rate limit parameters.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.1.0000</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>switch (config) # show stats alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alarm cpu_util_indiv (Average CPU utilization too high): ok</td>
</tr>
<tr>
<td></td>
<td>Alarm disk_io (Operating System Disk I/O per second too high): (disabled)</td>
</tr>
<tr>
<td></td>
<td>Alarm fs_mnt (Free filesystem space too low): ok</td>
</tr>
<tr>
<td></td>
<td>Alarm intf_util (Network utilization too high): (disabled)</td>
</tr>
<tr>
<td></td>
<td>Alarm memory_pct_used (Too much memory in use): (disabled)</td>
</tr>
<tr>
<td></td>
<td>Alarm paging (Paging activity too high): ok</td>
</tr>
<tr>
<td></td>
<td>Alarm temperature (Temperature is too high): ok</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>stats alarm</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
<th></th>
</tr>
</thead>
</table>
show stats chd

show stats chd [<CHD ID>]

Displays configuration of all statistics CHDs.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>CHD ID</th>
<th>May be:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• cpu_util_indiv - Average CPU utilization too high: percent utilization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• disk_io - Operating System Disk I/O per second too high: kilobytes per second</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fs_mnt - Free filesystem space too low: percent of disk space free</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• intf_util - Network utilization too high: bytes per second</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• memory_pct_used - Too much memory in use: percent of physical memory used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• paging - Paging activity too high: page faults</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• temperature - Temperature is too high: degrees</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show stats chd disk_device_io_hour

CHD "disk_device_io_hour" (Storage device I/O read/write statistics for the last hour: bytes):

    Enabled: yes
    Source dataset: sample "disk_device_io"
    Computation basis: data points
    Interval: 1 data point(s)
    Range: 1 data point(s)
switch (config) #
```

Related Commands

stats chd

Notes
show stats cpu

Syntax Description
N/A

Default
N/A

Configuration Mode
Config

History
3.1.0000

Role
admin

Example

```
switch (config) # show stats cpu

CPU 0
  Utilization: 6%
  Peak Utilization Last Hour: 16% at 2012/02/28 08:47:32
  Avg. Utilization Last Hour: 8%
```

switch (config) #
```
```

Related Commands
N/A

Notes
show stats sample

show stats sample [<sample ID>]

Displays sampling interval for all samples, or the specified one.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>sample ID</th>
<th>Possible sample IDs are:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• congested</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• cpu_util - CPU utilization: milliseconds of time spent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• disk_device_io - Storage device I/O statistics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• disk_io - Operating system aggregate disk I/O: KB/sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• eth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fan - Fan speed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fs_mnt_bytes - Filesystem usage: bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fs_mnt_inodes - Filesystem usage: inodes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ib</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• interface - Network interface statistics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• intf_util - Network interface utilization: bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• memory - System memory utilization: bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• paging - Paging activity: page faults</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• power - Power supply usage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• power-consumption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• temperature - Modules temperature</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```bash
switch (config) # show stats sample fan
Sample "fan" (Fan speed):
  Enabled: yes
  Sampling interval: 1 minute 11 seconds
switch (config) #
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>N/A</th>
</tr>
</thead>
</table>

4.12.2 Power Management

4.12.2.1 Width Reduction Power Saving

Link width reduction (LWR) is a Mellanox proprietary power saving feature to be utilized to economize the power usage of the fabric. LWR may be used to manually or automatically configure a certain connection between Mellanox switch systems to lower the width of a link from 4X operation to 1X based on the traffic flow.
LWR is relevant only for 40GbE and InfiniBand FDR speeds in which the links are operational at a 4X width.

When “show interfaces” is used, a port’s speed appears unchanged even when only one lane is active.

LWR has three operating modes per interface:
- Disabled – LWR does not operate and the link remains in 4X under all circumstances.
- Automatic – the link automatically alternates between 4X and 1X based on traffic flow.
- Force – a port is forced to operate in 1X mode lowering the throughput capability of the port. This mode should be chosen in cases where constant low throughput is expected on the port for a certain time period – after which the port should be configured to one of the other two modes, to allow higher throughput to pass through the port.

See command “power-management width” on page 361.

| Table 20 - LWR Configuration Behavior |
|--------------------------------------|----------------------------------|----------------|
| Switch-A Configuration | Switch-B Configuration | Behavior |
| Disable | Disable | LWR is disabled. |
| Disable | Force | Transmission from Switch-B to Switch-A operates at 1X. On the opposite direction, LWR is disabled. |
| Disable | Auto | Depending on traffic flow, transmission from Switch-B to Switch-A may operate at 1X. On the opposite direction, LWR is disabled. |
| Auto | Force | Transmission from Switch-B to Switch-A operates at 1 lane. Transmission from Switch-A to Switch-B may operate at 1X depending on the traffic. |
| Auto | Auto | Width of the connection depends on the traffic flow |
| Force | Force | Connection between the switches operates at 1X |

4.12.3 System Reboot

4.12.3.1 Rebooting 1U Switches

- **To reboot a 1U switch system:**

 Step 1. Enter Config mode. Run:

  ```
  switch >
  switch > enable
  switch # configure terminal
  ```
Step 2. Reboot the system. Run:

```
switch (config) # reload
```
4.12.4 Commands

4.12.4.1 Chassis Management

clear counters

```
clear counters [all | interface <type> <number>]
```

Clears switch counters.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Clears all switch counters.</td>
</tr>
<tr>
<td>type</td>
<td>A specific interface type</td>
</tr>
<tr>
<td>number</td>
<td>The interface number.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Config Interface Port Channel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.2.3000</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

| Example | switch (config) # clear counters |

<table>
<thead>
<tr>
<th>Related Commands</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
</table>
health

`health {max-report-len <length> | re-notif-cntr <counter> | report-clear}`

Configures health daemon settings.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>max-report-len <length></td>
<td>Sets the length of the health report - number of line entries. Possible values: 10-2048.</td>
</tr>
<tr>
<td>re-notif-cntr <counter></td>
<td>Health control changes notification counter, in seconds. Possible values: 120-7200 seconds.</td>
</tr>
<tr>
<td>report-clear</td>
<td>Clears the health report.</td>
</tr>
</tbody>
</table>

Default

- max-report-len: 50
- re-notif-cntr:

Configuration Mode

Config

History

3.1.0000

Role

admin

Example

```bash
switch (config) # health re-notif-cntr 125
switch (config) #
```

Related Commands

- `show health-report`

Notes
power enable

`power enable <module name>`
`no power enable <module name>`

Powers on the module.
The no form of the command shuts down the module.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>module name</th>
<th>Enables power for selected module.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td></td>
<td>Power is enabled on all modules.</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch (config) # power enable L01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch (config) #</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>show power</td>
<td></td>
</tr>
<tr>
<td></td>
<td>show power consumers</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>This command is not applicable for 1U systems.</td>
<td></td>
</tr>
</tbody>
</table>
power-management width

```
power-management width {auto | force}
no power-management width
```

Sets the width of the interface to be automatically adjusted. The no form of the command disables power-saving.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>Allows the system to automatically decide whether to work in power-saving mode or not.</td>
</tr>
<tr>
<td>force</td>
<td>Forces power-saving mode on the port.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config Interface Ethernet</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config interface ib 1/1) # power-management width auto
 | switch (config) # |
| Related Commands | show interface |

Notes

Mellanox Technologies Confidential | 361
usb eject

usb eject

Gracefully turns off the USB interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # usb eject
| | switch (config) # |
| Related Commands | N/A |
| Notes | Applicable only for systems with USB interface. |
show fan

Displays fans status.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

```
switch (config) # show fan
switch (config) # show fan
```

<table>
<thead>
<tr>
<th>Module</th>
<th>Device</th>
<th>Fan</th>
<th>Speed (RPM)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAN</td>
<td>FAN</td>
<td>F1</td>
<td>5340.00</td>
<td>OK</td>
</tr>
<tr>
<td>FAN</td>
<td>FAN</td>
<td>F2</td>
<td>5340.00</td>
<td>OK</td>
</tr>
<tr>
<td>FAN</td>
<td>FAN</td>
<td>F3</td>
<td>5640.00</td>
<td>OK</td>
</tr>
<tr>
<td>FAN</td>
<td>FAN</td>
<td>F4</td>
<td>5640.00</td>
<td>OK</td>
</tr>
<tr>
<td>PS1</td>
<td>FAN</td>
<td>F1</td>
<td>5730.00</td>
<td>OK</td>
</tr>
<tr>
<td>PS2</td>
<td>FAN</td>
<td>-</td>
<td>-</td>
<td>NOT PRESENT</td>
</tr>
</tbody>
</table>

```
switch (config) #
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
show version

show version

Displays version information for the currently running system image.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show version
Product name:    MLNX-OS
Product release: 3.1.0000
Build ID:        #1-dev
Build date:      2012-02-26 08:47:51
Target arch:     ppc
Target hw:       m460ex
Built by:        root@r-fit16
Uptime:          1d 3h 32m 24.656s
Product model:   ppc
Host ID:         0002c911a15e
System memory:   110 MB used / 1917 MB free / 2027 MB total
Swap:            0 MB used / 0 MB free / 0 MB total
Number of CPUs:  1
CPU load averages: 0.18 / 0.19 / 0.16
```

Related Commands

N/A

Notes
show version concise

show version concise

Displays concise version information for the currently running system image.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # show version concise SX_PPC_M460EX SX_3.4.0000 2014-10-14 20:26:41 ppc</td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>

Mellanox Technologies Confidential | 365
show uboot

```
show uboot
```

Displays u-boot version.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
</tr>
<tr>
<td></td>
<td>3.4.1110</td>
</tr>
<tr>
<td></td>
<td>Updated output</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # show uboot</td>
</tr>
<tr>
<td></td>
<td>UBOOT version : U-Boot 2009.01 SX_PPC_M460EX SX_3.2.0330-82 ppc (Dec 20 2012 - 17:53:54)</td>
</tr>
<tr>
<td></td>
<td>switch (config) #</td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
show cpld

show cpld

Displays status of all CPLDs in the system.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td></td>
<td>3.3.4302 Updated example</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | `switch (config) # show cpld`

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cpld1</td>
<td>CPLD_TOR</td>
<td>4</td>
</tr>
<tr>
<td>Cpld2</td>
<td>CPLD_PORT1</td>
<td>2</td>
</tr>
<tr>
<td>Cpld3</td>
<td>CPLD_PORT2</td>
<td>2</td>
</tr>
<tr>
<td>Cpld4</td>
<td>CPLD_MEZZ</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
</table>

show inventory

show inventory

Displays system inventory.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # show inventory

<table>
<thead>
<tr>
<th>Module</th>
<th>Type</th>
<th>Part number</th>
<th>Serial Number</th>
<th>Asic revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHASSIS</td>
<td>SX1036</td>
<td>MSX1036B-1SFR</td>
<td>MT1205X01549</td>
<td>N/A</td>
</tr>
<tr>
<td>MGMT</td>
<td>SX1036</td>
<td>MSX1036B-1SFR</td>
<td>MT1205X01549</td>
<td>0</td>
</tr>
<tr>
<td>FAN</td>
<td>SX0XX_FAN</td>
<td>MSX60-FF</td>
<td>MT1206X07209</td>
<td>N/A</td>
</tr>
<tr>
<td>PS1</td>
<td>SX0XX_PS</td>
<td>MSX60-FF</td>
<td>MT1206X06697</td>
<td>N/A</td>
</tr>
</tbody>
</table>

switch (config) #

Related Commands	N/A

Notes
show module

show module

Displays modules status.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
</tbody>
</table>

History

- 3.1.0000: First version
- 3.3.0000: Added “Is Fatal” column
- 3.4.2008: Updated command output
- 3.4.3000: Updated command output and added note

Role

admin

Example

```plaintext
switch (config) # show module
----------------------
Module    Status
----------------------
MGMT      ready
FAN1      ready
FAN2      ready
PS1       ready
PS2       not-present
switch (config) #
```

Related Commands

N/A

Notes

The Status column may have one of the following values: error, fatal, not-present, powered-off, powered-on, ready.
show memory

show memory

Displays memory status.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # show memory
| | Total Used Free Used+B/C Free-B/C
| | Physical 2027 MB 761 MB 1266 MB 1214 MB 813 MB
| | Swap 0 MB 0 MB 0 MB |
| | Physical Memory Borrowed for System Buffers and Cache:
| | Buffers: 0 MB
| | Cache: 452 MB
| | Total Buffers/Cache: 452 MB
| | switch (config) # |
| Related Commands | N/A |
| Notes | |
show asic-version

show asic-version

Displays firmware ASIC version.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td></td>
<td>3.4.2008</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # show asic-version
| | -----------------------------------
| | Module | Device | Version |
| | -----------------------------------|
| | MGMT | SX | 9.2.9160 |
| | switch (config) # |
| Related Commands | N/A |
| Notes | |
show power

show power

Displays power supplies and power usage.

Syntax Description: N/A

Default: N/A

Configuration Mode: Any Command Mode

History: 3.1.0000

Role: admin

Example

```
switch (config) # show power

+---------------+-------+-------+-------+-------+-----+---------+
<table>
<thead>
<tr>
<th>Module</th>
<th>Power</th>
<th>Voltage</th>
<th>Current</th>
<th>Capacity</th>
<th>Grid</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1</td>
<td>0.00</td>
<td>47.11</td>
<td>0.00</td>
<td>1008</td>
<td>A</td>
<td>OK</td>
</tr>
<tr>
<td>PS2</td>
<td>248.82</td>
<td>48.05</td>
<td>5.18</td>
<td>1008</td>
<td>A</td>
<td>OK</td>
</tr>
<tr>
<td>PS3</td>
<td>0.00</td>
<td>46.88</td>
<td>0.00</td>
<td>1008</td>
<td>A</td>
<td>OK</td>
</tr>
<tr>
<td>PS4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>NOT PRESENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS5</td>
<td>46.72</td>
<td>47.82</td>
<td>0.98</td>
<td>1008</td>
<td>A</td>
<td>OK</td>
</tr>
<tr>
<td>PS6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>NOT PRESENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>NOT PRESENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>NOT PRESENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>NOT PRESENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>NOT PRESENT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
+---------------+-------+-------+-------+-------+-----+---------+

Total power used : 295.54 W
Total power capacity : 4032.00 W
Total power budget : 4032.00 W
Total power available : 3736.46 W
Redundancy mode: combined
Redundancy status: OK
switch (config) #
```

Related Commands: N/A

Notes: N/A
show power consumers

show power consumers

Displays power consumers.

Syntax Description

N/A

Default

N/A

Configuration Mode

Any Command Mode

History

3.1.0000

Role

admin

Example

```
switch (config) # show power consumers
-----------------------------------------------------
Module     Power    Voltage  Current  Status
          (Watts)           (Amp)
-----------------------------------------------------
MGMT       17.47    48.00    0.36     OK
S01        33.26    48.00    0.69     OK
S02        33.50    48.00    0.70     OK
L01        31.73    48.00    0.66     OK
L02        29.76    48.00    0.62     OK
L30        28.61    48.00    0.60     OK
FAN5       14.91    48.00    0.31     OK
FAN2       13.70    48.00    0.29     OK
FAN1       14.21    48.00    0.30     OK
FAN6       15.10    48.00    0.31     OK
FAN4       14.53    48.00    0.30     OK
FAN7       15.04    48.00    0.31     OK
FAN3       15.17    48.00    0.32     OK
FAN8       14.98    48.00    0.31     OK
-----------------------------------------------------
Total power used : 291.97 W
Max power : 1636.00 W
```

Related Commands

N/A

Notes

N/A
show temperature

Syntax Description
N/A

Default
N/A

Configuration Mode
Any Command Mode

History
3.1.0000

Role
admin

Example
```
switch (config) # show temperature

+-----------------+-----------+-------+--------+
<table>
<thead>
<tr>
<th>Module</th>
<th>Component</th>
<th>Reg</th>
<th>CurTemp</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT</td>
<td>BOARD_MONITOR</td>
<td>T1</td>
<td>25.00</td>
<td>OK</td>
</tr>
<tr>
<td>MGMT</td>
<td>CPU_BOARD_MONITOR</td>
<td>T1</td>
<td>26.00</td>
<td>OK</td>
</tr>
<tr>
<td>MGMT</td>
<td>CPU_BOARD_MONITOR</td>
<td>T2</td>
<td>41.00</td>
<td>OK</td>
</tr>
<tr>
<td>MGMT</td>
<td>QSFP_TEMP1</td>
<td>T1</td>
<td>23.00</td>
<td>OK</td>
</tr>
<tr>
<td>MGMT</td>
<td>QSFP_TEMP2</td>
<td>T1</td>
<td>22.50</td>
<td>OK</td>
</tr>
<tr>
<td>MGMT</td>
<td>QSFP_TEMP3</td>
<td>T1</td>
<td>23.00</td>
<td>OK</td>
</tr>
<tr>
<td>MGMT</td>
<td>SX</td>
<td>T1</td>
<td>37.00</td>
<td>OK</td>
</tr>
</tbody>
</table>
```

Related Commands
N/A

Notes
show voltage

show voltage

Displays power supplies voltage level.

Syntax Description
N/A

Default
N/A

Configuration Mode
Any Command Mode

History
3.1.0000

3.3.5006 Updated Example

Role
admin

Example

```
switch (config) # show voltage

+---------------------------------+---+---+---+---+
<table>
<thead>
<tr>
<th>Module</th>
<th>Power Meter</th>
<th>Reg</th>
<th>Expected</th>
<th>Actual</th>
<th>Status</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT</td>
<td>BOARD_MONITOR</td>
<td>USB 5V sensor</td>
<td>5.00</td>
<td>5.15</td>
<td>OK</td>
<td>5.55</td>
<td>4.45</td>
</tr>
<tr>
<td>MGMT</td>
<td>BOARD_MONITOR</td>
<td>Asic I/O sensor</td>
<td>2.27</td>
<td>2.11</td>
<td>OK</td>
<td>2.55</td>
<td>1.99</td>
</tr>
<tr>
<td>MGMT</td>
<td>BOARD_MONITOR</td>
<td>1.8V sensor</td>
<td>1.80</td>
<td>1.79</td>
<td>OK</td>
<td>2.03</td>
<td>1.57</td>
</tr>
<tr>
<td>MGMT</td>
<td>BOARD_MONITOR</td>
<td>SYS 3.3V sensor</td>
<td>3.30</td>
<td>3.28</td>
<td>OK</td>
<td>3.68</td>
<td>2.92</td>
</tr>
<tr>
<td>MGMT</td>
<td>BOARD_MONITOR</td>
<td>CPU 0.9V sensor</td>
<td>0.90</td>
<td>0.93</td>
<td>OK</td>
<td>1.04</td>
<td>0.76</td>
</tr>
<tr>
<td>MGMT</td>
<td>BOARD_MONITOR</td>
<td>1.2V sensor</td>
<td>1.20</td>
<td>1.19</td>
<td>OK</td>
<td>1.37</td>
<td>1.03</td>
</tr>
<tr>
<td>MGMT</td>
<td>CPU_BOARD_MONITOR</td>
<td>12V sensor</td>
<td>12.00</td>
<td>11.67</td>
<td>OK</td>
<td>13.25</td>
<td>10.75</td>
</tr>
<tr>
<td>MGMT</td>
<td>CPU_BOARD_MONITOR</td>
<td>12V sensor</td>
<td>2.50</td>
<td>2.46</td>
<td>OK</td>
<td>2.80</td>
<td>2.20</td>
</tr>
<tr>
<td>MGMT</td>
<td>CPU_BOARD_MONITOR</td>
<td>2.5V sensor</td>
<td>3.30</td>
<td>3.26</td>
<td>OK</td>
<td>3.68</td>
<td>2.92</td>
</tr>
<tr>
<td>MGMT</td>
<td>CPU_BOARD_MONITOR</td>
<td>SYS 3.3V sensor</td>
<td>3.30</td>
<td>3.24</td>
<td>OK</td>
<td>3.68</td>
<td>2.92</td>
</tr>
<tr>
<td>MGMT</td>
<td>CPU_BOARD_MONITOR</td>
<td>SYS 3.3V sensor</td>
<td>1.80</td>
<td>1.79</td>
<td>OK</td>
<td>2.03</td>
<td>1.57</td>
</tr>
<tr>
<td>MGMT</td>
<td>CPU_BOARD_MONITOR</td>
<td>1.8V sensor</td>
<td>1.20</td>
<td>1.24</td>
<td>OK</td>
<td>1.37</td>
<td>1.03</td>
</tr>
</tbody>
</table>
```

Related Commands
N/A

Notes
show health-report

show health-report

Displays health report.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td></td>
<td>3.3.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # show health-report
| | --------------| | |
| | | ALERTS CONFIGURATION | |
| | ------------------------|
| | Re-notification counter (sec):[3600]
| | Report max counter: [50]
| | ------------------------| | |
| | | HEALTH REPORT | |
| | ------------------------|
| | No Health issues file
| | switch (config) # |
| Related Commands | N/A |
| Notes | |
show resources

show resources

Displays system resources.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show resources
Total Used Free
Physical 2027 MB 761 MB 1266 MB
Swap 0 MB 0 MB 0 MB

Number of CPUs: 1
CPU load averages: 0.11 / 0.23 / 0.23

CPU 1
  Utilization: 5%
  Peak Utilization Last Hour: 19% at 2012/02/15 13:26:19
  Avg. Utilization Last Hour: 7%
```

Related Commands

N/A

Notes
show system profile

show system profile

Displays system profile.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.2.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # show system profile
eth-single-switch
switch (config) # |
| Related Commands | system profile |
| Notes | |
show system capabilities

Displays system capabilities.

Syntax Description N/A

Default N/A

Configuration Mode Any Command Mode

History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.0000</td>
<td>First version</td>
</tr>
<tr>
<td>3.3.0000</td>
<td>Added gateway support</td>
</tr>
</tbody>
</table>

Role admin

Example

```
switch (config) # show system capabilities
IB: Supported
Ethernet: Supported, Full L2
GW: Supported
Max number of GW ports: 0
Max SM nodes: 648
IB Max licensed speed: FDR
Ethernet Max licensed speed: 56Gb

switch (config) #
```

Related Commands show system profile

Notes
show system mac

 show system mac

 Displays system MAC address.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # show system mac 00:02:C9:5E:AF:18 switch (config) #</td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
show protocols

show protocols

Displays all protocols enabled in the system.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.2.3000</td>
</tr>
<tr>
<td></td>
<td>3.3.4550 Updated Example</td>
</tr>
<tr>
<td></td>
<td>3.4.1100 Updated Example</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # show protocols</td>
</tr>
<tr>
<td></td>
<td>Ethernet enabled</td>
</tr>
<tr>
<td></td>
<td>switch (config) #</td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Notes</td>
<td>N/A</td>
</tr>
</tbody>
</table>
4.13 Network Management Interfaces

4.13.1 XML API

MLNX-OS XML API is currently under development. For further information please contact Mellanox support.
4.13.2 Commands

4.13.2.1 SNMP

The commands in this section are used to manage the SNMP server.

snmp-server auto-refresh

```
config 3.2.3000
3.4.1100 Added time parameter and updated notes
admin
```

```
switch (config) # snmp-server auto-refresh interval 120
```

```
• When configuring an interval lower than 60 seconds, the following warning message appears asking for confirmation: “Warning: this configuration may increase CPU utilization, Type ‘YES’ to confirm: YES”.
• When disabling SNMP auto-refresh, information is retrieved no more than once every 60 seconds just like SNMP tables that do not have an auto-refresh mechanism.
```
snmp-server community

```
snmp-server community <community> [ ro | rw]
no snmp-server community <community>
```

Sets a community name for either read-only or read-write SNMP requests. The no form of the command sets the community string to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>community</th>
<th>Community name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ro</td>
<td></td>
<td>Sets the read-only community string.</td>
</tr>
<tr>
<td>rw</td>
<td></td>
<td>Sets the read-write community string.</td>
</tr>
</tbody>
</table>

Default
- Read-only community: “public”
- Read-write community: “”

Configuration Mode
Config

History
3.1.0000

Role
admin

Example
```
switch(config) # snmp-server community private rw
switch (config) # show snmp
SNMP enabled: yes
SNMP port: 161
System contact:
System location:
Read-only community: public
Read-write community: private

Interface listen enabled: yes
No Listen Interfaces.

Traps enabled: yes
Default trap community: public
Default trap port: 162

No trap sinks configured.
switch(config) #
```

Related Commands
show snmp

Notes
- If neither the “ro” or the “rw” parameters are specified, the read-only community is set as the default community
- If the read-only community is specified, only queries can be performed
- If the read-write community is specified, both queries and sets can be performed
snmp-server contact

```
snmp-server contact <contact name>
no snmp-server contact
```

Sets a value for the sysContact variable in MIB-II.
The no form of the command resets the parameter to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>contact name</th>
<th>Contact name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>""</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```
switch (config) # snmp-server contact my-name
switch (config) # show snmp
SNMP enabled: yes
SNMP port: 161
System contact: my-name
System location:
Read-only community: public
Read-write community: private
Interface listen enabled: yes
No Listen Interfaces.
Traps enabled: yes
Default trap community: public
Default trap port: 162
No trap sinks configured.
switch (config) #
```

Related Commands

```
show snmp
```

Notes
snmp-server enable

snmp-server enable [communities | mult-communities | notify]
no snmp-server enable [communities | mult-communities | notify]

Enables SNMP-related functionality.
The no form of the command disables the SNMP server.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables SNMP-related functionality:</td>
</tr>
<tr>
<td></td>
<td>• SNMP engine</td>
</tr>
<tr>
<td></td>
<td>• SNMP traps</td>
</tr>
<tr>
<td>communities</td>
<td>Enables community-based authentication on this system.</td>
</tr>
<tr>
<td>mult-communities</td>
<td>Enables multiple communities to be configured.</td>
</tr>
<tr>
<td>notify</td>
<td>Enables sending of SNMP traps and informs from this system.</td>
</tr>
</tbody>
</table>

Default
SNMP is enabled by default
SNMP server communities are enabled by default
SNMP notifies are enabled by default
SNMP server multi-communities are disabled by default

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.0000</td>
<td>First version</td>
</tr>
<tr>
<td>3.2.1050</td>
<td>Change traps to notify</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```bash
switch (config) # snmp-server enable
switch (config) # show snmp
SNMP enabled: yes
SNMP port: 161
System contact: my-name
System location:
Read-only community: public
Read-write community: private

Interface listen enabled: yes
No Listen Interfaces.

Traps enabled: yes
Default trap community: public
Default trap port: 162

No trap sinks configured.
switch (config) #
```

Related Commands
show snmp

Notes
SNMP traps are only sent if there are trap sinks configured with the “snmp-server host...” command, and if these trap sinks are themselves enabled.
snmp-server host

```plaintext
snmp-server host <IP address> {disable | {traps | informs} | <community> | <port> | version <snmp version>}
no snmp-server host <IPv4 or IPv6 address> {disable | {traps| informs} | <community> | <port>}
```

Configures hosts to which to send SNMP traps. The no form of the commands removes a host from which SNMP traps should be sent.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>IP address</th>
<th>IPv4 or IPv6 address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>disable</td>
<td></td>
<td>Temporarily disables sending of traps to this host.</td>
</tr>
<tr>
<td>community</td>
<td></td>
<td>Specifies trap community string.</td>
</tr>
<tr>
<td>port</td>
<td></td>
<td>Overrides default UDP port for this trap sink.</td>
</tr>
<tr>
<td>snmp version</td>
<td></td>
<td>Specifies the SNMP version of traps to send to this host.</td>
</tr>
</tbody>
</table>

Default

- No hosts are configured
- Default community is “public”
- Default UDP port is 162
- Default SNMP version is 2c

Configuration Mode

Config

History

- 3.1.0000 First version
- 3.2.1050 Add inform option

Role

admin
Example

switch (config) # snmp-server host 10.10.10.10 traps version 1
switch (config) # show snmp
SNMP enabled: yes
SNMP port: 161
System contact:
System location:
Read-only communities:
public
Read-write communities:
(none)
Interface listen enabled: yes
No Listen Interfaces.
Traps enabled: yes
Default trap community: public
Default trap port: 162
Trap sinks:
10.10.10.10
 Enabled: yes
 Type: traps version 1
 Port: 162 (default)
 Community: public (default)
switch (config) #

Related Commands

show snmp
snmp-server enable

Notes

This setting is only meaningful if traps are enabled, though the list of hosts may still be edited if traps are disabled. Refer to “snmp-server enable” command.
snmp-server listen

```
 snmp-server listen {enable | interface <ifName>}  
 no snmp-server listen {enable | interface <ifName> }
```

Configures SNMP server interface access restrictions. The no form of the command disables the listen interface restricted list for SNMP server.

Syntax Description
- **enable**: Enables SNMP interface restrictions on access to this system.
- **ifName**: Adds an interface to the “listen” list for SNMP server. For example: “mgmt0”, “mgmt1”.

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example
```
 switch (config) # snmp listen enable
 switch (config) # show snmp
 SNMP enabled: yes
 SNMP port: 161
 System contact:
 System location:
 Read-only community: public
 Read-write community: private

 Interface listen enabled: yes
 No Listen Interfaces.

 Traps enabled: yes
 Default trap community: public
 Default trap port: 162

 Trap sinks:
 10.10.10.10
   Enabled: yes
   Type: traps version 1
   Port: 3
   Community: public (default)
```

Related Commands
- show snmp

Notes
If enabled, and if at least one of the interfaces listed is eligible to be a listen interface, then SNMP requests will only be accepted on those interfaces. Otherwise, SNMP requests are accepted on any interface.
snmp-server location

```
snmp-server location <system location>
no snmp-server location
```

Sets a value for the sysLocation variable in MIB-II.
The no form of the command clears the contents of the sysLocation variable.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>system location</th>
<th>String.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>""</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```
switch (config) # snmp-server location lab
switch (config) # show snmp
SNMP enabled: yes
SNMP port: 161
System contact: my-name
System location: lab
Read-only community: public
Read-write community: private

Interface listen enabled: yes
No Listen Interfaces.

Traps enabled: yes
Default trap community: public
Default trap port: 162

No trap sinks configured.
switch (config) #
```

Related Commands

`show snmp`

Notes
snmp-server notify

```
snmp-server notify {community <community> | event <event name> | port <port> | send-test}
no snmp-server notify {community | event <event name> | port}
```

Configures SNMP notifications (traps and informs). The no form of the commands negate the SNMP notifications.

Syntax Description

- **community**: Sets the default community for traps sent to hosts which do not have a custom community string set.
- **event**: Specifies which events will be sent as traps.
- **port**: Sets the default port to which traps are sent.
- **send-test**: Sends a test trap.

Default

- Community: public
- All informs and traps are enabled
- Port: 162

Configuration Mode

- Config

History

- 3.1.0000 First version
- 3.2.1050 Changed traps to notify

Role

- admin

Example

```
switch (config) # snmp-server community public
switch (config) # show snmp
SNMP enabled: yes
SNMP port: 1000
System contact: my-name
System location: lab
Read-only community: public
Read-write community: private

Interface listen enabled: yes
No Listen Interfaces.

Traps enabled: yes
Default trap community: public
Default trap port: 162

No trap sinks configured.
switch (config) #
```

Related Commands

- show snmp
- show snmp events

Notes

- This setting is only meaningful if traps are enabled, though the list of hosts may still be edited if traps are disabled
- Refer to Mellanox MIB file for the list of supported traps
snmp-server port

snmp-server port <port>
no snmp-server port

Sets the UDP listening port for the SNMP agent.
The no form of the command resets the parameter to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>port</th>
<th>UDP port.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```plaintext
switch (config) # snmp-server port 1000
switch (config) # show snmp
SNMP enabled: yes
SNMP port: 1000
System contact: my-name
System location: lab
Read-only community: public
Read-write community: private

Interface listen enabled: yes
No Listen Interfaces.

Traps enabled: yes
Default trap community: public
Default trap port: 162

No trap sinks configured.
switch (config) #
```

Related Commands

show snmp

Notes
snmp-server user

```plaintext
snmp-server user {admin | <username>} v3 {[encrypted] auth <hash-type> <password> [priv <privacy-type> [<password>]] | capability <cap> | enable <sets> | prompt auth <hash-type> [priv <privacy-type>] | require-privacy}
no snmp-server user {admin | <username>} v3 {[encrypted] auth <hash-type> <password> [priv <privacy-type> [<password>]] | capability <cap> | enable <sets> | prompt auth <hash-type> [priv <privacy-type>]}
```

Specifies an existing username, or a new one to be added. The no form of the command disables access via SNMP v3 for the specified user.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>v3</td>
<td>Configures SNMP v3 users</td>
</tr>
<tr>
<td>auth</td>
<td>Configures SNMP v3 security parameters, specifying passwords in plaintext on the command line (note: passwords are always stored encrypted)</td>
</tr>
<tr>
<td>capability</td>
<td>Sets capability level for SET requests</td>
</tr>
<tr>
<td>enable</td>
<td>Enables SNMP v3 access for this user</td>
</tr>
<tr>
<td>encrypted</td>
<td>Configures SNMP v3 security parameters, specifying passwords in encrypted form</td>
</tr>
<tr>
<td>prompt</td>
<td>Configures SNMP v3 security parameters, specifying passwords securely in follow-up prompts, rather than on the command line</td>
</tr>
<tr>
<td>require-privacy</td>
<td>Requires privacy (encryption) for requests from this user</td>
</tr>
</tbody>
</table>

Default

No SNMP v3 users defined

Configuration Mode

Config

History

3.1.0000

Role

admin

Example

```plaintext
switch (config) # snmp-server user admin v3 enable
switch (config) # show snmp user
User name: admin
   Enabled overall:       yes
   Authentication type:   sha
   Privacy type:          aes-128
   Authentication password: (NOT SET; user disabled)
   Privacy password:      (NOT SET; user disabled)
   SET access:
      Enabled:           yes
      Capability level:  admin
```

switch (config) #
Related Commands show snmp user

Notes
- The username chosen here may be anything that is valid as a local UNIX username (alpha-numeric, plus '-', '_', and '.'), but these usernames are unrelated to, and independent of, local user accounts. That is, they need not have the same capability level as a local user account of the same name. Note that these usernames should not be longer than 31 characters, or they will not work.
- The hash algorithm specified is used both to create digests of the authentication and privacy passwords for storage in configuration, and also in HMAC form for the authentication protocol itself.
- If the command ends after the auth password, the privacy algorithm is set to its default, which is AES-128, and the privacy password is set to whatever was specified for the authentication password. You may also specify the privacy algorithm while still not specifying a separate password.
- There are three variants of the command, which branch out after the “v3” keyword. If “auth” is used next, the passwords are specified in plaintext on the command line. If “encrypted” is used next, the passwords are specified encrypted (hashed) on the command line. If “prompt-pass” is used, the passwords are not specified on the command line the user is prompted for them when the command is executing. If “priv” is not specified, only the auth password is prompted for. If “priv” is specified, the privacy password is prompted for; entering an empty string for this prompt will result in using the same password specified for authentication.
show snmp

show snmp [auto-refresh | engineID | events | host | user]

Displays SNMP-server configuration and status.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>auto-refresh</th>
<th>SNMP refreshed mechanism status.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>engineID</td>
<td>SNMP Engine ID.</td>
</tr>
<tr>
<td></td>
<td>events</td>
<td>SNMP events.</td>
</tr>
<tr>
<td></td>
<td>host</td>
<td>List of notification sinks.</td>
</tr>
<tr>
<td></td>
<td>user</td>
<td>SNMP users.</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config

History

3.1.0000

Role

admin

Example

```
switch (config) # show snmp user
User name: Hendrix
   Enabled overall:   yes
   Authentication type: sha
   Privacy type: des
   Authentication password: (set)
   Privacy password: (set)
   Require privacy: yes
   SET access:
      Enabled: yes
      Capability level: admin
```

Related Commands

show snmp

Notes
show snmp auto-refresh

Syntax Description: Displays SNMPD refresh mechanism status.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```bash
switch(config) # show snmp auto-refresh
---------------------
SNMP auto refresh
---------------------
Auto-refresh enabled: yes
Refresh interval (sec): 60
---------------------
Auto-Refreshed tables
---------------------
entPhysicalTable
ifTable
ifXTable
```

Related Commands

- **Related Commands**
 - `snmp-server auto-refresh`

Notes
4.13.2.2 XML API

xml-gw enable

xml-gw enable
no xml-gw enable

Enables the XML gateway.
The no form of the command disables the XML gateway.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>XML Gateway is enabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # xml-gw enable
switch (config) # show xml-gw
XML Gateway enabled: yes
switch (config) #
```

Related Commands

show xml-gw

Notes
show xml-gw

show xml-gw

Displays the XML gateway setting.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # show xml-gw
XML Gateway enabled: yes
switch (config) # |
| Related Commands | xml-gw enable |
| Notes | |
5 Ethernet Switching

5.1 Interface

Interface Ethernet have the following physical set of configurable parameters

- Admin state – enabling or disabling the interface
- Flow control – admin state per direction (send or receive)
- MTU (Maximum Transmission Unit) – 1500-9216 bytes
- Speed – 1/10/40/56GbE (depends on the interface type and system)
- Description – user defined string
- Module-type – the type of the module plugged in the interface

5.1.1 Break-Out Cables

The break-out cable is a unique Mellanox capability, where a single physical 40Gbps port is divided into 2x10Gbps or 4x10Gbps ports. It maximizes the flexibility of the end user to use the Mellanox switch with a combination of 10Gbps and 40Gbps interfaces according to the specific requirements of its network. Certain ports cannot be split at all and there are ports which can be split into 2 ports only. Splitting a port changes the notation of that port from x/y to x/y/z with “x/y” indicating the previous notation of the port prior to the split and “z” indicating the number of the resulting 10G port (1,2, or 1,2,3,4). Each sub-physical port is then handled as an individual port. For example: splitting port 20 into 4 will give the following new ports: 1/20/1, 1/20/2, 1/20/3, 1/20/4.

![Figure 12: Break-Out Cable](image)

A split-4 operation results in blocking a 40G port in addition to the one being split. A set of hardware restrictions determine which of the ports can be split.

Specific ports can be split by using a QSFP 1X4 breakout cable to split one 40 Gb/s port into 4 lanes (4 SFP+ connectors). These 4 lanes then go, one lane to each of the 4 SFP+ connectors. Some ports can be split into 2 10 Gb/s ports, using lanes 1 and 2 only. When a QSFP port is split...
into 2 10Gb/s ports then only SFP+ connectors #1 and #2 are used. Connectors #3 and #4 are left unconnected.

Splitting the interface deletes all configuration on that interface.

When splitting an interface’s traffic into 4 10Gb/s data streams (four lanes) one of the other ports on the switch must be disabled (unmapped).

- some ports can be split into 4
- some ports can be split into 2
- some ports become unmapped due to a 1X4 split

Figure 13: Port Splitting Options

![Port Splitting Options Diagram]

Table 21 - Key for Port Splitting Figure

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark green</td>
<td>This port can be split into 4 10Gb/s SFP+</td>
</tr>
<tr>
<td>Light green</td>
<td>This port can be split into 2 10Gb/s SFP+</td>
</tr>
<tr>
<td>Red X</td>
<td>This port is unmapped by the neighboring split 4 port</td>
</tr>
</tbody>
</table>

The maximum number of 10Gb/s Ethernet ports configurable with this switch is 34.

Table 22 - Port Splitting Options

<table>
<thead>
<tr>
<th>Port #</th>
<th>Can be split to 4</th>
<th>Turns off port #</th>
<th>Can be split to 2</th>
<th>Port #</th>
<th>Can be split to 4</th>
<th>Turns off port #</th>
<th>Can be split to 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>—</td>
<td>—</td>
<td>YES</td>
<td>24</td>
<td>YES</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>16</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>17</td>
<td>YES</td>
<td>16</td>
<td>—</td>
<td>25</td>
<td>—</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>18</td>
<td>—</td>
<td>—</td>
<td>YES</td>
<td>—</td>
<td>—</td>
<td>27</td>
<td>YES</td>
</tr>
<tr>
<td>19</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>28</td>
<td>—</td>
<td>29</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td>YES</td>
<td>19</td>
<td>—</td>
<td>30</td>
<td>YES</td>
<td>31</td>
<td>—</td>
</tr>
<tr>
<td>21</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>31</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>22</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>32</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>23</td>
<td>YES</td>
<td>22</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>YES</td>
<td>—</td>
</tr>
</tbody>
</table>

To see the exact splitting options available per system, refer to each specific system’s hardware user manual (Cabling chapter) located on the Mellanox website.
5.1.1.1 Changing the Module Type to a Split Mode

➢ To split an interface:

Step 1. Shut down all the ports related to the interface. Run:

- in case of split-2, shut down the current interface only
- in case of split-4, shut down the current interface and the other interface according to the table above

```
switch (config) # interface ethernet 1/19
switch (config interface ethernet 1/19) # shutdown
switch (config interface ethernet 1/19) # exit
```

Step 2. Split the ports as desired. Run:

```
switch (config interface ethernet 1/20) # module-type qsfp-split-4
switch (config interface ethernet 1/20) #
```

Step 3. The following warning will be displayed:

```
the following interfaces will be unmapped: 1/20 1/19.
Choose Yes when prompted Type 'yes' to confirm split
```

The <ports> field in the warning refers to the affected ports from splitting port <inf> in the applied command.

Please beware that splitting a port into 4 prevents you from accessing the splittable port, and an additional one. For example, in the procedure above, ports 19 and 20 become unaccessible.

5.1.1.2 Unsplitting a Split Port

➢ To unsplit a split port:

Step 1. Shut down all of the split ports. Run:

```
switch (config interface ethernet 1/20/4) # shutdown
switch (config interface ethernet 1/20/4) # exit
switch (config) # interface ethernet 1/20/3
switch (config interface ethernet 1/20/3) # shutdown
switch (config interface ethernet 1/20/3) # exit
switch (config) # interface ethernet 1/20/2
switch (config interface ethernet 1/20/2) # shutdown
switch (config interface ethernet 1/20/2) # exit
switch (config) # interface ethernet 1/20/1
switch (config interface ethernet 1/20/1) # shutdown
```

Step 2. From the first member of the split (1/20/1), change the module-type back to QSFP. Run:

```
switch (config interface ethernet 1/20/1) # module-type qsfp
```

The module-type can be changed only from the first member of the split and not from the interface that was split.
The following warning will be displayed:
The following interfaces will be unmapped: 1/20/1 1/20/2 1/20/3 1/20/4.

Step 3. Type “yes” when prompted “Type 'yes' to confirm unsplit.”

5.1.2 Transceiver Information

MLNX-OS offers the option of viewing the transceiver information of a module or cable connected to a specific interface. The information is a set of read-only parameters burned onto the EEPROM of the transceiver by the manufacture. The parameters include identifier (connector type), cable type, speed and additional inventory attributes.

To display transceiver information of a specific interface, run:

```bash
switch (config) # show interfaces ethernet 1/20 transceiver
Port 1/60 state
  identifier             : QSFP+
  cable/ module type     : Passive copper, unequalized
  ethernet speed and type: 56GigE
  vendor                 : Mellanox
  cable length           : 1m
  part number            : MC2207130-001
  revision               : A3
  serial number          : MT1238VS04936
switch (config) #
```

The indicated cable length is rounded up to the nearest natural number.
Commands

interface ethernet

`interface ethernet <slot>/<port>[/<subport>]-[<slot>/<port>[/<subport>]]`

Enters the Ethernet interface or Ethernet interface range configuration mode.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><slot>/<port></code></td>
<td>Ethernet port number.</td>
</tr>
<tr>
<td>subport</td>
<td>Ethernet subport number. To be used in case of split port.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td></td>
<td>3.2.1100</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config) # interface ethernet 1/1</code></td>
</tr>
<tr>
<td></td>
<td><code>switch (config interface ethernet 1/1) # exit</code></td>
</tr>
<tr>
<td></td>
<td><code>switch (config) # interface ethernet 1/1-1/10</code></td>
</tr>
<tr>
<td></td>
<td><code>switch (config interface ethernet 1/1-1/10) #</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>show interfaces ethernet</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
</table>
flowcontrol

flowcontrol {receive | send} {off | on} [force]

Enables or disables IEEE 802.3x link-level flow control per direction for the specified interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>receive</th>
<th>send</th>
<th>off</th>
<th>on</th>
<th>force</th>
</tr>
</thead>
<tbody>
<tr>
<td>receive</td>
<td>- ingress direction</td>
<td>send</td>
<td>- egresses direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>off</td>
<td>on - enables IEEE 802.3x link-level flow control for the specified interface on receive or send.</td>
<td>off - disables IEEE 802.3x link-level flow control for the specified interface on receive or send</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>force</td>
<td>Forces command implementation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default	receive off, send off
Configuration Mode	Config Interface Ethernet
	Config Interface Port Channel
	Config Interface MLAG Port Channel

| History | 3.1.0000 |
| | 3.3.4500 |

| Role | admin |

| Example | switch (config interface ethernet 1/1) # flowcontrol receive off |
| | switch (config interface ethernet 1/1) # |

| Related Commands | show interfaces ethernet |

| Note | N/A |
mtu

mtu <frame-size>

Configures the Maximum Transmission Unit (MTU) frame size for the interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>frame-size</th>
<th>This value may be 1500-9216 bytes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>1522 bytes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config Interface Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Config Interface Port Channel</td>
</tr>
<tr>
<td></td>
<td>Config Interface MLAG Port Channel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.1.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.3.4500</td>
</tr>
</tbody>
</table>

| Role | admin |

<table>
<thead>
<tr>
<th>Example</th>
<th>switch (config interface ethernet 1/1) # mtu 9216</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>switch (config interface ethernet 1/1) #</td>
</tr>
</tbody>
</table>

| Related Commands | show interfaces ethernet |

| Note |
shutdown

shutdown

no shutdown

Disables the interface.
The no form of the command enables the interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>The interface is enabled.</td>
</tr>
</tbody>
</table>
| Configuration Mode | Config Interface Ethernet
 Config Interface Port Channel
 Config Interface MLAG Port Channel |
| History | 3.1.0000
 3.3.4500 Added MLAG port-channel configuration mode |
| Role | admin |
| Example | switch (config interface ethernet 1/1) # shutdown
 switch (config interface ethernet 1/1) # |
| Related Commands | show interfaces ethernet |
| Note | |
description

description <string>
no description

Sets an interface description.
The no form of the command returns the interface description to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
<th>Default</th>
<th>Configuration Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>40 bytes</td>
<td>""</td>
<td>Config Interface Ethernet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Config Interface Port Channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Config Interface MLAG Port Channel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>Role</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.0000</td>
<td>admin</td>
<td>switch (config interface ethernet 1/1) # description my-interface</td>
</tr>
<tr>
<td>3.3.4500</td>
<td></td>
<td>switch (config interface ethernet 1/1) # Added MLAG port-channel configuration mode</td>
</tr>
</tbody>
</table>

Related Commands: show interfaces ethernet

Note
speed

speed <port speed> [force]
no speed

Sets the speed of the interface.
The no form of the command sets the speed of the interface to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>port speed</th>
<th>1000 - 1GbE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10000 - 10GbE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40000 - 40GbE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>auto - auto negotiates link speed</td>
<td></td>
</tr>
<tr>
<td>force</td>
<td>force</td>
<td>Forces speed change configuration</td>
</tr>
</tbody>
</table>

Default
Depends on the port module type, see the “Notes” section below.

Configuration Mode
Config Interface Ethernet
Config Interface MLAG Port Channel

History
3.1.0000
3.3.3500 Added auto negotiation option
3.3.4500 Added MLAG port-channel configuration mode

Role
admin

Example
switch (config interface ethernet 1/1) # speed 40000
switch (config interface ethernet 1/1) #

Related Commands
show interfaces ethernet

Note
• 56Gbps port speed requires a license (LIC-6036F-56GE)
• The default speed depends on the interface capabilities, interface capable with 40Gbps will have 40Gbps speed by default
• Not all interfaces support all speed options
load-interval

load-interval <time>
no load-interval

Sets the interface counter interval.
The no form of the command resets the interval to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>time</th>
<th>In seconds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>300 seconds.</td>
<td></td>
</tr>
</tbody>
</table>

| Configuration Mode | Config Interface Ethernet
|--------------------| Config Interface Port Channel
| | Config Interface MLAG Port Channel |

History	3.3.0000	
	3.3.4500	Added MLAG port-channel configuration mode

| Role | admin |

| Example | switch (config interface ethernet 1/1) # load-interval 30
|---------| switch (config interface ethernet 1/1) # |

| Related Commands | show interfaces ethernet |

| Note | This interval is used for the ingress rate and egress rate counters. |
ip address dhcp

Enables DHCP on this Ethernet interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
| Configuration Mode | Config Interface Ethernet set as router interface
 Config Interface Port Channel set as router interface |
| History | 3.4.2008 |
| Role | admin |
| Example | switch (config interface ethernet 1/1) # ip address dhcp
 switch (config interface ethernet 1/1) # |
| Related Commands | interface ethernet
 show interfaces ethernet |

Note
clear counters

clear counters

Clears the interface counters.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Configuration Mode

- Config Interface Ethernet
- Config Interface Port Channel

History

- 3.1.0000
- 3.3.4500 Added MLAG port-channel configuration mode

Role

admin

Example

```
switch (config interface ethernet 1/1) # clear counters
```

Related Commands

show interfaces ethernet

Note
show interfaces ethernet

show interfaces ethernet <inf> [counters [priority]]

Displays the configuration and status for the interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>inf</th>
<th>Interface number: <slot>/<port>.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>counters</td>
<td>Displays interface extended counters.</td>
</tr>
<tr>
<td></td>
<td>priority</td>
<td>Displays interface extended counters per priority (0-7).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show interfaces ethernet 1/1

Eth1/1

Admin state: Enabled
Operational state: Up
Description: N/A
Mac address: 00:02:c9:71:ed:2d
MTU: 1500 bytes(Maximum packet size 1522 bytes)
Flow-control: receive off send off
Actual speed: 40 Gbps
Width reduction mode: Not supported
Switchport mode: access
Last clearing of "show interface" counters 00:20:39
60 seconds Ingress rate: 0 bits/sec, 0 bytes/sec, 0 packets/sec
60 seconds Egress rate: 0 bits/sec, 0 bytes/sec, 0 packets/sec

Rx
0 packets
0 unicast packets
0 multicast packets
0 broadcast packets
0 bytes
0 error packets
0 discard packets

Tx
63 packets
0 unicast packets
63 multicast packets
0 broadcast packets
4032 bytes
0 discard packets

switch (config) #
```

Related Commands

Note
show interfaces ethernet [<inf>] capabilities

show interfaces ethernet [<inf>] capabilities

Displays the interface capabilities.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>inf</th>
<th>shows only one interface capabilities. Interface number: <slot>/<port>.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>
| Example | switch (config) # show interfaces ethernet 1/1 capabilities
Eth1/1
Speed : 10000,40000
FlowControl : Send, Receive
switch (config) # |

Related Commands

Note
show interfaces ethernet [<inf>] description

show interfaces ethernet [<inf>] description

Displays the admin status and protocol status for the specified interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>inf</th>
<th>Interface number: <slot>/<port>.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Any Command Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td></td>
<td>3.4.1100</td>
</tr>
<tr>
<td></td>
<td>Updated Example</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
</table>

```
switch (config) # show interfaces ethernet description

Interface                  Admin state   Operational state
-------------------------------------------------------------
Eth1/58                    Enabled       Down
Eth1/59                    Enabled       Up
Eth1/60                    Enabled       Down (Suspend)
switch (config) # show interfaces ethernet 1/60

Eth1/60

   Admin state: Enabled
   Operational state: Down (Suspend)
switch (config) #
```

| Related Commands
| Note |
|------|------|

show interfaces ethernet [<inf>] status

show interfaces ethernet [<inf>] status

Displays the status, speed and negotiation mode of the specified interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inf</td>
<td>Interface number: <slot>/<port>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>Interface number: <slot>/<port>.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Command Mode</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>3.4.1100</td>
<td>Updated Example</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch (config) # show interfaces ethernet status</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>Operational state</th>
<th>Speed</th>
<th>Negotiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth1/58</td>
<td>Down</td>
<td>40 Gbps</td>
<td>No-Negotiation</td>
</tr>
<tr>
<td>Eth1/59</td>
<td>Up</td>
<td>40 Gbps</td>
<td>No-Negotiation</td>
</tr>
<tr>
<td>Eth1/60</td>
<td>Down (Suspend)</td>
<td>40 Gbps</td>
<td>No-Negotiation</td>
</tr>
</tbody>
</table>

switch (config) #

Related Commands

Note
show interfaces ethernet [<inf>] transceiver

Displays the transceiver info.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>inf</th>
<th>interface number: <slot>/<port></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Any Command Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show interfaces ethernet 1/1 transceiver
Port 1/1 state
    identifier : QSFP+
    cable/module type : Optical cable/module
    ethernet speed and type: 40GBASE - SR4
    vendor : Mellanox
    cable_length : 50 m
    part number : MC2210411-SR4
    revision : A1
    serial number : TT1151-00006
switch (config) #
```

Related Commands

Note

- For a full list of the supported cables and transceivers, please refer to the LinkX™ Cables and Transceivers webpage in Mellanox.com: http://www.mellanox.com/page/cables?mtag=cable_overview.
module-type

module-type <type> [force]

Splits or un-splits the interface, as desired.

| Syntax Description | type | qsfp - Port runs at 40000/56000Mbps.
| | | qsfp-split-2 - Port is split and runs at 2X10000Mbps.
| | | qsfp-split-4 - Port is split and runs at 4X10000Mbps.
| force | force the split operation without asking for user confirmation. |

Default

interface module type is qsfp (if the interface supports 40Gbps speed)

Configuration Mode

Config Interface Ethernet

History

3.1.1400

Role

admin

Example

switch (config interface ethernet 1/4) # module-type qsfp-split-4
the following interfaces will be unmapped: 1/4 1/1
Type 'yes' to confirm split: yes
switch (config interface ethernet 1/4) #

Related Commands

switchport mode
switchport [trunk | hybrid] allowed-vlan
show vlan

Note

- The affected interfaces should be disabled prior to the operation
- in order to un-split the interface - used the command with “qsfp”, the speed is set to 40Gbps “module-type qsfp”.
- This command is applicable only on 40Gbps Ethernet ports
5.2 Link Aggregation Group (LAG)

Link Aggregation protocol describes a network operation in which several same speed links are combined into a single logical entity with the accumulated bandwidth of the originating ports. LAG groups exchange Lag Aggregation Control Protocol (LACP) packets in order to align the functionality between both endpoints of the LAG. To equally send traffic on all LAG links, the switch uses a hash function which can use a set of attributes as key to the hash function.

As many as 16 physical ports can be aggregated on a single LAG.

5.2.1 Configuring Static Link Aggregation Group (LAG)

➢ To configure a static LAG:

Step 1. Log in as admin.

Step 2. Enter config mode. Run:

```
switch > enable
switch # configure terminal
```

Step 3. Create a port-channel entity. Run:

```
switch (config) # interface port-channel 1
switch (config interface port-channel 1) #
```

Step 4. Change back to config mode.

```
switch (config interface port-channel 1) # exit
switch (config) #
```

Step 5. Add a physical port to the port-channel. Run:

```
switch (config interface ethernet 1/4) # channel-group 1 mode on
switch (config interface ethernet 1/4) #
```

If the physical port is operationally up, this port becomes an active member of the aggregation. Consequently, it becomes able to convey traffic.

5.2.2 Configuring Link Aggregation Control Protocol (LACP)

➢ To configure LACP:

Step 1. Log in as admin.

Step 2. Enter config mode. Run:

```
switch > enable
switch # configure terminal
```

Step 3. Create a port-channel entity. Run:

```
switch (config) # interface port-channel 1
switch (config interface port-channel 1) #
```

Step 4. Change back to config mode. Run:

```
switch (config interface port-channel 1) # exit
switch (config) #
```
Step 5. Enable LACP in the switch. Run:

```
switch (config) # lACP
switch (config) #
```

Step 6. Add a physical port to the port-channel. Run:

```
switch (config interface ethernet 1/4) # channel-group 1 mode active/passive
switch (config interface ethernet 1/4) #
```
5.2.3 Commands

interface port-channel

```
interface port-channel <1-4096>[-<2-4096>]
no interface port-channel <1-4096>[-<2-4096>]
```

Creates a LAG and enters the LAG configuration mode. There is an option to create a range of LAG interfaces.

The no form of the command deletes the LAG, or range of LAGs.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Default</th>
<th>Configuration Mode</th>
<th>History</th>
<th>Role</th>
<th>Example</th>
</tr>
</thead>
</table>
| 1-4096 / 2-4096 | N/A | Config | 3.1.1400 | admin | switch (config)# interface port-channel 1
| | | | 3.2.1100 | | switch (config interface port-channel 1) # exit
| | | | 3.4.0000 | | switch (config)# interface port-channel 1-10
| | | | | | switch (config interface port-channel 1-10) # |

Related Commands

- If a LAG is also an IPL, attempting to delete it without first deleting the IPL is rejected by the management.
lacp

```plaintext
lacp
no lacp
```

Enables LACP in the switch.
The no form of the command disables LACP in the switch.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>LACP is disabled.</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.1400</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config)# lacp
| | switch (config)# |

Related Commands

Note
lACP system-priority

```
lACP system-priority <1-65535>
no lACP system-priority
```

Configures the LACP system priority.
The no form of the command sets the LACP system-priority to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Default</th>
<th>Configuration Mode</th>
<th>History</th>
<th>Role</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax Description</td>
<td>1-65535</td>
<td>LACP system-priority.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default</td>
<td>32768</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.1400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
switch (config)# lACP system-priority 1
switch (config)# show lACP interfaces port-channel
Port-channel Module Admin Status is enabled
Port-channel System Identifier is 00:02:c9:5c:61:70
LACP System Priority: 3
switch (config)#
```

Related Commands

Note
lacp (interface)

```plaintext
lacp {rate fast | port-priority <1-65535>}
no lacp {rate fast | port-priority}
```

Configures the LACP interface parameters.
The no form of the command sets the LACP interface configuration to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>rate fast</th>
<th>Sets LACP PDUs on the port to be in fast (1 second) or slow rate. (30 seconds).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>rate - slow (30 seconds) port-priority 32768</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Mode

Config

History

3.1.1400

Role

admin

Example

```plaintext
switch (config interface ethernet 1/7)# lacp rate fast
switch (config interface ethernet 1/7)# show lacp interfaces ethernet 1/7
Port : 1/7
-------------
Port State = Down
Channel Group : 1
Pseudo port-channel = Po1
LACP port-priority = 32768
LACP Rate = Slow
LACP Activity : Passive
LACP Timeout : Short
Aggregation State : Aggregation, Defaulted,
```

<table>
<thead>
<tr>
<th>Port</th>
<th>LACP Port State</th>
<th>Admin Key</th>
<th>Oper Key</th>
<th>Port Number</th>
<th>Port State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/7</td>
<td>Down</td>
<td>128</td>
<td>1</td>
<td>0x7</td>
<td>0x0</td>
</tr>
</tbody>
</table>

```

**Note**

Configuring LACP rate (fast or slow) will configure the peer port to send (fast or slow), it does not make any affect on the local port LACP rate.
port-channel load-balance ethernet

port-channel load-balance ethernet <method>
no port-channel load-balance ethernet <method>

Configures the port-channel load balancing distribution function method.
The no form of the command sets the distribution function method to default.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>method</th>
<th>Possible load balance methods:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• destination-ip</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• destination-mac</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• destination-port</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• source-destination-ip</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• source-destination-mac</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• source-destination-port</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• source-ip</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• source-mac</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• source-port</td>
</tr>
</tbody>
</table>

Default: source-destination-mac

Configuration Mode

Config

History

3.1.1400

Role

admin

Example

switch (config)# port-channel load-balance ethernet destination-ip source-port source-mac
switch (config)# show interfaces port-channel load-balance destination-ip,source-mac,source-port
switch (config)#

Related Commands

Note

Several load balance methods can be configured (refer to the example)
channel-group

channel-group <1-4096> [mode {on | active | passive}]

no channel-group

Assigns and configures a physical interface to a port channel.
The no form of the command removes a physical interface from the port-channel.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4096</td>
<td>The port channel number.</td>
</tr>
<tr>
<td>mode on</td>
<td>Static assignment the port to LAG. LACP will not be enabled on this port.</td>
</tr>
<tr>
<td>mode active/passive</td>
<td>Dynamic assignment of the port to LAG. LACP will be enabled in either passive or active mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config Interface Ethernet</td>
</tr>
<tr>
<td>History</td>
<td>3.1.1400</td>
</tr>
<tr>
<td></td>
<td>3.4.0008 Added a note</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config interface ethernet 1/7)# channel-group 1 mode active</td>
</tr>
</tbody>
</table>

| Related Commands | show interfaces port-channel summary |
|                 | show interfaces port-channel compatibility-parameters |
|                 | show lACP interfaces ethernet |

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Setting the mode to active/passive is possible only in LACP is enabled.</td>
</tr>
<tr>
<td>• The first port in the LAG decide if the LAG will be static (“on”) or LACP (“active”, “passive”).</td>
</tr>
<tr>
<td>• All the ports in the LAG must have the same configuration, determined by the first port added to the LAG. The port with a different configuration will be rejected, for the list of dependencies refer to 'show interfaces port-channel compatibility-parameters'</td>
</tr>
<tr>
<td>• A physical port may only be part of one channel-group</td>
</tr>
</tbody>
</table>
**lACP-Individual Enable**

`lACP-Individual Enable [force]`

`no lACP-Individual Enable [force]`

Configures the LAG to act with LACP-individual capabilities.
The no form of the command disables the LACP-individual capability.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>force</th>
<th>Toggles the interface after enabling LACP-individual.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface Port Channel</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.4.1100</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config interface port-channel 10)# lACP-Individual Enable force</code></td>
<td></td>
</tr>
</tbody>
</table>

**Note**

If a switch is connected via LAG to a host without LACP capability, running this command on that LAG allows a member port (with the lowest numerical priority value), acting as an individual, to communicate with the host.
### ip address dhcp

```
ip address dhcp
no ip address dhcp
```

Enables DHCP on this LAG interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface Port Channel set as router interface</td>
</tr>
<tr>
<td>History</td>
<td>3.4.2008</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example            | switch (config interface port channel 10) # ip address dhcp
|                    | switch (config interface port channel 10) # |
| Related Commands   | interface port-channel
|                    | show interface port-channel |
| Note               | |
show lacp counters

show lacp counters

Displays the LACP PDUs counters.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.1400</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

**Example**

```
switch (config)# show lacp counters
LACPDU Marker Marker Response LACPDU
Port Sent Recv Sent Recv Sent Recv Illegal Unknown

Port-channel: 1

1/7 0 0 0 0 0 0 0 0
```

switch (config) # switch (config)#

**Related Commands**

**Note**
show lacp interfaces ethernet

show lacp interface ethernet <inf>

Displays the LACP interface configuration and status.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>inf</th>
<th>Interface number, for example “1/1”.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.1400</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

**Example**

```
switch (config) # show lacp interfaces ethernet 1/4
Port : 1/4

Port State = Down
Channel Group : 1
Pseudo port-channel = Po1
LACP port-priority = 128
LACP Rate = Slow
LACP Activity : Passive
LACP Timeout : Short
Aggregation State : Aggregation, Defaulted,

Port LACP Port Admin Oper Port Port
Port State Priority Key Key Number State

1/4 Down 128 1 1 0x4 0x0
```

**Related Commands**

**Note**
show lacp interfaces neighbor

Displays the LACP interface neighbor status.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.1400</td>
</tr>
<tr>
<td></td>
<td>3.4.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
Example

switch (config) # show lACP interfaces neighbor
Flags:
A - Device is in Active mode
P - Device is in Passive mode

Channel group 1 neighbors

Port 1/4
----------
Partner System ID : 00:00:00:00:00:00
Flags : A
LACP Partner Port Priority : 0
LACP Partner Oper Key : 0
LACP Partner Port State : 0x0

Port State Flags Decode
------------------------
Activity : Active
Aggregation State : Aggregation, Sync, Collecting, Distributing

MLAG channel group 25 neighbors

Port 1/49
----------
Partner System ID : 00:02:c9:fa:c4:c0
Flags : A
LACP Partner Port Priority : 255
LACP Partner Oper Key : 33
LACP Partner Port State : 0xbc

Port State Flags Decode
------------------------
Activity : Active
Aggregation State : Aggregation, Sync, Collecting, Distributing,

MLAG channel group 28 neighbors

Port 1/51
----------
Partner System ID : f4:52:14:10:d8:f1
Flags : A
LACP Partner Port Priority : 255
LACP Partner Oper Key : 33
LACP Partner Port State : 0xbc

Port State Flags Decode
------------------------
Activity : Active
Aggregation State : Aggregation, Sync, Collecting, Distributing,

Related Commands

Note
### show lacp

**show lacp**

Displays the LACP global parameters.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.4.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

**Example**

```
switch (config) # show lacp
Port-channel Module Admin Status is enabled
switch (config) #
```

**Related Commands**

**Note**
**show lacp interfaces system-identifier**

```
show lacp interfaces {mlag-port-channel | port-channel} <instance> system-identifier
```

Displays the system identifier of LACP.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>instance</th>
<th>LAG or MLAG instance.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.4.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

**Example**

```
switch (config)# show lacp interfaces port-channel 2 system-identifier
Priority: 12345
MAC: 00:02:C9:AC:2A:60
switch (config)#
```

**Related Commands**

**Note**
show interfaces port-channel

show interfaces port-channel <port-channel>

Displays port-channel configuration properties.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>port-channel</th>
<th>LAG interface whose properties to display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.4000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4.1100</td>
<td>Update Example</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # show interfaces port-channel 2</td>
<td></td>
</tr>
</tbody>
</table>

Po2

Admin state: Enabled
Operational state: Up
Description: N/A
Mac address: 00:00:00:00:00:00
MTU: 9216 bytes (Maximum packet size 9238 bytes)
lACP-individual mode: Enabled
Flow-control: receive off send off
Actual speed: 2 X 40 Gbps
Width reduction mode: Not supported
Switchport mode: trunk
MAC learning mode: Enabled
Last clearing of "show interface" counters: Never
60 seconds ingress rate: 2440 bits/sec, 305 bytes/sec, 5 packets/sec
60 seconds egress rate: 2440 bits/sec, 305 bytes/sec, 5 packets/sec

Rx
24060 packets
23447 unicast packets
598 multicast packets
15 broadcast packets
1796876 bytes
0 error packets
0 discard packets

Tx
23961 packets
23454 unicast packets
496 multicast packets
11 broadcast packets
1805778 bytes
4 discard packets

Related Commands

Note
show interfaces port-channel compatibility-parameters

show interfaces port-channel compatibility-parameters

Displays port-channel parameters.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

**Example**

```
switch (config) # show interfaces port-channel compatibility-parameters
* Port-mode
* Speed
* MTU
* Flow Control
* Access VLAN
* Allowed VLAN list
* Flowcontrol & PFC
* Channel-group mode
* CoS parameters
* MAC learning disable

Static configuration on the port should be removed:
* ACL port binding
* Static mrouter
* sflow
* OpenFlow
* port mirroring local analyzer port
* Static mac address
switch (config) #
```

**Related Commands**

**Note**
show interfaces port-channel load-balance

Displays the type of load-balancing in use for port-channels.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.4000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # show interfaces port-channel load-balance source-destination-mac switch (config) #</td>
<td></td>
</tr>
</tbody>
</table>

Related Commands

Note
show interfaces port-channel summary

Displays a summary for the port-channel interfaces.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.1400</td>
</tr>
<tr>
<td></td>
<td>3.4.1100</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```bash
switch (config) # show interfaces port-channel summary
Flags: D - Down, U - Up, P - Up in port-channel (members)
 S - Suspend in port-channel (members), I - Individual

<table>
<thead>
<tr>
<th>Group Port-Channel</th>
<th>Type</th>
<th>Member Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Po2(U)</td>
<td>LACP</td>
<td>Eth1/58(D) Eth1/59(I) Eth1/60(S)</td>
</tr>
<tr>
<td>Po5(D)</td>
<td>LACP</td>
<td>Eth1/1(S) Eth1/33(I)</td>
</tr>
<tr>
<td>Po10(U)</td>
<td>LACP</td>
<td>Eth1/49(P) Eth1/50(P) Eth1/51(S) Eth1/52(S)</td>
</tr>
</tbody>
</table>
```

Related Commands

Note
5.3 MLAG

A link aggregation group (LAG) is used for extending the bandwidth from a single link to multiple links and provide redundancy in case of link failure. Extending the implementation of the LAG to more than a single device provides yet another level of redundancy that extends from the link level to the node level. This extrapolation of the LAG from single to multiple switches is referred to as multi-chassis link aggregation (MLAG). MLAG is supported on Ethernet blades’ internal as well as external ports.

All nodes in an MLAG must be of the same CPU type (i.e. PPC or x86).

Each switch configuration is independent and it is user responsibility to make sure to configure both switches similarly pertaining MLAG (e.g. MLAG port-channel VLAN membership, static MAC, ACL, etc).

MLAG is currently supported for 2 switches only.

The VIP address must be on the same management IP subnet.
A peered device (host or switch) connecting to switches running an MLAG runs a standard LAG and is unaware of the fact that the LAG connects to two separate switches.

The MLAG switches share an inter-peer link (IPL) between them for carrying control messages in a steady state or data packages in failure scenarios. Thus, the bandwidth of the IPL should be defined accordingly. The IPL itself can be a LAG and be constructed of either 10GbE or 40GbE links. In such a case, PFC must be configured on this IPL. Figure 15, “Basic MLAG Topology,” on page 442 illustrates. The IPL serves the following purposes:

- MLAG protocol control – keepalive messages, MAC sync, MLAG port sync, etc.
- MLAG port failure – serves redundancy in case of a fallen link on one of the MLAG switches.
- Layer-3 failure – serves redundancy in case of a failed connection between the MLAG switches and the rest of the L3 network should there be one.

The MLAG protocol is made up of the following components to be expanded later:

- Keepalive
- Unicast and multicast sync
- MLAG port sync

When positioned at the top of rack (ToR) and connecting with a Layer-3 uplink, the MLAG pair acts as the L3 border for the hosts connected to it. To allow default gateway redundancy, both MLAG switches should be addressed by the host via the same default gateway address.

MLAG uses an IP address (VIP) that is always directed to the MLAG-VIP master node.

When running MLAG with L3, VRRP or MAGP must be deployed. For more information, refer to Section 6.7, “VRRP,” on page 902 or Section 6.8, “MAGP,” on page 917 respectively.

When MLAG is connected through a Layer-2 based uplink, there is no need to apply default gateway redundancy towards hosts since this function is implemented on the L2/L3 border points of the network.

The two peer switches need to carry the exact same configuration of the MLAG attributes for guaranteeing proper functionality of the MLAG.

Ensuring that both switches are configured identically is the responsibility of the user and is not monitored by the MLNX-OS software.

When working with MLAG the maximum number of MAC addresses is limited to 47,970. Without it, the number of MAC addresses would be 55,872.
5.3.1 MLAG Keepalive and Failover
Master election in MLAG is based on the IPs of the nodes taking part of the MLAG. The master elected is that which has the highest IPL VLAN interface local IP address.

The MLAG pair of switches periodically exchanges a keepalive message on a user configurable interval. If the keepalive message fails to arrive for three consecutive intervals the switches break into two standalone switches. In such case the remaining active switch begins to act as a standalone switch and assumes that its previously peering MLAG switch has failed.

To avoid a scenario where failure on the IPL causes both MLAG peers to assume that their peer has failed, a safety mechanism based on UDP packets running via the management plane is maintained and alerts both peers of IPL failure. In such a case of IPL failure, the slave shuts down its interfaces to avoid a split brain scenario and the master becomes a standalone switch.

5.3.2 Unicast and Multicast Sync
Unicast and multicast sync is a mechanism which syncs the unicast and multicast FDBs of the MLAG peers. It prevents unicast asymmetric traffic from loading the network with flood traffic and multicast traffic from being processed.

5.3.3 MLAG Port Sync
Under normal circumstances, traffic from the IPL cannot pass through the MLAG ports (the IPL is isolated from the MLAG ports). If one of the MLAG links break, the other MLAG switch opens that isolation and allows traffic from its peer through the IPL to flow via the MLAG port which accesses the destination of the fallen link.

5.3.4 MLAG Virtual System-MAC
A pair of MLAG switches uses a single virtual system MAC for L2 protocols (such as LACP) operating on the MLAG ports.

The virtual system MAC is automatically computed based on the MLAG VIP name, but can be manually set using the command “system-mac”.

MLAG relies on systems to have the same virtual system MAC. Therefore, if a system MAC mismatch is detected, the slave shuts down its interfaces.

5.3.5 Upgrading MLAG Pair
Switches in the same MLAG group must have the same MLNX-OS version.
When peers identify having different versions, they enter an upgrading state in which the slave peer waits for a specific period of time (according to the command “upgrade-timeout” on page 457) before closing its ports.

For more information on MLAG upgrade, please see Section 4.3.3, “Upgrading MLNX-OS HA Groups,” on page 160.

5.3.6 MLAG Configuration

This section provides an example of how to configure two switches and a server in an MLAG setup.

![Figure 15: Basic MLAG Topology](image)

➢ To configure L2 MLAG:

Prerequisites:

Step 1. Enable IP routing. Run:

```
switch (config)# ip routing
```

Step 2. (Recommended) Enable LACP in the switch. Run:

```
switch (config)# lacp
```

Step 3. Enable QoS on the switch to avoid congestion on the IPL port. Run:

```
switch (config)# dcb priority-flow-control enable force
```

Step 4. Enable the MLAG protocol commands. Run:

```
switch (config)# protocol mlag
```

Configuring the IPL:

Step 1. Create a VLAN for the inter-peer link (IPL) to run on. Run:

```
switch (config)# vlan 4000
switch (config vlan 4000)#
```
Step 2. Create a LAG. Run:
```
switch (config)# interface port-channel 1
switch (config interface port-channel 1)#
```

Step 3. Map a physical port to the LAG in active mode (LACP). Run:
```
switch (config)# interface ethernet 1/1 channel-group 1 mode active
```

Step 4. Set this LAG as an IPL. Run:
```
switch (config interface port-channel 1)# ipl 1
```

Step 5. Enable QoS on this specific interface. Run:
```
switch (config interface port-channel 1)# dcb priority-flow-control mode on force
```

Step 6. Create a VLAN interface. Run:
```
switch (config)# interface vlan 4000
switch (config interface vlan 4000)#
```

Step 7. Set an IP address and netmask for the VLAN interface.
On SwitchA, run:
```
switch (config interface vlan 4000)# ip address 10.10.10.1 /30
```
On SwitchB, run:
```
switch (config interface vlan 4000)# ip address 10.10.10.2 /30
```

Step 8. Map the VLAN interface to be used on the IPL and set the peer IP address (the IP address of the IPL port on the second switch) of the IPL peer port. IPL peer ports must be configured on the same netmask.
On SwitchA, run:
```
switch (config interface vlan 4000)# ipl 1 peer-address 10.10.10.2
```
On SwitchB, run:
```
switch (config interface vlan 4000)# ipl 1 peer-address 10.10.10.1
```

Step 9. Configure a virtual IP (VIP) for the MLAG Run:
On SwitchA, run:
```
switch (config)# mlag-vip my-vip ip 10.10.10.254 /24 //mask may also be 255.255.255.0
```
On SwitchB, run:
```
switch (config)# mlag-vip my-vip
```

Step 10. (Optional) Configure a virtual system MAC for the MLAG. Run:
```
switch (config)# mlag system-mac 00:00:5E:00:01:5D
```

Creating an MLAG interface:

Step 1. Create an MLAG interface for the host. Run:
```
switch (config)# interface mlag-port-channel 1
switch (config interface mlag-port-channel 1)#
```

Step 2. Disable STP. Run:
```
switch (config interface mlag-port-channel 1)# spanning-tree port type edge
switch (config interface mlag-port-channel 1)# spanning-tree bpdufilter enable
```
Step 3. Bind an Ethernet port to the MLAG group. Run:

```
switch (config interface ethernet 1/2)# mlag-channel-group 1 mode on
```

Step 4. Create and enable the MLAG interface. Run:

```
switch (config interface mlag-port-channel 1)# no shutdown
```

![Note]

STP must be disabled (`no spanning-tree`) on the MLAG switches when there is at least 1 MLAG port-channel connected to a switch and not to a host.

Enabling MLAG:

Step 1. Enable MLAG. Run:

```
switch [my-vip: master] (config mlag)# no shutdown
```

![Note]

When running MLAG with L3, VRRP or MAGP must be deployed. or

➢ To verify MLAG configuration:

Step 1. Examine MLAG configuration and status. Run:

```
SX2 [mellanox: master] (config)# show mlag
Admin status: Enabled
Operational status: Up
Reload-delay: 1 sec
Keepalive-interval: 30 sec
Upgrade-timeout: 60 min
System-mac: 00:00:5E:00:01:5D

MLAG Ports Configuration Summary:
Configured: 1
Disabled: 0
Enabled: 1

MLAG Ports Status Summary:
Inactive: 0
Active-partial: 0
Active-full: 1
```
Step 2. Examine the MLAG summary table. Run:

```
switch [my-vip: master] (config)# show interfaces mlag-port-channel summary
MLAG Port-Channel Flags: D-Down, U-Up
P-Partial UP, S - suspended by MLAG
Port Flags: D - Down, P - Up in port-channel (members)
S - Suspend in port-channel (members), I - Individual Group
Port-Channel Type Local Ports Peer Ports
 (D/P/S/I) (D/P/S/I) (D/P/S/I)
--
1 Mpo2(U) Static Eth1/2(P) Eth1/2(P)
```

switch [config]#

Step 3. Examine the MLAG statistics. Run:

```
switch [my-vip: master] (config)# show mlag statistics
IPL 1:
Rx Heartbeat : 516
Tx Heartbeat : 516
Rx IGMP tunnel : 0
Tx IGMP tunnel : 0
RX mlag-notification: 0
TX mlag-notification: 0
Rx port-notification : 0
Tx port-notification : 0
Rx FDB sync : 0
Tx FDB sync : 0
RX LACP manager: 1
TX LACP manager: 0
switch [config]#
```
5.3.7 Commands

**protocol mlag**

* protocol mlag
* no protocol mlag

Enables MLAG functionality and unhides the MLAG commands.
The no form of the command hides the MLAG commands and deletes its database.

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Default</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Configuration Mode</strong></th>
<th>Config</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th><strong>History</strong></th>
<th>3.3.4500</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th><strong>Role</strong></th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th><strong>Example</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>switch (config) # protocol mlag</td>
</tr>
<tr>
<td>switch (config) #</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Related Commands</strong></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th><strong>Note</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Running the no form of this command hides MLAG commands.</td>
</tr>
<tr>
<td>• MLAG may be enabled without IP routing, but without IP routing an IPL vLAN interface cannot be configured and thus MLAG does not function.</td>
</tr>
<tr>
<td>• MLAG may be enabled without IGMP snooping, but if IGMP snooping is disabled, multicast FDBs do not sync.</td>
</tr>
</tbody>
</table>
mlag

mlag

Enters MLAG configuration mode.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # mlag
switch (config mlag) #
```

Related Commands

Note
**shutdown**

`shutdown`

`no shutdown`

Enables MLAG.
The no form of the command disables MLAG.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config MLAG</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

**Example**

```
switch (config mlag) # no shutdown
switch (config mlag) #
```

**Related Commands**

**Note**

This parameter must be similar in all MLAG peers.
interface mlag-port-channel

interface mlag-port-channel <if-number>
no interface mlag-port-channel <if-number>

Creates an MLAG interface.
The no form of the command deletes the MLAG interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>if-number</td>
<td>Integer. Interface number range: 1-1000.</td>
</tr>
</tbody>
</table>

Default	N/A
Configuration Mode	Config
History	3.3.4500
Role	admin

Example

switch (config) # interface mlag-port-channel 1
switch (config interface mlag-port-channel 1) #

Related Commands

Note

• The maximum number of interfaces is 64.
• The default Admin state is disabled.
• Range configuration is possible on this interface.
• This interface number must be the same in all the MLAG switches.
**ipl**

```
 ipl <ipl-id>
 no ipl <ipl-id>
```

Sets this LAG as an IPL port.
The no form of the command resets this LAG as regular LAG.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipl-id</td>
<td>ipl-id</td>
</tr>
<tr>
<td>ipl-id</td>
<td>IPL ID. Only “1” IPL port is supported.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>no ipl</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config Interface</td>
<td>Port Channel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.3.4500</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

**Example**

```
switch (config interface port-channel 1)# ipl 1
```

**Related Commands**

**Note**

- If a LAG is set as IPL, only the commands “[no] shutdown”, “no ipl” and “no interface port-channel” become applicable.
- A LAG interface set as IPL must have default LAG configuration, otherwise the set is rejected. Force option can be used.
**ipl peer-address**

```
ipl <ipl-id> peer-address <IP-Address>
no ipl <ipl-id>
```

Maps a VLAN interface to be used for an IPL LAG and sets the peer IP address of the IPL peer port.
The no form of the command deletes a peer IPL LAG and unbinds this VLAN interface from the IPL function.

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ipl-id</th>
<th>IP-Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>IPL ID. Only “1” IPL port is supported.</td>
<td>IPv4 address.</td>
</tr>
</tbody>
</table>

**Default**

N/A

**Configuration Mode**

Config Interface VLAN

**History**

3.3.4500

**Role**

admin

**Example**

```
switch (config interface vlan 1)# ipl 1 peer-address 10.10.10.10
switch (config interface vlan 1)#
```

**Related Commands**

**Note**

- The subnet mask is the same subnet mask of the VLAN interface.
- This VLAN interface should be used for IPL only.
**keep-alive-interval**

```
keep-alive-interval <value>
no keep-alive-interval
```

Configures the interval during which keep-alive messages are issued between the MLAG switches. The no form of the command resets this parameter to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>value</th>
<th>Time in seconds. Range: 1-300.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>1 second</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config MLAG</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.4500</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

**Example**

```
switch (config mlag) # keep-alive-interval 1
switch (config mlag) #
```

**Related Commands**

**Note**

This parameter must be similar in all MLAG peers.
**mlag-channel-group mode**

```
mlag-channel-group <if-number> mode {on | active | passive}
no mlag-channel-group
```

Binds an Ethernet port to the MLAG LAG.
The no form of the command deletes the binding.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>if-number</td>
<td>Integer. Interface number range: 1-1000.</td>
</tr>
<tr>
<td>on</td>
<td>Binds to static MLAG</td>
</tr>
<tr>
<td>active</td>
<td>Sets MLAG LAG in LACP active mode.</td>
</tr>
<tr>
<td>passive</td>
<td>Sets MLAG LAG in LACP passive mode.</td>
</tr>
</tbody>
</table>

**Default**
N/A

**Configuration Mode**
Config Interface Ethernet

**History**
3.3.4500

**Role**
admin

**Example**
```text
switch (config interface ethernet 1/1)# mlag-channel-group 1 mode on
switch (config interface ethernet 1/1)#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Note</th>
<th></th>
</tr>
</thead>
</table>

### mlag-vip

**mlag-vip <domain-name> ip {<ip-address> | <masklen> | netmask} [force]**

Sets the VIP domain and IP address for MLAG.
The no form of the command deletes the VIP domain and IP address.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>domain-name</th>
<th>MLAG group name</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;ip-address&gt;</td>
<td>IP address</td>
<td></td>
</tr>
<tr>
<td>&lt;masklen&gt;</td>
<td>Format example: /24. Note that a space is required between the IP address and the mask.</td>
<td></td>
</tr>
<tr>
<td>&lt;netmask&gt;</td>
<td>Format example: 255.255.255.0. Note that a space is required between the IP address and the mask.</td>
<td></td>
</tr>
<tr>
<td>force</td>
<td>Forces the IP address if another IP is already configured.</td>
<td></td>
</tr>
</tbody>
</table>

**Default**
N/A

**Configuration Mode**
Config

**History**
3.3.4500

**Role**
admin

**Example**

```
switch (config)# mlag-vip my-mlag-domain ip 10.10.10.254/24
switch (config)#
```

**Related Commands**

**Note**
- This IP address must be configured in one of the MLAG switches and must be in the box management subnet.
- Other switches in the MLAG must join the same domain name.
reload-delay

reload-delay <value>
no reload-delay

Specifies the amount of time that MLAG ports are disabled after system reboot. The no form of the command resets this parameter to its default value.

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>value</th>
<th>Time in seconds. Range: 0-300.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>30 seconds</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config MLAG</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.4500</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config mlag) # reload-delay 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch (config mlag) #</td>
<td></td>
</tr>
</tbody>
</table>

**Related Commands**

**Note**
- This interval allows the switch to learn the IPL topology to identify the master and sync the MAC address before opening the MLAG ports.
- This parameter must be similar in all MLAG peers.
**system-mac**

```
system-mac <virtual-mac>
no system-mac <virtual-mac>
```

Configures virtual system MAC.
The no form of the command resets this value to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>virtual-mac</td>
<td>MAC address</td>
</tr>
</tbody>
</table>

**Default**

Default is calculated according to the MLAG-VIP name, using the base MAC as VRRP MAC prefix (00:00:5E:00:01:xx) with the suffix hashed from the mlag-vip name 0...255.

**Configuration Mode**

Config MLAG

**History**

3.4.2008

**Role**

admin

**Example**

```
switch (config mlag) # system-mac 00:00:5E:00:01:5D
switch (config mlag) #
```

**Related Commands**

- This parameter must be configured the same in all MLAG peers.
**upgrade-timeout**

**Syntax**

```plaintext
upgrade-timeout <time>
no upgrade-timeout
```

Configures the time period during which an MLAG slave keeps its ports active while in upgrading state. The no form of the command resets the parameter value to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>Time in minutes. Range: 0-120 minutes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>60</th>
</tr>
</thead>
</table>

**Configuration Mode**

Config MLAG

**History**

3.4.2008

**Role**

admin

**Example**

```
switch (config mlag) # upgrade-timeout 60
switch (config mlag) #
```

**Related Commands**

**Note**

This parameter must be configured the same in all MLAG peers.
show mlag

show mlag

Displays MLAG configuration and status.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
</tbody>
</table>

**Configuration Mode**

Any Command Mode

**History**

3.3.4500

3.3.5006  Updated example

3.4.2008  Updated example with system MAC and upgrade timeout

**Role**

admin

**Example**

```
SX2 [mellanox: master] (config)# show mlag
Admin status: Enabled
Operational status: Up
Reload-delay: 1 sec
Keepalive-interval: 30 sec
Upgrade-timeout: 60 min
System-mac: 00:00:5E:00:01:5D

MLAG Ports Configuration Summary:
Configured: 1
Disabled: 0
Enabled: 1

MLAG Ports Status Summary:
Inactive: 0
Active-partial: 0
Active-full: 1

MLAG IPLs Summary:
ID Group Vlan Operational Local IP address Peer IP address
Port-Channel Interface State

1 Po1 1 Up 10.10.10.1 10.10.10.2

MLAG Members Summary:
System-id State Hostname

F4:52:14:2D:9B:88 Up <SX2>
F4:52:14:2D:9B:08 Up SX1
SX2 [mellanox: master] (config)#
```

**Related Commands**

**Note**
**show mlag-vip**

**Syntax Description**
N/A

**Default**
N/A

**Configuration Mode**
Any Command Mode

**History**
3.3.4500

**Role**
admin

**Example**
```
switch (config)# show mlag-vip
MLAG VIP

MLAG group name: my-mlag-group
MLAG VIP address: 1.1.1.1/30
Active nodes: 2

 Hostname VIP-State IP Address
----------------- -----------
SwitchA master 10.10.10.1
switch (config)#
```

**Related Commands**

**Note**
show interfaces mlag-port-channel

```
show interfaces mlag-port-channel <if-number>
```

Displays the MLAG LAG configuration and status.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

```
switch (config)# show interfaces mlag-port-channel 1
Mpo1
Admin state: Enabled
Operational state: Down
Description: N\A
Mac address: 00:00:00:00:00:00
MTU: 1500 bytes (Maximum packet size 1522 bytes)
Flow-control: receive off send off
Actual speed: 0 Gbps
Width reduction mode: Not supported Switchport mode: access
Last clearing of "show interface" counters : Never
60 seconds ingress rate: 0 bits/sec, 0 bytes/sec, 0 packets/sec
60 seconds egress rate: 0 bits/sec, 0 bytes/sec, 0 packets/sec
Rx
0 packets
0 unicast packets
0 multicast packets
0 broadcast packets
0 bytes
0 error packets
0 discard packets
Tx
0 packets
0 unicast packets
0 multicast packets
0 broadcast packets
0 bytes
0 error packets
0 discard packets
switch (config)#
```

Related Commands

Note
show interfaces mlag-port-channel summary

Displays MLAG summary table.

**Syntax Description**
N/A

**Default**
N/A

**Configuration Mode**
Any Command Mode

**History**
- 3.3.4500 First version
- 3.4.0000 Added notes and updated example
- 3.4.1100 Updated Example

**Role**
admin

**Example**
```
switch [my-vip: standby] (config)# show interfaces mlag-port-channel summary
MLAG Port-Channel Flags: D-Down, U-Up
P=Partial UP, S - Suspended by MLAG
Port Flags: D - Down, P - Up in port-channel (members)
S - Suspend in port-channel (members), I - Individual

<table>
<thead>
<tr>
<th>Group</th>
<th>Port-Channel</th>
<th>Type</th>
<th>Local Ports</th>
<th>Peer Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(D/U/P/S)</td>
<td></td>
<td>(D/P/S/I)</td>
<td>(D/P/S/I)</td>
</tr>
<tr>
<td>1</td>
<td>Mpo2(U)</td>
<td>Static</td>
<td>Eth1/2(P)</td>
<td>Eth1/2(P)</td>
</tr>
<tr>
<td>2</td>
<td>Mpo3(U)</td>
<td>Static</td>
<td>Eth1/4(P)</td>
<td>Eth1/8(P)</td>
</tr>
<tr>
<td>3</td>
<td>Mpo4(U)</td>
<td>LACP</td>
<td>Eth1/5(P)</td>
<td>Eth1/5(P)</td>
</tr>
</tbody>
</table>
```

**Related Commands**

**Note**
- If a cluster is not available, the column “Peer Ports” shows “N/A”. If the cluster is available but is not configured on the peer, the “Peer Ports” column shows nothing.
- If the system happens to be busy, peer ports may be unavailable and the following prompt may appear in the output: “System busy and partial information is presented – please try again later”.
- The “I” flag indicates an interface which is part of a port-channel and in individual state
- The “S” flag indicates an interface which is part of a port-channel and in suspended state
show mlag statistics

Displays the MLAG IPL counters.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4500</td>
</tr>
<tr>
<td></td>
<td>3.4.0000 Updated example</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config)# show mlag statistics
IPL 1:
 RX Heartbeat: 439908
 TX Heartbeat: 439951
 RX IGMP tunnel: 0
 TX IGMP tunnel: 1
 RX mlag-notification: 0
 TX mlag-notification: 12
 RX port-notification: 56
 TX port-notification: 73
 RX FDB sync: 424
 TX FDB sync: 778
 RX LACP manager: 38
 TX LACP manager: 21
```

Related Commands

Note
5.4 VLANs

A Virtual Local Area Network (VLAN) is an L2 segment of the network which defines a broadcast domain and is identified by a tag added to all Ethernet frames running within the domain. This tag is called a VLAN ID (VID) and can take a value of 1-4094.

Each port can have a switch mode of either:

- **Access** – Access port is a port connected to a host. It can accept only untagged frames, and assigns them a default configured VLAN (Port VLAN ID). On egress, traffic sent from the access port is untagged.

- **Access-dcb** – This mode is Mellanox specific that receives ingress untagged traffic but sends egress priority tag (VID = 0)

- **Hybrid** – Hybrid port is a port connected to either switches or hosts. It can receive both tagged and untagged frames and assigns untagged frames a default configured VLAN (Port VLAN ID). It receives tagged frames with VLANs of which the port is a member (these VLANs’ names are allowed). On egress, traffic of allowed VLANs sent from the Hybrid port is sent tagged, while traffic sent with PVID is untagged.

- **Trunk** – Trunk port is a port connecting 2 switches. It accepts only tagged frames with VLANs of which the port is a member. On egress, traffic sent from the Trunk port is tagged. By default, a Trunk port is, automatically, a member on all current VLANs.

5.4.1 Configuring Access Mode and Assigning Port VLAN ID (PVID)

To configure Access mode and assign PVID to interfaces:

1. Log in as admin.
2. Enter config mode. Run:
   ```bash
 switch > enable
 switch # configure terminal
   ```
3. Create a VLAN. Run:
   ```bash
 switch (config) # vlan 6
 switch (config vlan 6) #
   ```
4. Change back to config mode. Run:
   ```bash
 switch (config vlan 6) # exit
 switch (config) #
   ```
5. Enter the interface context. Run:
   ```bash
 switch (config) # interface ethernet 1/36
 switch (config interface ethernet 1/36) #
   ```
6. From within the interface context, configure the interface mode to Access. Run:
   ```bash
 switch (config interface ethernet 1/36) # switchport mode access
 switch (config interface ethernet 1/36) #
   ```
7. From within the interface context, configure the Access VLAN membership. Run:
   ```bash
 switch (config interface ethernet 1/36) # switchport access vlan 6
 switch (config_interface ethernet 1/36) #
   ```
5.4.2 Configuring Hybrid Mode and Assigning Port VLAN ID (PVID)

➢ *To configure Hybrid mode and assign PVID to interfaces:*

**Step 1.** Log in as admin.

**Step 2.** Enter config mode. Run:

```text
switch > enable
switch # configure terminal
```

**Step 3.** Create a VLAN. Run:

```text
switch (config) # vlan 6
switch (config vlan 6) #
```

**Step 4.** Change back to config mode. Run:

```text
switch (config vlan 6) # exit
switch (config) #
```

**Step 5.** Enter the interface context. Run:

```text
switch (config) # interface ethernet 1/36
switch (config interface ethernet 1/36) #
```

**Step 6.** From within the interface context, configure the interface mode to Access. Run:

```text
switch (config interface ethernet 1/36) # switchport mode hybrid
switch (config interface ethernet 1/36) #
```

**Step 7.** From within the interface context, configure the Access VLAN membership. Run:

```text
switch (config interface ethernet 1/36) # switchport hybrid vlan 6
switch (config interface ethernet 1/36) #
```

**Step 8.** Change to config mode again. Run:

```text
switch (config interface ethernet 1/36) # exit
switch (config) #
```

5.4.3 Configuring Trunk Mode VLAN Membership

➢ *To configure Trunk mode VLAN membership:*

**Step 1.** Log in as admin.

**Step 2.** Enter config mode. Run:

```text
switch > enable
switch # configure terminal
```

**Step 3.** Create a VLAN. Run:

```text
switch (config) # vlan 10
switch (config vlan 10) #
```

**Step 4.** Change back to config mode. Run:

```text
switch (config vlan 10) # exit
switch (config) #
```
5.4.4 Configuring Hybrid Mode VLAN Membership

To configure Hybrid mode VLAN membership:

Step 1. Log in as admin.

Step 2. Enter config mode. Run:

```
switch > enable
switch # configure terminal
```

Step 3. Create a VLAN. Run:

```
switch (config) # vlan 10
switch (config vlan 10) #
```

Step 4. Change back to config mode. Run:

```
switch (config vlan 10) # exit
switch (config) #
```

Step 5. Enter the interface context. Run:

```
switch (config) # interface ethernet 1/35
switch (config interface ethernet 1/35) #
```

Step 6. From within the interface context, configure the interface mode to Hybrid. Run:

```
switch (config interface ethernet 1/35) # switchport mode hybrid
switch (config interface ethernet 1/35) #
```

Step 7. From within the interface context, configure the allowed VLAN membership. Run:

```
switch (config interface ethernet 1/35) # switchport hybrid allowed-vlan add 10
switch (config interface ethernet 1/35) #
```

Step 8. Change to config mode again. Run:

```
switch (config interface ethernet 1/35) # exit
switch (config) #
```
5.4.5 Commands

**vlan**

```plaintext
vlan {<vlan-id> | <vlan-range>}
no vlan {<vlan-id> | <vlan-range>}
```

Creates a VLAN or range of VLANs, and enters a VLAN context. The no form of the command deletes the VLAN or VLAN range.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-id</td>
<td>1-4094</td>
</tr>
<tr>
<td>vlan-range</td>
<td>Any range of VLANs.</td>
</tr>
</tbody>
</table>

**Default**

VLAN 1 is enabled by default.

**Configuration Mode**

Config

**History**

3.1.1400

**Role**

admin

**Example**

```plaintext
switch (config) # vlan 10
switch (config vlan 10) # show vlan
```

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Name</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>default</td>
<td>Eth1/2, Eth1/3, Eth1/4/1, Eth1/4/2 ...</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```plaintext
switch (config vlan 10) #
```

**Related Commands**

- show vlan
- switchport mode
- switchport [trunk | hybrid] allowed-vlan

**Note**

Interfaces are not added automatically to VLAN unless configured with trunk or hybrid mode with “all” option turned on.
name

name <vlan-name>
no name

Adds VLAN name.
The no form of the command deletes the VLAN name.

Syntax Description

<table>
<thead>
<tr>
<th>Default</th>
<th>No name available.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config VLAN</td>
</tr>
<tr>
<td>History</td>
<td>3.1.1400</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

switch (config) # vlan 10
switch (config vlan 10) # name my-vlan-name
switch (config vlan 10) # show vlan

VLAN    Name                    Ports
-------- -----------             --------------------------------------
1        default                 Eth1/2, Eth1/3, Eth1/4/1, Eth1/4/2, Eth1/5,
15,            Eth1/6, Eth1/7, Eth1/8, Eth1/9, Eth1/10,
20,            Eth1/11, Eth1/12, Eth1/13, Eth1/14, Eth1/15,
25,            Eth1/16, Eth1/17, Eth1/18, Eth1/19, Eth1/20,
30,            Eth1/21, Eth1/22, Eth1/23, Eth1/24, Eth1/25,
35,            Eth1/26, Eth1/27, Eth1/28, Eth1/29, Eth1/30,
10    my-vlan-name            Eth1/31, Eth1/32, Eth1/33, Eth1/34, Eth1/35,
                               Eth1/36, Po34, Po4096

Related Commands

show vlan
switchport mode
switchport [trunk | hybrid] allowed-vlan

Note

Name can not be added to a range of VLANs.
show vlan

show vlan [id <vlan-id>]

Displays the VLAN table.

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-id</td>
<td>1-4094</td>
</tr>
</tbody>
</table>

**Default**
N/A

**Configuration Mode**
Any Command Mode

**History**
3.1.1400

**Role**
admin

**Example**

```
switch (config vlan 10) # show vlan
```

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Name</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>default</td>
<td>Eth1/2, Eth1/3, Eth1/4/1, Eth1/4/2 ...</td>
</tr>
<tr>
<td>10</td>
<td>my-vlan-name</td>
<td></td>
</tr>
</tbody>
</table>

**Related Commands**

- show vlan
- switchport mode
- switchport [trunk | hybrid] allowed-vlan
- vlan

**Note**
**switchport mode**

```
switchport mode {access | dot1q-tunnel | trunk | hybrid | access-dcb}
no switchport mode
```

Sets the switch port mode.
The no form of the command sets the switch port mode to access.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Access Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access</td>
<td>Untagged port. 802.1q tagged traffic are filtered. Egress traffic is untagged.</td>
</tr>
<tr>
<td>dot1q-tunnel</td>
<td>Allows both tagged and untagged ingress Ethernet packets. Egress packets are tagged with a second VLAN (802.1Q) header.</td>
</tr>
<tr>
<td>trunk</td>
<td>802.1q tagged port, untagged traffic is filtered.</td>
</tr>
<tr>
<td>hybrid</td>
<td>Both 802.1q tagged and untagged traffic is allowed on the port.</td>
</tr>
<tr>
<td>access-dcb</td>
<td>Untagged port, egress traffic is priority tagged.</td>
</tr>
</tbody>
</table>

**Default**
access

**Configuration Mode**
- Config Interface Ethernet
- Config Interface Port Channel
- Config Interface MLAG Port Channel

**History**
- 3.1.1400
- 3.3.4500 Added MLAG port-channel configuration mode
- 3.4.3000 Added dot1q-tunnel parameter

**Role**
admin

**Example**

```
switch (config) # interface ethernet 1/7
switch (config interface ethernet 1/7) # switchport mode access
switch (config interface ethernet 1/7) # show interfaces switchport

<table>
<thead>
<tr>
<th>Interface</th>
<th>Mode</th>
<th>Access vlan</th>
<th>Allowed vlans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth1/2</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/3</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/4/1</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/4/2</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/5</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/6</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>....</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Po34</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Po4096</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
```

```
Related Commands

- show vlan
- show interfaces switchport
- switchport access vlan
- switchport [trunk | hybrid] allowed-vlan
- switchport dot1q-tunnel qos-mode
- vlan

Note
switchport dot1q-tunnel qos-mode

Syntax

```
switchport dot1q-tunnel qos-mode {pipe | uniform}
no switchport dot1q-tunnel qos-mode
```

Assigns QoS to the service provider’s traffic.
The no form of the command resets the parameter value to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>pipe</th>
<th>uniform</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gives the service provider’s traffic QoS 0</td>
<td>Gives the service provider’s traffic the same QoS as the customer’s traffic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>pipe</th>
</tr>
</thead>
</table>

Configuration Mode

- Config Interface Ethernet
- Config Interface Port Channel
- Config Interface MLAG Port Channel

<table>
<thead>
<tr>
<th>History</th>
<th>3.4.3000</th>
</tr>
</thead>
</table>

Role

- admin

Example

```
switch (config interface ethernet 1/1) # switchport dot1q-tunnel qos-mode uniform
switch (config interface ethernet 1/1) #
```

Related Commands

- `show vlan`
- `show interfaces switchport`
- `switchport access vlan`
- `switchport [trunk | hybrid] allowed-vlan`
- `vlan`

Note
switchport access

switchport access vlan <vlan-id>
no switchport access vlan

Sets the port access VLAN.
The no form of the command sets the port access VLAN to 1.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-id</td>
<td>1-4094</td>
</tr>
</tbody>
</table>

Default

1

Configuration Mode

- Config Interface Ethernet
- Config Interface Port Channel
- Config Interface MLAG Port Channel

History

- 3.1.1400: First version
- 3.2.0500: Format change (removed hybrid and access-dcb options). Previous command format was: “switchport {hybrid | access-dcb | access} vlan <vlan-id>”
- 3.3.4500: Added MLAG port-channel configuration mode

Role

admin

Example

```
switch (config) # interface ethernet 1/7
switch (config interface ethernet 1/7) # switchport access vlan 10
switch (config interface ethernet 1/7) # show interfaces switchport
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Mode</th>
<th>Access vlan</th>
<th>Allowed vlans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth1/2</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/3</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/4/1</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/4/2</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/5</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/6</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/7</td>
<td>access</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Po4096</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

```
switch (config interface ethernet 1/7) #
```

Related Commands

- show vlan
- show interfaces switchport
- switchport mode
- switchport [trunk | hybrid] allowed-vlan
- vlan

Note

This command is not applicable for interfaces with port mode trunk.
only one option (“access”, “access-dcb” or “hybrid”) is applicable to configure on the port, depends on the switchport mode of the port.
switchport {hybrid, trunk} allowed-vlan

Syntax:

```plaintext
switchport {hybrid, trunk} allowed-vlan {<vlan> | add <vlan> | remove <vlan> all | except <vlan> | none}
```

Sets the port allowed VLANs.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan</td>
<td>VLAN ID (1-4094) or VLAN range.</td>
</tr>
<tr>
<td>add</td>
<td>Adds VLAN or range of VLANs.</td>
</tr>
<tr>
<td>remove</td>
<td>Removes VLANs or range of VLANs.</td>
</tr>
<tr>
<td>all</td>
<td>Adds all VLANs in available in the VLAN table.</td>
</tr>
<tr>
<td>except</td>
<td>Adds all VLANs expect this VLAN or VLAN range.</td>
</tr>
<tr>
<td>none</td>
<td>Removes all VLANs.</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config Interface Ethernet
Config Interface Port Channel
Config Interface MLAG Port Channel

History

3.1.1400

Role

admin

Example

```plaintext
switch (config) # interface ethernet 1/7
switch (config interface ethernet 1/7) # switchport hybrid allowed-vlan all
switch (config interface ethernet 1/7) # show interfaces switchport

<table>
<thead>
<tr>
<th>Interface</th>
<th>Mode</th>
<th>Access vlan</th>
<th>Allowed vlans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth1/2</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/3</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/4/1</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/4/2</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/5</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/6</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/7</td>
<td>hybrid</td>
<td>1</td>
<td>1, 10</td>
</tr>
<tr>
<td>Po34</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Po4096</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
```

Related Commands

show vlan
show interfaces switchport
switchport access vlan
switchport mode
vlan

Note

This command is not applicable for interfaces with port mode access or access-dcb.
show interface switchport

Displays all interface switch port configurations.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.1400</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) #show interfaces switchport
Interface | Mode | Access vlan | Allowed vlans |
----------|------|-------------|---------------|
          |      |             |               |
          |      |             |               |
Eth1/2    | access | 1           |               |
Eth1/3    | access | 1           |               |
Eth1/4/1  | access | 1           |               |
Eth1/4/2  | access | 1           |               |
Eth1/5    | access | 1           |               |
Eth1/6    | access | 1           |               |
Eth1/7    | hybrid | 1           | 1, 10         |
          |      |             |               |
          |      |             |               |
Po34      | access | 1           |               |
Po4096    | access | 1           |               |
```

Related Commands

```
show vlan
switchport access vlan
switchport mode
vlan
```

Note
5.5 QinQ

A QinQ VLAN tunnel enables a service provider (SP) to segregate the traffic of different customers in their infrastructure, while still giving the customer a full range of VLANs for their internal use by adding a second 802.1Q VLAN tag to an already tagged frame.

So let us assume for example that an SP exists which needs to offer L2 connectivity to two corporations, “X” and “Y”, that have campuses located in both “A”, “B”. All campuses run Ethernet LANs, and the customers intend to connect through the SP’s L2 VPN network so that their campuses are in the same LAN (L2 network). Hence, it would be desirable for “X”, “Y” to have a single LAN each in both “A”, “B” which could easily exceed the VLAN limit of 4096 of the 802.1Q specification.

5.5.1 QinQ Operation Modes

QinQ can be enabled on a port or according to predefined conditions.

- ACL-mode: Adding and removing S-VLAN is determined by an ACL-dependent action
- Port-mode: All ingress traffic to a specific QinQ enabled interface is tagged with an additional VLAN 802.1Q tag (also known as S-VLAN). The S-VLAN ID is equal to that interface’s PVID (access VLAN).

The S-VLAN tag is added regardless of whether the traffic is tagged or untagged. Traffic coming out from this port, has the S-VLAN stripped from it.

5.5.2 Configuring QinQ

➢ To configure QinQ:

Step 1. Create the C-VLAN. Run:

```
switch (config) # vlan 200
switch (config vlan 200) # exit
```

Step 2. Enter the configuration mode of an Ethernet, LAG, or MLAG interface. Run:

```
switch (config) # interface port-channel 100
```

Step 3. Change the switchport mode of the interface to enable QinQ. Run:

```
switch (config interface port-channel 100) # switchport mode dot1q-tunnel
```

Step 4. Change its port VLAN ID (PVID). This configures the S-VLAN. Run:

```
switch (config interface port-channel 100) # switchport access vlan 200
```
Step 5. Verify the configuration. Run:

```bash
switch (config interface port-channel 100) # show interface port-channel 100

Po100
  Admin state: Enabled
  Operational state: Up
  Description: N\A
  Mac address: 00:00:00:00:00:00
    MTU: 1500 bytes (Maximum packet size 1522 bytes)
  lacp-individual mode: Disabled
  Flow-control: receive off send off
  Actual speed: 1 X 40 Gbps
  Width reduction mode: Not supported
  Switchport mode: dot1q-tunnel
  QoS mode: uniform
  MAC learning mode: Enabled
  Last clearing of "show interface" counters : Never
  60 seconds ingress rate: 0 bits/sec, 0 bytes/sec, 0 packets/sec
  60 seconds egress rate: 0 bits/sec, 0 bytes/sec, 0 packets/sec

Rx
  0 packets
  0 unicast packets
  0 multicast packets
  0 broadcast packets
  0 bytes
  0 error packets
  0 discard packets

Tx
  0 packets
  0 unicast packets
  0 multicast packets
  0 broadcast packets
  0 bytes
  0 discard packets
switch (config interface port-channel 100) #
```
Step 6. Verify the configuration. Run:

```bash
switch (config interface port-channel 100) # show interfaces switchport

<table>
<thead>
<tr>
<th>Interface</th>
<th>Mode</th>
<th>Access vlan</th>
<th>Allowed vlans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth1/1</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/2</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/3</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/4</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/5</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/6</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth1/27</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/33</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/34</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/35</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth1/36</td>
<td>access</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Po400</td>
<td>dot1q-tunnel</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

switch (config interface port-channel 100) #
```
5.5.3 Commands

switchport dot1q-tunnel qos-mode

```
switchport dot1q-tunnel qos-mode {pipe | uniform}
no switchport dot1q-tunnel qos-mode
```

Assigns QoS to the service provider’s traffic. The no form of the command resets the parameter value to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>pipe</th>
<th>Gives the service provider’s traffic the same QoS as the customer’s traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>uniform</td>
<td>Gives the service provider’s traffic QoS 0</td>
</tr>
</tbody>
</table>

- **Default**: pipe
- **Configuration Mode**: Config Interface Ethernet, Config Interface Port Channel, Config Interface MLAG Port Channel
- **History**: 3.4.3000
- **Role**: admin
- **Example**:
  ```
  switch (config interface ethernet 1/1) # switchport dot1q-tunnel qos-mode uniform
  switch (config interface ethernet 1/1) #
  ```
- **Related Commands**: show vlan, show interfaces switchport, switchport access vlan, switchport [trunk | hybrid] allowed-vlan, vlan

Note
5.6 MAC Address Table

5.6.1 Configuring Unicast Static MAC Address

You can configure static MAC addresses for unicast traffic. This feature improves security and reduces unknown unicast flooding.

➢ To configure Unicast Static MAC address:

Step 1. Log in as admin.

Step 2. Enter config mode. Run:

```
switch > enable
switch # configure terminal
```

Step 3. Run the command `mac-address-table static unicast <destination mac address> vlan <vlan identifier(1-4094)> interface ethernet <slot>/ <port>`. Run:

```
switch (config) # mac-address-table static unicast 00:11:22:33:44:55 vlan 1 interface ethernet 0/1
```

5.6.2 MAC Learning Considerations

MAC learning may be disabled using the command `mac-learning disable` which is beneficial in the following situations:

- To prevent denial-of-service attacks
- To manage the available MAC address table space by controlling which interfaces can learn MAC addresses
- To duplicate to a dedicated server (port7) all the packets that one host (host1; port1) sends to another (host2; port2), like in port mirroring. To accomplish this, MAC learning is disabled on port2. In this case the FDB does not obtain the MAC address of host2. Also, to prevent broadcast to every port, it is possible to configure a VLAN (VLAN 80) which ports 1, 2 and 7 are member of.

Figure 16: MAC Learning Disable Example Case

![MAC Learning Disable Example Case](image-url)
5.6.3 Commands

mac-address-table aging-time

`mac-address-table aging-time <age>`

`no mac-address-table aging-time`

Sets the maximum age of a dynamically learnt entry in the MAC address table. The no form of the command resets the aging time of the MAC address table to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>age</th>
<th>10-1000000 seconds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0600</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```plaintext
switch (config) # mac-address-table aging-time 50
switch (config) # show mac-address-table aging-time

Mac Address Aging Time: 50

switch (config) #
```

Related Commands

- show mac-address-table
- show mac-address-table aging time

Note
mac-address-table static

mac-address-table static <mac address> vlan <vlan> interface <if-type> <if-number>
no mac-address-table static <mac address> vlan <vlan> interface <if-type> <if-number>

Configures a static MAC address in the forwarding database. The no form of the command deletes a configured static MAC address from the forwarding database.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac address</td>
<td>Destination MAC address.</td>
</tr>
<tr>
<td>vlan</td>
<td>VLAN ID or VLAN range.</td>
</tr>
<tr>
<td>if-type</td>
<td>Ethernet or port-channel interface type.</td>
</tr>
<tr>
<td>if-number</td>
<td>The interface number (i.e. 1/1, 3).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>No static MAC addresses available in default.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0600</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

| Example | switch (config) # mac-address-table static aa:aa:aa:aa:aa:aa vlan 1
 | interface ethernet 1/7
 | switch (config) # show mac-address-table
 |
 | Switch ethernet-default
 | Vlan | Mac Address | Type | Interface | |
|---|---|---|---|---|
| | 1 | aa:aa:aa:aa:aa:aa | static | Eth1/7 |
| Number of unicast: | 1 | | | |
| Number of multicast: | 0 | | | |

| Related Commands | show mac-address-table
 | mac-address-table aging time |

| Note | The no form of the command will not clear a dynamic MAC address. Dynamic MAC addresses are cleared using the “clear mac-address-table dynamic” command. |
mac-learning disable

mac-learning disable
no mac-learning disable

Disables MAC-address learning.
The no form of the command enables MAC-address learning.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
| Configuration Mode | Config Interface Ethernet
 | Config Interface Port Channel |
| History | 3.1.0600 |
| Role | admin |

Example

```
switch (config interface ethernet 1/1) # mac-learning disable
```

Related Commands

- When adding a port to a LAG, the port needs to be aligned with the LAG’s configuration.
- When removing a port from a LAG, the port remains in whichever configuration the LAG is in.
- Disabling MAC learning is not supported on a local analyzer port.
- Disabling MAC learning is not supported on an IPL LAG.
clear mac-address-table dynamic

clear mac-address-table dynamic

Clear the dynamic entries in the MAC address table.

Syntax Description

N/A

Default

N/A

Configuration Mode

Config

History

3.1.0600

Role

admin

Example

```bash
switch (config) # clear mac-address-table dynamic
switch (config) #
```

Related Commands

mac-address-table aging-time
mac-address-table static
show mac-address-table

Note

This command does not clear the MAC addresses learned on the mgmt0 port. Static entries are deleted using the “no mac-address-table static” command.
show mac-address-table

show mac-address-table [address <mac-address> | interface ethernet <if-number> | vlan [<vlan> | range <range>] | unicast | multicast]

Displays the static and dynamic unicast and multicast MAC addresses for the switch. Various of filter options available.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>mac-address</th>
<th>Filter the table to a specific MAC address.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>if-number</td>
<td>Filter the table to a specific interface.</td>
</tr>
<tr>
<td></td>
<td>vlan</td>
<td>Filter the table to a specific VLAN number (1-4094).</td>
</tr>
<tr>
<td></td>
<td>range</td>
<td>Filter the table to a range of VLANs.</td>
</tr>
<tr>
<td></td>
<td>unicast</td>
<td>Filter the table to a unicast addresses only.</td>
</tr>
<tr>
<td></td>
<td>multicast</td>
<td>Filter the table to a multicast addresses only.</td>
</tr>
</tbody>
</table>

Default
N/A

Configuration Mode
Any Command Mode

History
3.1.0600
3.3.4500 Updated Example

Role
admin

Example
switch (config) # show mac-address-table

Switch ethernet-default

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Mac Address</th>
<th>Type</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00:00:00:00:00:01</td>
<td>Static</td>
<td>Po5</td>
</tr>
<tr>
<td>1</td>
<td>00:00:3d:5c:fe:16</td>
<td>Dynamic</td>
<td>Eth1/1</td>
</tr>
<tr>
<td>1</td>
<td>00:00:3d:5c:fe:1b</td>
<td>Dynamic</td>
<td>Eth1/2</td>
</tr>
</tbody>
</table>

Number of unicast: 2
Number of multicast: 0

switch (config) #

Related Commands
mac-address-table static
clear mac-address-table

Note
show mac-address-table aging-time

show mac-address-table aging-time

Displays the MAC address table aging time.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0600</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```bash
switch (config) # mac-address-table aging-time 300
switch (config) # show mac-address-table aging-time

Mac Address Aging Time: 300

switch (config) #
```

Related Commands

- mac-address-table aging-time
- mac-address-table static
- clear mac-address-table

Note

MAC addresses learned on the mgmt0 is not shown by this command.
5.7 Spanning Tree

The operation of Rapid Spanning Tree Protocol (RSTP) provides for rapid recovery of connectivity following the failure of a bridge/bridge port or a LAN. The RSTP component avoids this delay by calculating an alternate root port, and immediately switching over to the alternate port if the root port becomes unavailable. Thus, using RSTP, the switch immediately brings the alternate port to forwarding state, without the delays caused by the listening and learning states. The RSTP component conforms to IEEE standard 802.1D 2004.

RSTP enhancements is a set of functions added to increase the volume of RSTP in Mellanox switches. It adds a set of capabilities related to the behavior of ports in different segments of the network. For example: the required behavior of a port connected to a non-switch entity, such as host, is to converge quickly, while the required behavior of a port connected to a switch entity is to converge based on the RSTP parameters.

Additionally, it adds security issues on a port and switch basis, allowing the operator to determine the state and role of a port or the entire switch should an abnormal event occur. For example: If a port is configured to be root-guard, the operator will not allow it to become a root-port under any circumstances, regardless of any BPDU that will have been received on the port.

5.7.1 Port Priority and Cost

When two ports on a switch are part of a loop, the STP port priority and port path cost configuration determine which port on the switch is put in the forwarding state and which port is put in the blocking state.

To configure port priority use the following command:

```markdown
switch (config interface etherent <inf>)# spanning-tree port-priority <0-240>
```

To configure port path cost use the following command:

```markdown
switch (config interface etherent <inf>)# spanning-tree cost <1-200000000>
```

5.7.2 Port Type

Port type has the following configuration options:

- **edge** – is not assumed to be converged by the RSTP learning/forwarding mechanism. It converges to forwarding quickly.

 It is recommended to configure the port type for all ports connected to hosts as edge ports.

- **normal** – is assumed to be connected to a switch, thus it tries to be converged by the RSTP learning/forwarding. However, if it does not receive any BPDUs, it is operationally moved to be edge.

- **network** – is assumed to be connected to a switch. If it does not receive any BPDUs, it is moved to discarding state.

Each of these configuration options is mutually exclusive.

Port type is configured using the command spanning-tree port type. It may be applied globally on the switch (Config) level, which configures all switch interfaces. Another option is to configure ports individually by entering the interface’s configuration mode.
• Global configuration:

```plaintext
switch (config)# spanning-tree port type {edge, normal, network} default
```

• Interface configuration:

```plaintext
switch (config interface ethernet <inf>)# spanning-tree port type {edge, normal, network}
```

5.7.3 BPDU Filter

Using BPDU filter prevents the CPU from sending/receiving BPDUs on specific ports.

BPDU filtering is configured per interface. When configured, the port does not send any BPDUs and drops all BPDUs that it receives. To configure BPDU filter, use the following command:

```plaintext
switch (config interface ethernet <inf>)# spanning-tree bpdufilter {enable, disable}
```

Configuring BPDU filtering on a port connected to a switch can cause bridging loops because the port filters any BPDU it receives and goes to forwarding state.

5.7.4 BPDU Guard

BPDU guard is a security feature which, when enabled, shuts down the port in case it receives BPDU packets. This feature becomes useful when connecting to an unauthorized switch.

To configure BPDU guard use the following command:

```plaintext
switch (config interface ethernet <inf>)# spanning-tree port type <type> bpduguard
```

5.7.5 Loop Guard

Loop guard is a feature that prevents loops in the network.

When a blocking port in a redundant topology transitions to the forwarding state (accidentally), an STP loop occurs. This happens when BPDUs are no longer received by one of the ports in a physically redundant topology.

Loop guard is useful in switched networks where devices are connected point-to-point. A designated bridge cannot disappear unless it sends an inferior BPDU or brings the link down on a point-to-point connection.

The loop guard configuration is only allowed on “network” port type.

If loop guard is enabled and the port does not receive BPDUs, the port is put into an inconsistent state (blocking) until the port starts to receive BPDUs again. A port in the inconsistent state does not transmit BPDUs. If BPDUs are received again, loop guard alters its inconsistent state condition. STP converges to a stable topology without the failed link or bridge after loop guard isolates the failure.

Disabling loop guard moves all loop-inconsistent ports to listening state.
To configure loop guard use the following command:
```
switch (config interface ethernet <inf>)# spanning-tree guard loop
```

5.7.6 Root Guard

Configuring root guard on a port prevents that port from becoming a root port. A port put in root-inconsistent (blocked) state if an STP convergence is triggered by a BPDU that makes that port a root port. The port is unblocked after the port stops sending BPDUs.

To configure loop guard use the following command:
```
switch (config interface ethernet <inf>)# spanning-tree guard root
```

5.7.7 MSTP

Spanning Tree Protocol (STP) is a mandatory protocol to run on L2 Ethernet networks to eliminate network loops and the resulting broadcast storm caused by these loops. Multiple STP (MSTP) enables the virtualization of the L2 domain into several VLANs, each governed by a separate instance of a spanning tree which results in a network with higher utilization of physical links while still keeping the loop free topology on a logical level.

Up to 64 MSTP instances can be defined in the switch. Up to 64 VLANs can be mapped to a single MSTP instance. MSTP instance 0 (the default instance) may have all possible VLANs (1-4094) mapped to it.

For MSTP network design over Mellanox L2 VMS, please refer to Mellanox Virtual Modular Switch Reference Guide.

5.7.8 RPVST

Rapid Per-VLAN Spanning Tree (RPVST) flavor of the STP provides finer-grained traffic by paving a spanning-tree instance per each configured VLAN. Like MSTP, it allows a better utilization of the network links comparing to RSTP.

Figure 17 exhibits a typical RPVST network configuration to get a better utilization on the inter-switch trunk ports.

![Figure 17: RPVST Network Config](image)
5.7.8.1 RPVST and VLAN Limitations

When the STP of the switch is set to RPVST, spanning tree is set on each of the configured VLANs in the system by default. To enable the spanning tree mode, the command “spanning-tree” must be run.

Each VLAN runs an STP state machine and an RPVST instance. There is a global limitation on the number of active state machines that can operate in MLNX-OS. Enforcement of this limitation is done through the maximum number of VLANs allowed in the system.

Table 23 - Supported VLANs by RPVST per Switch System

<table>
<thead>
<tr>
<th>Switch System Model</th>
<th>Number of Supported VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>SX90Y3474</td>
<td>17</td>
</tr>
</tbody>
</table>

The state machine takes attributes like forward time, hello time, max age and priority, etc.

When configuring priority on a VLAN in RPVST, the operational priority given to the VLAN is a summation of what the user configured and the value of the VLAN itself. For example running “spanning-tree vlan 10 priority 32768” yields a priority of 32778 for VLAN 10.

5.7.8.2 RPVST and RSTP Interoperability

RPVST domains can be interconnected by a standard 802.1Q domain that runs RSTP protocol. While the RSTP domain builds a single common instance spanning tree, the RPVST domains at the edge continue to build a tree per VLAN while exchanging tagged RPVST multicast BPDUs. (This exchange may happen on untagged RPVST BPDUs as well.) The switch devices that are in the boundary between the RPVST and the RSTP domains should be configured as RPVST mode. When set to RPVST mode, the switch continues to run the common instance spanning tree (CIST) state machine on VLAN 1 by exchanging IEEE BPDUs with the legacy RSTP switches.
To successfully connect RSTP and RPVST domains, the system administrator must align the native VLAN configuration across all network switches, or in other words, the internal identification of untagged packets to VLAN.
5.7.9 Commands

spanning-tree

```
spanning-tree
no spanning-tree
```

Globally enables the spanning tree feature.
The no form disables the spanning tree feature.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Spanning tree is enabled.</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # no spanning-tree
| | switch (config) # |
| Related Commands | show spanning-tree |

Note
spanning-tree mode

```
spanning-tree mode {rst | mst | rpvst}
no spanning-tree mode
```

Changes the spanning tree mode.
The no form of the command sets the parameter to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>rst</th>
<th>Multiple spanning tree.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mst</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rpvst</td>
<td>Rapid per-VLAN spanning tree.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default</td>
<td>rst</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.4150</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

```
Example

switch (config)# spanning-tree mode mst
```

Related Commands

Note
- On x86 switch systems, the number of VLANs supported by RPVST are 128
- On PPC switch systems, the number of VLANs supported by RPVST are between 13-18
spanning-tree (timers)

spanning-tree [forward-time <time in secs> | hello-time <time in secs> | max-age <time in secs>]
no spanning-tree [forward-time | hello-time | max-age | priority]

Sets the spanning tree timers.
The no form of the command sets the timer to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>forward-time</th>
<th>Controls how fast a port changes its spanning tree state from Blocking state to Forwarding state. Parameter range: 4-30 seconds.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hello-time</td>
<td>Determines how often the switch broadcasts its hello message to other switches when it is the root of the spanning tree. Parameter range: 1-2 seconds.</td>
</tr>
<tr>
<td></td>
<td>max-age</td>
<td>Sets the maximum age allowed for the Spanning Tree Protocol information learnt from the network on any port before it is discarded. Parameter range: 6-40 seconds.</td>
</tr>
</tbody>
</table>

Default
- forward-time: 15 seconds
- hello-time: 2 seconds
- max-age: 20 seconds

Configuration Mode Config

History 3.1.0000

Role admin

Example
```
switch (config) # spanning-tree forward-time
switch (config) #
```

Related Commands show spanning-tree

Note The following formula applies on the spanning tree timers:

\[2 \times (\text{ForwardTime} - 1) \geq \text{MaxAgeTime} \geq 2 \times (\text{Hello Time} + 1) \]
spanning-tree port type (default global)

spanning-tree port type {edge [bpdufilter | bpduguard] | network [bpduguard] | normal [bpduguard]} default
no spanning-tree port type default

Configures all switch interfaces as edge/network/normal ports. These ports can be connected to any type of device.
The no form of the command disables the spanning tree operation.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>edge</th>
<th>Assumes all ports are connected to hosts/servers.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bpdufilter</td>
<td>Configures to enable the spanning tree BPDU filter.</td>
</tr>
<tr>
<td></td>
<td>bpduguard</td>
<td>Configures to enable the spanning tree BPDU guard.</td>
</tr>
<tr>
<td></td>
<td>network</td>
<td>Assumes all ports are connected to switches and bridges.</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>The port type (edge or network) determines according to the spanning tree operational mode.</td>
</tr>
</tbody>
</table>

Default
Normal

Configuration Mode
Config

History
3.1.0000
3.4.0008 Updated command syntax

Role
admin

Example
switch (config) # spanning-tree port type edge default
switch (config) #

Related Commands
show spanning-tree

Note
spanning-tree priority

spanning-tree priority <bridge-priority>
no spanning-tree priority

Sets the spanning tree bridge priority.
The no form of the command sets the bridge priority to default.

Syntax Description
- **bridge-priority**: Sets the bridge priority for the spanning tree. Its value must be in steps of 4096, starting from 0. Only the following values are applicable: 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, 61440.

Default: 32786

Configuration Mode: Config

History: 3.1.0000

Role: admin

Example
- switch (config) # spanning-tree priority 4096
- switch (config) #

Related Commands: show spanning-tree

Note
spanning-tree port-priority

spanning-tree port-priority <priority>
no spanning-tree port-priority

Configures the spanning-tree interface priority.
The no form of the command returns configuration to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>priority</th>
<th>Spanning tree interface priority. The possible values are: 0, 16, 32,48, 64, 80, 96, 112, 128,144, 160, 176, 192, 208, 224, 240.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>128</td>
<td></td>
</tr>
</tbody>
</table>
| Configuration Mode | Config Interface Ethernet
 | Config Interface Port Channel
 | Config Interface MLAG Port Channel |
| History | 3.1.0000 | |
| | 3.3.4500 | Added MLAG port-channel configuration mode |
| Role | admin | |
| Example | switch (config) # interface ethernet 1/1
 | switch (config interface ethernet 1/1) # spanning-tree port-priority 16
 | switch (config interface ethernet 1/1) # |
| Related Commands | show spanning-tree |
| Note | |
spanning-tree cost

spanning-tree cost <port cost>
no spanning-tree cost

Configures the interface cost of the spanning tree.
The no form of the command returns configuration to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>port cost</th>
<th>Sets the spanning tree cost of an interface. Value range is 0-200000000.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>The default cost is derived from the speed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1Gbps 20000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10Gbps 2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40Gbps 500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56Gbps 357</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Mode	Config Interface Ethernet
	Config Interface Port Channel
	Config Interface MLAG Port Channel

<table>
<thead>
<tr>
<th>History</th>
<th>3.1.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.3.4500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch (config) # interface ethernet 1/1</td>
</tr>
<tr>
<td>switch (config interface ethernet 1/1) # spanning-tree cost 1000</td>
</tr>
<tr>
<td>switch (config interface ethernet 1/1) #</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>show spanning-tree</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>• LAG default cost is calculated by dividing the port speed by the number of active links in UP state. For example: if there were 4 links in the LAG out of which only two are in UP state, assuming the port speed is 10Gbps, the LAG cost will be 2000/2 = 1000.</td>
</tr>
<tr>
<td>• When configuring the cost for a LAG, the cost will be fixed to this configuration, no matter what the number of active links (UP state) in the LAG is</td>
</tr>
<tr>
<td>• Unstable network may cause the LAG cost to change dynamically assuming the cost parameter is not configured for anything else other than default</td>
</tr>
</tbody>
</table>
spanning-tree port type

`spanning-tree port type <port type>`
`no spanning-tree port type`

Configures spanning-tree port type
The no form of the command returns configuration to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>default</th>
<th>According to global configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>edge</td>
<td>Assumes all ports are connected to hosts/servers.</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>The port type (edge or network) determines according to the spanning tree operational mode.</td>
</tr>
<tr>
<td></td>
<td>network</td>
<td>Assumes all ports are connected to switches and bridges.</td>
</tr>
<tr>
<td></td>
<td>bpdufilter</td>
<td>Configures to enable the spanning tree BPDU filter.</td>
</tr>
<tr>
<td></td>
<td>bpduguard</td>
<td>Configures to enable the spanning tree BPDU guard.</td>
</tr>
</tbody>
</table>

Default: Globally defined by the command “spanning-tree port type <port-type> default”

Configuration Mode
- Config Interface Ethernet
- Config Interface Port Channel
- Config Interface MLAG Port Channel

History
- 3.1.0000
- 3.3.4500 Added MLAG port-channel configuration mode

Role
admin

Example
```bash
switch (config) # interface ethernet 1/1
switch (config interface ethernet 1/1) # spanning-tree port type edge
switch (config interface ethernet 1/1) #
```

Related Commands
- show spanning-tree

Note
spanning-tree guard

```
spanning-tree guard {loop | root}
no spanning-tree guard {loop | root}
```

Configures spanning-tree guard. The no form of the command returns configuration to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop</td>
<td>Enables loop-guard on the interface. If the loop-guard is enabled, upon a situation where the interface fails to receive BPDUs the switch will not egress data traffic on this interface.</td>
</tr>
<tr>
<td>root</td>
<td>Enables root-guard on the interface. If root-guard is enabled on the interface, the interface will never be selected as root port.</td>
</tr>
</tbody>
</table>

Default

loop-guard and loop-guard are disabled.

Configuration Mode

Config Interface Ethernet
Config Interface Port Channel
Config Interface MLAG Port Channel

History

3.1.0000

3.3.4500 Added MLAG port-channel configuration mode

Role

admin

Example

```
switch (config) # interface ethernet 1/1
switch (config interface ethernet 1/1) # spanning-tree guard root
switch (config interface ethernet 1/1) #
```

Related Commands

show spanning-tree

Note
spanning-tree bpdufilter

```
spanning-tree bpdufilter {disable | enable}
no spanning-tree bpdufilter
```

Configures spanning-tree BPDU filter on the interface. The interface will ignore any BPDU that it receives and will not send PDBUs. The STP state on the port will move to the forwarding state.

The no form of the command returns the configuration to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>disable</th>
<th>Enables the BPDU filter on this port.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td></td>
</tr>
</tbody>
</table>

Default: BPDU filter is disabled.

Configuration Mode

- Config Interface Ethernet
- Config Interface Port Channel
- Config Interface MLAG Port Channel

History

3.1.0000

Role

admin

Example

```
switch (config) # interface ethernet 1/1
switch (config interface ethernet 1/1) # spanning-tree bpdufilter
enable
```

Related Commands

- show spanning-tree

Note

This command can be used when the switch is connected to hosts.
clear spanning-tree counters

clear spanning-tree counters

Clears the spanning-tree counters.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # clear panning-tree counters
switch (config) # |
| Related Commands | show spanning tree |
| Note | |
spanning-tree mst max-hops

spanning-tree mst max-hops <max-hops>
no spanning-tree mst max-hops

Specifies the max hop value inserts into BPDUs that sent out as the root bridge. The no form of the command sets the parameter to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>max-hops</th>
<th>Max hop value. The range is 6-40.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.4150</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>
| Example | switch (config)# spanning-tree mst max-hops 20
 switch (config)# |
| Related Commands | | |
| Note | • The max hop setting determines the number of bridges in an MST region that a BPDU can traverse before it is discarded
 • This command is available when global STP mode is set to MST |
spanning-tree mst priority

spanning-tree mst <mst-instance> priority <priority>
no spanning-tree mst <mst-instance> priority

Configures the specified instance’s priority number.
The no form of the command sets the parameter to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>mst-instance</th>
<th>MST instance. Range is 1-64.</th>
</tr>
</thead>
<tbody>
<tr>
<td>priority</td>
<td>priority</td>
<td>MST instance port priority. Possible values are: 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, 61440</td>
</tr>
</tbody>
</table>

Default 32768

Configuration Mode Config

History 3.3.4150

Role admin

Example

switch (config)# spanning-tree mst 1 priority 32768
switch (config)#

Related Commands

Note

• The bridge priority is the four most significant digits of the bridge ID, which is used by spanning tree algorithms to select the root bridge and choose among redundant links. Bridge ID numbers range from 0-65535 (16 bits); bridges with smaller bridge IDs are elected over other bridges.

• This command is available when global STP mode is set to MST
spanning-tree mst vlan

spanning-tree mst <mst-instance> vlan <vlan-range>
no spanning-tree mst <mst-instance> vlan <vlan-range>

Maps a VLAN or a range of VLANs into an MSTP instance. The no form of the command unmaps a VLAN or a range of VLANs from MSTP instances.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>mst-instance</th>
<th>MST instance. Range is 1-64.</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan <vlan-range></td>
<td>A single VLAN or a range of VLANs. The format is <vlan> or <from-vlan>-<to-vlan>.</td>
<td></td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config

History

3.3.4150

Role

admin

Example

switch (config)# spanning-tree mst 1 vlan 10-20
switch (config)#

Related Commands

Note

This command is available when global STP mode is set to MST
spanning-tree mst revision

spanning-tree mst revision <number>
no spanning-tree mst revision

Configures the MSTP revision number.
The no form of the command sets the parameter to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>The MST revision number. Range is 0-65535.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4150</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config)# spanning-tree mst revision 1
switch (config)#
```

Related Commands

Note
- The revision number is one of three parameters, along with the MST name and VLAN-to-instance map, that identify the switch’s MST region
- This command is available when global STP mode is set to MST
spanning-tree mst name

```
spanning-tree mst name <name>
no spanning-tree mst name
```

Configures the MSTP name. The no form of the command sets the parameter to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Name</th>
<th>MST name: Up to 32 characters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.4150</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch (config)# spanning-tree mst name my-mst</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch (config)#</td>
<td></td>
</tr>
</tbody>
</table>

Related Commands

Note

- The name is one of three parameters, along with the MST revision number and VLAN-to-instance map, that identifies the switch’s MST region.
- This command is available when global STP mode is set to MST.
spanning-tree mst root

```
spanning-tree mst <mst-instance> root <role>
no spanning-tree mst <mst-instance> root
```

Changes the bridge priority for the specified MST instance to the following values:
- Primary – 8192
- Secondary – 16384

The no form of the command sets the parameter to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>mst-instance</th>
<th>MSTP instance. Possible range is 1-64.</th>
</tr>
</thead>
<tbody>
<tr>
<td>role</td>
<td>Values: “primary” or “secondary”.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>primary</th>
</tr>
</thead>
</table>

Configuration Mode

Config

History

3.3.4150

Role

admin

Example

```
switch (config)# spanning-tree mst name my-mst
switch (config)#
```

Related Commands

- The root command is a way to automate a system configuration while ‘playing’ with the priority field. The priority field granularity may be too explicit for some users in case you wish to have 2 levels of priority (primary and secondary). So by default all the switches get the same priority and while using the root option you can get the role of master and backup by setting the priority field to a predefined value.
- This command is available when global STP mode is set to MST.
spanning-tree mst port-priority

spanning-tree mst {mst-instance} port-priority <priority>
no spanning-tree mode

Changes the spanning tree mode.
The no form of the command sets the parameter to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>mst-instance</th>
<th>MST instance. Range is 0-4094.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>priority</td>
<td>MST instance port priority. Valid values are: 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224 and 240.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>rst</th>
</tr>
</thead>
</table>

| Configuration Mode | Config Interface Ethernet
| | Config Interface Port Channel |

<table>
<thead>
<tr>
<th>History</th>
<th>3.3.4150</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

| Example | switch (config interface ethernet 1/1)# spanning-tree mst 1 port-priority 32768
|---------| switch (config interface port-channel 1)# spanning-tree mst 1 port-priority 32768 |

<table>
<thead>
<tr>
<th>Related Commands</th>
<th></th>
</tr>
</thead>
</table>

| Note | This command is available when global STP mode is set to MST. |
spanning-tree mst cost

```plaintext
spanning-tree mst {mst-instance} cost <cost-value>
no spanning-tree mode
```

Configures the cost per MSTP instance.
The no form of the command sets the parameter to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mst-instance</td>
<td>MST instance. Range is 1-64.</td>
</tr>
<tr>
<td>cost-value</td>
<td>MST instance port cost. Range is 0-200000000.</td>
</tr>
</tbody>
</table>

Default

- 2000 for 10Gb/s, 500 for 40Gb/s, 20000 for 1Gb/s, 357 for 56Gb/s

Configuration Mode

- Config Interface Port Channel

History

3.3.4150

Role

admin

Example

```plaintext
switch (config interface ethernet 1/1)# spanning-tree mst 1 cost 4000
switch (config interface port-channel 1)# spanning-tree mst 1 cost 4000
switch (config)#
```

Related Commands

Note

This command is available when global STP mode is set to MST.
spanning-tree vlan forward-time

spanning-tree vlan <vid> forward-time <secs>
no spanning-tree vlan <vid> forward-time

Configures how fast an interface changes its spanning tree state from Blocking to Forwarding.
The no form of the command resets the parameter value to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>secs</td>
<td>Parameter range: 4-30 seconds.</td>
</tr>
</tbody>
</table>

Default: 15 seconds

Configuration Mode: Config

History: 3.4.1100

Role: admin

Example: switch (config) # spanning-tree vlan 10 forward-time 15

Related Commands: show spanning-tree

Note:
- The following formula applies on the spanning tree timers:
 \[2 \times (\text{ForwardTime} - 1) \geq \text{MaxAgeTime} \geq 2 \times (\text{Hello Time} + 1) \]
- This command is available when global STP mode is set to RPVST
spanning-tree vlan hello-time

```
spanning-tree vlan <vid> hello-time <secs>
no spanning-tree vlan <vid> hello-time
```

Configures how often the switch broadcasts its hello message to other switches when it is the root of the spanning tree. The no form of the command resets the parameter value to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>secs</th>
<th>Parameter range: 1-2 seconds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>2</td>
<td>seconds</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.4.1100</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # spanning-tree vlan 10 hello-time 2</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>show spanning-tree</td>
<td></td>
</tr>
</tbody>
</table>
| Note | • The following formula applies on the spanning tree timers:
| | 2*(ForwardTime -1) >= MaxAgeTime >= 2*(Hello Time + 1) |
| | • This command is available when global STP mode is set to RPVST |
spanning-tree vlan max-age

spanning-tree vlan <vid> max-age <secs>
no spanning-tree vlan <vid> max-age

Sets the maximum age allowed for the Spanning Tree Protocol information learned from the network on any port before it is discarded. The no form of the command resets the parameter value to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>secs</th>
<th>Parameter range: 6-40 seconds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>20</td>
<td>seconds</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.4.1100</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # spanning-tree vlan 10 max-age 20</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>show spanning-tree</td>
<td></td>
</tr>
</tbody>
</table>

Note
- The following formula applies on the spanning tree timers:
 \[2\times(\text{ForwardTime} - 1) \geq \text{MaxAgeTime} \geq 2\times(\text{Hello Time} + 1)\]
- This command is available when global STP mode is set to RPVST
spanning-tree vlan priority

```plaintext
spanning-tree vlan <vid> priority <priority>
no spanning-tree vlan <vid> priority
```

Configures RPVST instance port priority. The no form of the command resets the parameter value to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>description</th>
<th>Possible values are: 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, 61440.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>32768</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.4.1100</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # spanning-tree vlan 10 priority 32768</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>show spanning-tree</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>• The following formula applies on the spanning tree timers: 2*(ForwardTime -1)>=MaxAgeTime >= 2*(Hello Time + 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• This command is available when global STP mode is set to RPVST</td>
<td></td>
</tr>
</tbody>
</table>
show spanning-tree

Displays spanning tree information.

Syntax Description

N/A

Default

N/A

Configuration Mode

Any Command Mode

History

3.1.0000

3.4.1100 Updated Example with R and G flags

Role

admin

Example

```plaintext
switch (config) # show spanning-tree
Switch ethernet-default
Spanning tree protocol is enabled rst
Spanning tree force version:2
Root ID
   Priority 32768
   Address 00:02:c9:7a:e9:40
   Cost 1000
   Port Eth1/32
   Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Bridge ID
   Priority 32768
   Address 00:02:c9:96:c6:d0
   Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
L - Loop Inconsistent
R - Root Inconsistent
G - BPDU Guard Inconsistent
Interface         Role         Sts              Cost     Prio   Type
----              ----         -----            ----     ----   ----
Eth1/9            Designated   Forwarding       500      128    normal
Eth1/22           Designated   Discarding(R)    500      128    normal
Eth1/32           Root         Forwarding       500      128    normal
Eth1/39           Disabled     Discarding(G)    2000     128    normal
```

```
switch (config) 
```

Related Commands

clear spanning-tree counters
spanning-tree

Note
show spanning-tree detail

Syntax Description
N/A

Default
N/A

Configuration Mode
Any Command Mode

History
3.1.0000

Role
admin

Example
```
switch (config) # show spanning-tree detail

Switch ethernet-default
Spanning tree protocol is enabled
Bridge is executing the rst compatible Spanning Tree Protocol
Bridge Identifier has priority 32768, address 00:02:c9:96:c6:d0
  Configured hello time 2, max age 20, forward delay 15
  Current root has priority 32768, address 00:02:c9:7a:e9:40
  Root port is Eth1/32( Ethernet1/32),cost of root path is 1000
  Number of topology changes 21,last change occurred 00:00:03 ago
  Timers: hold  6 hello  2, max age  20, forward delay  15
  default port type: normal, default bpdu filter: disabled,
  default bpdu guard: disabled
switch (config) #
```

Related Commands
clear spanning-tree counters
spanning-tree

Note
show spanning-tree interface

show spanning-tree interface {ethernet <slot>/<port> | port-channel <port-channel> | mlag-port-channel <mlag-port-channel>

Display running state for specific interfaces.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet</td>
<td>Ethernet interface.</td>
</tr>
<tr>
<td>port-channel</td>
<td>LAG instance.</td>
</tr>
<tr>
<td>mlag-port-channel</td>
<td>MLAG instance.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Any Command Mode</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.3.4150</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
</table>
| switch (config) # show spanning-tree interface ethernet 1/2
Eth1/2 is Disabled Discarding
Port path cost 500, Port priority 128, Port Identifier 128.5
Designated root has priority 0, address unknown
Designated bridge has priority 0, address unknown
Designated port id 0.0, designated path cost 0
Number of transitions to forwarding state: 0
Port type: normal
PortFast is: off
Bpdu filter: disabled
Bpdu guard: disabled
Loop guard: disabled
Root guard: disabled
Link type: point-to-point
BFDU: sent: 0 received: 0 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>switch (config) #</td>
</tr>
</tbody>
</table>

| Related Commands | clear spanning-tree counters
spanning-tree |
|------------------|-----------------------------|

<table>
<thead>
<tr>
<th>Note</th>
<th></th>
</tr>
</thead>
</table>
show spanning-tree mst

show spanning-tree mst [details | <instance> interface {ethernet <slot>/<port> | port-channel <port-channel> | mlag-port-channel <mlag-port-channel>}]

Displays basic multi-spanning-tree information.

Syntax Description
- **details** Displays detailed multi-spanning-tree configuration and statistics.
- **ethernet** Ethernet interface.
- **port-channel** LAG instance.
- **mlag-port-channel** MLAG instance.

Default
N/A

Configuration Mode
Any Command Mode

History
3.3.4150

Role
admin

Example

```
switch (config) # show spanning-tree mst

MST0
vlans mapped: 1-1023,1025-2047,2049-3071,3073-4094

<table>
<thead>
<tr>
<th>Interface</th>
<th>Role</th>
<th>Sts</th>
<th>Cost</th>
<th>Prio</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth1/9</td>
<td>Designated</td>
<td>Forwarding</td>
<td>500</td>
<td>128.9</td>
<td>point-to-point</td>
</tr>
<tr>
<td>Eth1/10</td>
<td>Designated</td>
<td>Forwarding</td>
<td>500</td>
<td>128.10</td>
<td>point-to-point</td>
</tr>
<tr>
<td>Eth1/11</td>
<td>Back Up</td>
<td>Discarding</td>
<td>500</td>
<td>128.22</td>
<td>point-to-point</td>
</tr>
</tbody>
</table>

switch (config) #
```

Related Commands
- clear spanning-tree counters
- spanning-tree

Note
show spanning-tree root

Syntax Description
N/A

Default
N/A

Configuration Mode
Any Command Mode

History
3.3.4150

Role
admin

Example
```
switch (config) # show spanning-tree root

<table>
<thead>
<tr>
<th>Instance</th>
<th>Priority</th>
<th>MAC addr</th>
<th>Root Cost</th>
<th>Hello Time</th>
<th>Max Age</th>
<th>FWD Dly</th>
<th>Root Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>MST0</td>
<td>32768</td>
<td>00:02:c9:71:ed:40</td>
<td>500</td>
<td>2</td>
<td>20</td>
<td>15</td>
<td>Eth1/20</td>
</tr>
<tr>
<td>MST1</td>
<td>32768</td>
<td>00:02:c9:71:f0:c0</td>
<td>0</td>
<td>2</td>
<td>20</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>MST2</td>
<td>0</td>
<td>00:02:c9:71:f0:c0</td>
<td>0</td>
<td>2</td>
<td>20</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>MST3</td>
<td>32768</td>
<td>00:02:c9:71:f0:c0</td>
<td>0</td>
<td>2</td>
<td>20</td>
<td>15</td>
<td>-</td>
</tr>
</tbody>
</table>
```

Related Commands
clear spanning-tree counters
spanning-tree

Note
show spanning-tree vlan

show spanning-tree vlan <vid> [detail | interface {ethernet <slot>/<port> | port-channel <port-channel> | mlag-port-channel <mlag-port-channel>}]

Displays spanning tree information.

Syntax Description	vid	VLAN ID. Range is also supported. Format: <vid1>[-<vid2>]
	detail	Displays detailed RPVST configuration and statistics.
	ethernet	Ethernet interface.
	port-channel	LAG instance.
	mlag-port-channel	MLAG instance.

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Any Command Mode</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.4.1100</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
</table>

switch (config) # show spanning-tree vlan 10

Switch ethernet-default

Spanning tree protocol is enabled rpvst

Spanning tree force version:2

Vlan 10
Root ID
 Priority 10
 Address 00:02:c9:96:c6:d0
 This bridge is the root
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Bridge ID
 Priority 10
 Address 00:02:c9:96:c6:d0
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

L - Loop Inconsistent

<table>
<thead>
<tr>
<th>Interface</th>
<th>Role</th>
<th>Sts</th>
<th>Cost</th>
<th>Prio</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>Mpo21</td>
<td>Designated</td>
<td>Forwarding</td>
<td>500</td>
<td>128</td>
<td>normal</td>
</tr>
<tr>
<td>Mpo20</td>
<td>Back Up</td>
<td>Discarding</td>
<td>500</td>
<td>128</td>
<td>normal</td>
</tr>
</tbody>
</table>

switch (config) #

<table>
<thead>
<tr>
<th>Related Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear spanning-tree counters</td>
</tr>
<tr>
<td>spanning-tree</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
</table>
5.8 OpenFlow
MLNX-OS supports OpenFlow 1.0. OpenFlow is a network protocol that facilitates direct communication between network systems via Ethernet. Software Defined Networks (SDN) allows a central management of network equipment. OpenFlow allows the SDN controller to manage SDN equipment. The OpenFlow protocol allows communication between the OpenFlow controller and OpenFlow agent.

OpenFlow is useful to manage switches and allow applications running on the OpenFlow controller to have access to the switch’s datapath and provide functionality such as flow steering, security enhancement, traffic monitoring and more.

The OpenFlow controller communicates with the OpenFlow switch over secured channel using OpenFlow protocol.

An OpenFlow switch contains a flow table which contains flows inserted by the OpenFlow controller. And the OpenFlow switch performs packet lookup and forwarding according to those rules.

Mellanox OpenFlow switch implementation is based on the hybrid model, allowing the coexistence of an OpenFlow pipeline and a normal pipeline. In this model, a packet is forwarded according to OpenFlow configuration, if such configuration is matched with the packet parameters. Otherwise, the packet is handled by the normal (regular forwarding/routing) pipeline.

The OpenFlow specification defines:

“OpenFlow-hybrid switches support both OpenFlow operation and normal Ethernet switching operation, i.e. traditional L2 Ethernet switching, VLAN isolation, L3 routing (IPv4 routing, IPv6 routing...), ACL and QoS processing. Those switches must provide a classification mechanism outside of OpenFlow that routes traffic to either the OpenFlow pipeline or the normal pipeline. For example, a switch may use the VLAN tag or input port of the packet to decide whether to process the packet using one pipeline or the other, or it may direct all packets to the OpenFlow pipeline.”

Utilizing the built-in capabilities of the hybrid switch/router is the main benefit of the hybrid mode. It increases network performance and efficiency – faster processing of new flows as well as lower load on the controllers. The hybrid switch processes non-OpenFlow data through its local management plane and achieve better efficiency and use of resources, compared to the pure OpenFlow switch.

5.8.1 Flow Table
The flow table contains flows which are used to perform packet lookup, modification and forwarding. Each flow has a 12 tuple key. The key is used in order to classify a packet into a certain flow. The key contains the flowing fields: ingress port, source MAC, destination MAC, Ether-Type, VLAN ID, PCP, source IP, destination IP, IP protocol, IP ToS bits, TCP/UDP source port and TCP/UDP destination port.

The flow key can have a specific value for each field or wildcard which signals to the switch to ignore this part of the key.

Each packet passes through the flow table once a match is found; the switch performs the actions configured to the specific flow by the OpenFlow controller.

Upkeeping a flow table enables the switch to forward incoming traffic with a simple lookup on its flow table entries. OpenFlow switches perform a check for matching entries on, or ignore using a wildcard, specific fields of the ingress traffic. If the entry exists, the switch performs the
action associated with that flow entry. Packets without a flow entry match are forwarded according to the normal pipeline (hybrid switch).

Every flow entry contains one of the following parameters:

1. Header fields for matching purposes with each entry containing a specific value or a wildcard which could match all entries.

2. Matching packet counters which are useful for statistical purposes, in order to keep track of the number of packets.

3. Actions which specify the manner in which to handle the packets of a flow which can be any of the following:
 a. Forwarding the packet
 b. Dropping the packet
 c. Forwarding the packet to the OpenFlow controller
 d. Modifying the VLAN, VLAN priority (PCP), and/or stripping the VLAN header

5.8.2 Configuring OpenFlow

➢ To run OpenFlow on a switch:

 Step 1. Unlock the OpenFlow CLI commands. Run:
   ```
   switch (config) # protocol openflow
   ```

 Step 2. Configure interfaces to be managed by OpenFlow. Run:
   ```
   switch (config) # interface ethernet 1/1-1/4 openflow mode hybrid
   ```

 Step 3. Configure the OpenFlow controller IP and TCP port. Run:
   ```
   switch (config) # openflow controller-ip 10.209.0.205 tcp-port 6633
   ```

 Step 4. (Optional) Verify the OpenFlow configuration. Run:
   ```
   switch (config) # show openflow
   OpenFlow version: OF VERSION 1.0
   Table size: 1000, 0 in use
   Active controller ip: 10.209.0.205 port: 6633
   Connection status: HANDSHAKE_COMPLETE (CONNECTED)
   Forward-to-controller: ospf lldp arp-unicast arp-broadcast (all)
   Enabled ports: Eth1/1 Eth1/2 Eth1/3 Eth1/4
   ```

To be able to configure the switch using the controller, you should see the following line in the output:

Connection status must be: HANDSHAKE_COMPLETE (CONNECTED).
5.8.3 Commands

protocol openflow

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>no protocol openflow</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4200</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # protocol openflow
 | switch (config) # |

Related Commands

Note
openflow description

openflow description <string>

Sets the OpenFlow description.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
<th>Default</th>
<th>Configuration Mode</th>
<th>History</th>
<th>Role</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>Free string.</td>
<td>N/A</td>
<td>Config</td>
<td>3.3.4302</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
switch (config) # openflow description OF-switch-104
switch (config) # show openflow detail
OpenFlow version: OF VERSION 1.0
Table size: 1000, 0 in use
Active controller ip: 10.209.1.39 port: 6633
Connection status: HANDSHAKE_COMPLETE (CONNECTED)
Forward-to-controller: ospf lldp arp-unicast arp-broadcast (all)
Enabled ports: Eth1/10 Eth1/11 Eth1/13 Eth1/19
Echo period: 10 sec
Keep alive period: 30 sec
Messages in (last session): 86290
Messages out (last session): 47984
Disconnect count: 0
Openflow description: OF-switch-104
Datapath ID: 00:00:00:02:c9:a8:e3:50
Not supporting buffering
Not supporting emergency flows
Not supporting port statistics
Not supporting IP reassemble
Supporting spanning tree
Not supporting queue statistics
switch (config) #
```
openflow mode hybrid

`openflow mode hybrid`

`no openflow mode`

Enables OpenFlow on the port.
The no form of the command returns the port to its default state.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>no openflow mode</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface Ethernet</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4200</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config interface ethernet 1/1)# openflow mode hybrid
switch (config interface ethernet 1/1)# |

Related Commands

Note
controller-ip

controller-ip <ip-address> [tcp-port <port-number>]

no controller-ip <ip-address> tcp-port

Sets the OpenFlow controller’s IP & TCP port.
The no form of the command sets the parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>The IPv4 address of the OpenFlow controller.</td>
</tr>
<tr>
<td>tcp-port <port-number></td>
<td>Sets the TCP port number of the OpenFlow controller.</td>
</tr>
</tbody>
</table>

| Default | 0.0.0.0; TCP port 6633 |

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config OpenFlow</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.3.4200</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

| Example | switch (config openflow) # controller-ip 10.10.10.10 tcp-port 6633
switch (config openflow) # |

| Related Commands | |
|-----------------| |

| Note | |
|------| |
datapath-id

`datapath-id <value>`

`no datapath-id`

Sets a specific identifier for the switch with which the controller is communicating. The no form of the command resets the parameter to its default value.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>value</code></td>
<td>The most significant 16 bits of the agent data-path ID. Range is 0x0000-0xFFFF in hexa.</td>
</tr>
</tbody>
</table>

Default

0x0000

Configuration Mode

Config OpenFlow

History

3.3.4200

Role

admin

Example

```
switch (config openflow) # datapath-id 0x1234
switch (config openflow) #
```

Related Commands

```
```

Note
forward-to-controller

```
forward-to-controller {ospf} {lldp} {arp-unicast} {arp-broadcast} all | none
```

Forwards the selected traffic types to the controller from all the ports on which OpenFlow enabled.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ospf</td>
<td>Forwards OSPF traffic to the controller.</td>
</tr>
<tr>
<td>lldp</td>
<td>Forwards LLDP traffic to the controller.</td>
</tr>
<tr>
<td>arp-unicast</td>
<td>Forwards ARP-unicast traffic to the controller.</td>
</tr>
<tr>
<td>arp-broadcast</td>
<td>Forwards ARP-broadcast traffic to the controller.</td>
</tr>
<tr>
<td>all</td>
<td>Forwards all traffic types to the controller.</td>
</tr>
<tr>
<td>none</td>
<td>Forwards no traffic to the controller.</td>
</tr>
</tbody>
</table>

Default None

Configuration Mode Config OpenFlow

History

3.3.4200

Role admin

Example

```
switch (config openflow) # forward-to-controller all
switch (config openflow) #
```

Related Commands

Note

Mellanox Technologies Confidential | 527
show openflow

show openflow [detail | tables | flows <id>]

Displays general information about the OpenFlow protocol configuration.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>detail</th>
<th>Displays detailed information about the OpenFlow protocol.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tables</td>
<td>Displays information about the OpenFlow tables (size, type, etc.).</td>
</tr>
<tr>
<td></td>
<td>flows <id></td>
<td>Displays specific flows inside the OpenFlow tables. ID may be a range (e.g. 1-10).</td>
</tr>
<tr>
<td></td>
<td>statistics</td>
<td>Displays OpenFlow statistics.</td>
</tr>
</tbody>
</table>

Default: None

Configuration Mode: Any Command Mode

History:
- 3.3.4200
- 3.3.4302 Removed flow-id parameter
 Added “flows” and “statistics” parameters

Role: admin

Example:
```
switch (config openflow) # show openflow flows 2
Flow id: 2
priority: 1
hard timeout: infinite
idle timeout: 0 sec
match:
ingress interface: Eth1/18
destination Ethernet address: 77:88:aa:bb:cc:fe
Ethernet type: 0x800
VLAN ID: 308
PCP: 4
SIP: 1.1.1.1
DIP: 2.2.2.2
Dport: 1790
Protocol: 86
TOS: 120
actions:
  output controller
statistics:
0 packets, 0 bytes
```

Related Commands

Note
5.9 IGMP Snooping

The Internet Group Multicast Protocol (IGMP) is a communications protocol used by hosts and adjacent routers on IP networks to establish multicast group memberships. The host joins a multicast-group by sending a join request message towards the network router, and responds to queries sent from the network router by dispatching a join report.

A given port can be either manually configured to be a router-port or it can be dynamically manifested when having received a query, hence, the network router is connected to this port. All IGMP Snooping Control packets received from hosts (joins/leaves) are forwarded to the router-port, and the router-port updates its multicast-group data-base accordingly. Each dynamically learnt multicast group will be added to all of the router-ports on the switch.

As many as 5K multicast groups can be created on the switch.

5.9.1 Configuring IGMP Snooping

You can configure IGMP snooping to establish multicast group memberships.

➢ To configure IGMP snooping:

Step 1. Log in as admin.

Step 2. Enter config mode. Run:

```
switch > enable
switch # configure terminal
```

Step 3. Enable IGMP snooping globally. Run:

```
switch (config) # ip igmp snooping
switch (config) #
```

Step 4. Enable IGMP snooping on a VLAN. Run:

```
switch (config) # vlan 2
switch (config vlan 2) # ip igmp snooping
```

5.9.2 Defining a Multicast Router Port on a VLAN

You can define a Multicast Router (MRouter) port on a VLAN in one of the following methods:

➢ To change the interface switchport to trunk:

Step 1. Log in as admin.

Step 2. Enter config mode. Run:

```
switch > enable
switch # configure terminal
```

Step 3. Enable IGMP snooping globally. Run:

```
switch (config) # ip igmp snooping
switch (config) #
```

```
```
Step 4. Change the interface switchport mode of the port (the interface is member of VLAN 1 by default). Run:

```
switch (config) # interface ethernet 1/1
switch (config interface ethernet 1/1) # switchport mode trunk
```

Step 5. Change back to config mode. Run:

```
switch (config interface ethernet 1/1) # exit
switch (config) #
```

Step 6. Define the MRouter port on the VLAN. Run:

```
switch (config) # vlan 2
switch (config vlan 2) # ip igmp snooping mrouter interface ethernet 1/1
switch (config vlan 2) #
```

➢ To change the interface switchport to hybrid:

Step 1. Log in as admin.

Step 2. Enter config mode. Run:

```
switch > enable
switch # configure terminal
```

Step 3. Enable IGMP snooping globally. Run:

```
switch (config) # ip igmp snooping
switch (config) #
```

Step 4. Create a VLAN. Run:

```
switch (config) # vlan 200
switch (config vlan 200) #
```

Step 5. Change back to config mode. Run:

```
switch (config vlan 200) # exit
switch (config) #
```

Step 6. Change the interface switchport mode of the port (the interface is member of VLAN 1 by default). Run:

```
switch (config) # interface ethernet 1/36
switch (config interface ethernet 1/36) # switchport mode hybrid
```

Step 7. Attach the VLAN to the port’s interface. Run:

```
switch (config interface ethernet 1/36) # switchport mode hybrid allowed-vlan 200
switch (config interface ethernet 1/36) #
```

Step 8. Change to config mode again. Run:

```
switch (config interface ethernet 1/36) # exit
switch (config) #
```

Step 9. Define the MRouter port on the VLAN. Run:

```
switch (config) # vlan 200
switch (config vlan 200) # ip igmp mrouter interface ethernet 1/36
switch (config vlan 200) #
```
5.9.3 IGMP Snooping Querier

IGMP Snooping Querier compliments the IGMP snooping functionality. IGMP Snooping Querier is used to support IGMP snooping in a VLAN where PIM and IGMP are not configured because the multicast traffic does not need to be routed. When IGMP Snooping Querier is enabled, IGMP queries are sent out periodically by the switch through all ports in the VLAN and to which hosts wishing to receive IP multicast traffic respond with IGMP report messages. IGMP Snooping Querier must be used in conjunction with IGMP snooping as IGMP snooping listens to these IGMP reports to establish appropriate forwarding.

➢ To configure IGMP Snooping Querier:

Step 1. Enable the IGMP snooping on the switch. Run:

```
switch (config) # ip igmp snooping
```

Step 2. Enable the IGMP snooping querier on a specific VLAN. Run:

```
switch (config) # vlan 10
switch (config vlan 10)# ip igmp snooping querier
```

Step 3. Set the query interval time. Run:

```
switch (config vlan 10)# igmp snooping querier query-interval 25
```

Step 4. (Optional) Verify the IGMP snooping querier configuration. Run:

```
switch (config vlan 10)# show ip igmp snooping querier
VLAN 10  IGMP Querier Present  query-interval: 125  address: 1.1.1.2  version: 2
switch (config vlan 10)#
```
5.9.4 Commands

ip igmp snooping (admin)

- `ip igmp snooping`
- `no ip igmp snooping`

Enables IGMP snooping globally or per VLAN. The no form of the command disables IGMP snooping globally or per VLAN.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>IGMP snooping is disabled, globally and per VLAN.</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Config VLAN</td>
</tr>
<tr>
<td>History</td>
<td>3.1.1400</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # ip igmp snooping
switch (config) # vlan 10
switch (config vlan 10) # ip igmp snooping
switch (config vlan 10) # exit
switch (config) # show ip igmp snooping

IGMP snooping global configuration:
- IGMP snooping globally enabled
- IGMP snooping operationally enabled
- Proxy-reporting globally disabled
- Last member query interval is 1 seconds
- Mrouter timeout is 125 seconds
- Port purge timeout is 260 seconds
- Report suppression interval is 5 seconds

switch (config vlan 10) # show ip igmp snooping vlan 10

Vlan 10 configuration parameters:
- IGMP snooping is enabled
- IGMP version is V2
- Snooping switch is acting as Non-Querier
- Mrouter static port list: none
- Mrouter dynamic port list: none

switch (config vlan 10) # vlan 10
switch (config vlan 10) #
```

Related Commands

- `show ip igmp snooping`

Note

IGMP snooping has global admin state, and per VLAN admin state. Both states need to be enabled in order to enable the IGMP snooping on a specific VLAN.
ip igmp snooping (config)

Syntax

```plaintext
ip igmp snooping {last-member-query-interval <1-25> | proxy reporting
mroutertimeout <60-600> | port-purge-timeout <130-1225> | report-suppression-interval <1-25>}

no ip igmp snooping {last-member-query-interval | proxy reporting | mrouter-timeout | report-suppression-interval}
```

Description

Configures IGMP global parameters.
The no form of the command resets the IGMP global parameters to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>last-member-query-interval <1-25></td>
<td>Sets the time period (in seconds) with which the general queries are sent by the IGMP querier. After timeout expiration the port will be removed from the multicast group.</td>
</tr>
<tr>
<td>proxy reporting</td>
<td>Enables proxy reporting</td>
</tr>
<tr>
<td>mrouter-timeout <60-600></td>
<td>Sets the IGMP snooping router port purge time-out after which the port gets deleted if no IGMP router control packets are received. The default value is 125 seconds.</td>
</tr>
<tr>
<td>port-purge-timeout <130-1225></td>
<td>Sets the IGMP snooping port purge time interval after which the port gets deleted if no IGMP reports are received.</td>
</tr>
<tr>
<td>report-suppression-interval <1-25></td>
<td>Sets the IGMP snooping report-suppression time interval for which the IGMPv2 report messages for the same group will not get forwarded onto the router ports. The default value is 5 seconds.</td>
</tr>
</tbody>
</table>

Default

- last-member-query-interval – 1 second
- proxy reporting is disabled
- mrouter-timeout – 125
- port-purge-timeout – 260 seconds
- report-suppression-interval – 5 seconds

Configuration Mode

- Config

History

- 3.1.1400

Role

- admin
Example

```
switch (config) # ip igmp snooping report-suppression-interval 3
switch (config) # show ip igmp snooping

IGMP snooping global configuration:

IGMP snooping globally enabled
IGMP snooping operationally enabled
Proxy-reporting globally disabled
Last member query interval is 1 seconds
Mrouter timeout is 125 seconds
Port purge timeout is 260 seconds
Report suppression interval is 3 seconds

switch (config) #
```

Related Commands

```
ip igmp snooping (admin)
show ip igmp snooping
```

Note
ip igmp snooping fast-leave

ip igmp snooping fast-leave
no ip igmp snooping fast-leave

Enables fast leave processing on a specific interface.
The no form of the command disables fast leave processing on a specific interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Normal-leave is enabled.</td>
</tr>
</tbody>
</table>
| Configuration Mode | Config Interface Ethernet
 Config Interface Port Channel
 Config Interface MLAG Port Channel |
| History | 3.1.1400 |
| | 3.3.4500 Added MLAG port-channel configuration mode |
| Role | admin |
| Example | switch (config interface ethernet 1/1) # ip igmp snooping fast-leave
switch (config interface ethernet 1/1) # show ip igmp snooping interfaces
interface leave-mode

Eth1/1 Fast
Eth1/2 Normal
Eth1/3 Normal
...
switch (config interface ethernet 1/1) # |
| Related Commands | show ip igmp snooping interfaces |
| Note | }
ip igmp snooping static-group

```
ip igmp snooping static-group <IP address> interface <type> <number>
no ip igmp snooping static-group <IP address> interface <type> <number>
```

Creates a static multicast group and attaches a port to a specified group. The no form of the command deletes the interface from the multicast group.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Ip address</th>
<th>Multicast IP address: <224.x.x.x - 239.255.255.255></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interface</td>
<td>Attach the group to a specific interface.</td>
</tr>
<tr>
<td></td>
<td><type></td>
<td>type: ethernet or port-channel</td>
</tr>
<tr>
<td></td>
<td><number></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>No static groups are configured.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config VLAN</td>
</tr>
<tr>
<td>History</td>
<td>3.1.1400</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example	switch (config)# vlan 1			
	switch (config vlan 1) # ip igmp snooping static-group 230.0.0.1 interface ethernet 1/1			
	switch (config vlan 1) # show ip igmp snooping groups			
	Vlan ID	Group	St/Dyn	Ports
	-------	------	------	-----
	1	230.0.0.1	St	Eth1/1
	Total Num of Dynamic Group Addresses 0			
	Total Num of Static Group Addresses 1			
	switch (config vlan 1) #			

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>show ip igmp snooping groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>If the deleted interface is the last port, it deletes the entire multicast group.</td>
</tr>
</tbody>
</table>
ip igmp snooping mrouter

ip igmp snooping mrouter interface <type> <number>
no ip igmp snooping mrouter interface <type> <number>

Creates a static multicast router port on a specific VLAN, on a specific interface.
The no form of the command removes the static multicast router port from a specific VLAN.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>interface <type> <number></th>
<th>Attaches the group to a specific interface. type - ethernet or port-channel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>No static mrouter are configured.</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config VLAN</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.1400</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config)# vlan 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch (config vlan 1) # ip igmp snooping mrouter interface ethernet 1/1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch (config vlan 1) # show ip igmp snooping mrouter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vlan Ports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>------- -----------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Eth1/1 (static)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch (config vlan 1) #</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>show ip igmp snooping mrouter</td>
<td></td>
</tr>
</tbody>
</table>

Note: The multicast router port can be created only if IGMP snooping is enabled both globally and on the VLAN.
ip igmp snooping unregistered multicast

Syntax

```plaintext
ip igmp snooping unregistered multicast <options>
no ip igmp snooping unregistered multicast
```

Description

Sets the behavior of the snooping switch for unregistered multicast traffic. The no form of the command sets it default.

Syntax Description

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>flood</td>
<td></td>
</tr>
<tr>
<td>forward-to-mrouter-ports</td>
<td></td>
</tr>
</tbody>
</table>

Default

flood

Configuration Mode

Config

History

3.2.0500

Role

admin

Example

```plaintext
switch (config) # ip igmp snooping unregistered multicast flood
switch (config) # show ip igmp snooping
```

IGMP snooping global configuration:

- IGMP snooping globally enabled
- IGMP snooping operationally enabled
- Proxy-reporting globally disabled
- Last member query interval is 1 seconds
- Mrouter timeout is 125 seconds
- Port purge timeout is 260 seconds
- Report suppression interval is 5 seconds
- IGMP snooping unregistered multicast: flood

```plaintext
switch (config) #
```

Related Commands

- show ip igmp snooping

Note
ip igmp snooping querier

```
ip igmp snooping querier
no ip igmp snooping querier
```

Enables the IGMP Snooping Querier on a VLAN.
The no form of the command disables the IGMP Snooping Querier on a VLAN.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disable</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config VLAN</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4200</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config vlan 1)# ip igmp snooping querier
switch (config vlan 1)#
```

Related Commands

- igmp snooping querier query-interval
- show ip igmp snooping querier

Note
igmp snooping querier query-interval

```
igmp snooping querier query-interval <time>
no igmp snooping querier query-interval
```

Configures the query interval.
The no form of the command rests the parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>Time interval between queries (in seconds).</td>
</tr>
</tbody>
</table>

Default

125 seconds

Configuration Mode

Config VLAN

History

3.3.4200

Role

admin

Example

```
switch (config vlan 1)# igmp snooping querier query-interval 20
switch (config vlan 1)#
```

Related Commands

- igmp snooping querier query-interval
- show ip igmp snooping querier

Note
show ip igmp snooping

show ip igmp snooping

Displays IGMP snooping information for all VLANs or a specific VLAN.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.1400</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show ip igmp snooping

IGMP snooping global configuration:

IGMP snooping globally enabled
IGMP snooping operationally enabled
Proxy-reporting globally disabled
Last member query interval is 1 seconds
Mrouter timeout is 125 seconds
Port purge timeout is 260 seconds
Report suppression interval is 3 seconds
IGMP snooping unregistered multicast: flood

switch (config) #
```

Related Commands

Note
show ip igmp snooping groups

Displays per VLAN the list of multicast groups attached (static or dynamic allocated) per port.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.1400</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show ip igmp snooping groups
Vlan ID  Group           St/Dyn     Ports
--------  ------------    -------    -------
1        230.0.0.1           St        Eth1/1
Total Num of Dynamic Group Addresses 0
Total Num of Static Group Addresses 1
switch (config) #
```

Related Commands

Note
show ip igmp snooping vlan

```
show ip igmp snooping vlan {<vlan/vlan-range> | all}
```

Displays IGMP configuration per VLAN or VLAN range.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan/vlan range</td>
<td>Displays IGMP VLAN configuration per specific VLAN or VLAN range.</td>
</tr>
<tr>
<td>all</td>
<td>Display IGMP VLAN configuration on all VLAN.</td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Any Command Mode

History: 3.1.1400

Role: admin

Example:

```
switch (config) # show ip igmp vlan 1
Vlan 1 configuration parameters:
  IGMP snooping is enabled
  IGMP version is V2
  Snooping switch is acting as Non-Querier
  mrouter static port list: Eth1/1
  mrouter dynamic port list: none
switch (config) #
```

Related Commands

Note
show ip igmp snooping mrouter

show ip igmp snooping mrouter

Displays IGMP snooping multicast router information.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.1400</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show ip igmp snooping mrouter
Vlan    Ports
-------- ------------
1        Eth1/1(static)
switch (config) #
```

Related Commands

Note
show ip igmp snooping interfaces

Displays IGMP snooping interface information.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.1400</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

```
switch (config) # show ip igmp snooping interfaces
interface    leave-mode
------------- --------------
1/1           Normal
1/2           Normal
1/3           Normal
1/4           Fast
...
switch (config) #
```

Related Commands

Note
show ip igmp snooping statistics

show ip igmp snooping statistics

Displays IGMP snooping statistical counters.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.1400</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show ip igmp snooping statistics
Snooping Statistics for VLAN 1
  General queries received : 0
  Group specific queries received : 0
  V1/V2 reports received : 0
  V1/V2 reports transmitted : 0
  Leave messages received : 0
  Leave messages transmitted: 0
  Group specific queries transmitted: 0
  Leave messages transmitted: 0
  Unsuccessful joins received count Per Vlan: 0
  Active/Successful joins received count Per Vlan: 0
  Active Groups count: 0
  Packets dropped: 0
switch (config) #
```

Related Commands

Note
show ip igmp snooping querier

show ip igmp snooping querier [vlan <num>]

Displays running IGMP snooping querier configuration on the VLANs.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan <num></td>
<td>Displays the IGMP snooping querier configuration running on the specified VLAN.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4200</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # show ip igmp snooping querier vlan 10</td>
</tr>
<tr>
<td></td>
<td>Vlan 1 IGMP Querier Present query-interval: 20 address: 1.1.1.2 version: 2</td>
</tr>
<tr>
<td></td>
<td>switch (config) #</td>
</tr>
</tbody>
</table>

Related Commands

Note
5.10 Link Layer Discovery Protocol (LLDP)

The Link Layer Discovery Protocol (LLDP) is a vendor-neutral Link Layer protocol in the Internet Protocol Suite used by network devices for advertising their identity, capabilities, and neighbors on a IEEE 802 LAN. The protocol is formally defined in IEEE 802.1AB.

5.10.1 Configuring LLDP

➢ To configure the LLDP on the switch:

Step 1. Log in as admin.

Step 2. Enter config mode. Run:

```
switch > enable
switch # configure terminal
``` 

Step 3. Enable LLDP globally on the switch. Run:

```
switch (config) # lldp
switch (config) #
``` 

Step 4. Enable LLDP per interface. Run:

```
switch (config interface ethernet 1/1) # lldp receive
switch (config interface ethernet 1/1) # lldp transmit
``` 

Step 5. Show LLDP local information. Run:

```
switch (config) # show lldp local
```

LLDP is Enabled

Local global configuration
Chassis sub type: macAddress (4)
Chassis id: 00:11:22:33:44:55
System Name: "switch-111111"
System Description: my-system-description
Supported capabilities: B
Supported capabilities enabled: B

Step 6. Show LLDP remote information. Run:

```
switch (config)# show lldp interfaces ethernet 1/1 remote
```

Ethernet 1/1
Remote Index: 1
Remote chassis id: 00:11:22:33:44:55 ; chassis id subtype: mac
Remote port-id: ethernet 1/2; port id subtype: local
Remote port description: ethernet 1/2
Remote system name: remote-system
Remote system description: remote-system-description
Remote system capabilities supported: B ; B

5.10.2 DCBX

Data Center Bridging (DCB) is an enabler for running the Ethernet network with lossless connectivity using priority-based flow control and enhanced transmission selection. DCBx (exchange)
compliments the DCB implementation by offering a dynamic protocol that communicates DCB attributes between peering endpoint.
5.10.3 Commands

lldp

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.2.0300</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config)# lldp
| | switch (config)# |
| Related Commands | show lldp local |
| Note | |
lldp reinit

lldp reinit <seconds>

no lldp reinit

Sets the delay in seconds from enabling the LLDP on the port until re-initialization will be attempted.

The no form of the command sets the parameter to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>seconds</th>
<th>1-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.2.0300</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>
| Example | switch (config)# lldp reinit 10
switch (config)# |
| Related Commands | show lldp timers |
| Note | | |
lldp timer

lldp timer <seconds>
no lldp timer

Sets the LLDP interval at which LLDP frames are transmitted. (lldpMessageTxInterval)
The no form of the command sets the parameter to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>seconds</th>
<th>5-32768</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.2.0300</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>
| Example | switch (config)# lldp timer 10
 | switch (config)# |
| Related Commands | show lldp timers |
| Note | |
lldp tx-delay

`lldp tx-delay <seconds>`

`no lldp tx-delay`

Indicates the delay in seconds between successive LLDP frame transmissions.

The no form of the command sets the parameter to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>seconds</th>
<th>1-8192</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.2.0300</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```plaintext
switch (config)# lldp tx-delay 10
switch (config)#
```

Related Commands

`show lldp timers`

Note

The recommended value for the tx-delay is set by the following formula:

\[1 \leq lldp \text{ tx-delay} \leq (0.25 \times lldp \text{ timer})\]
lldp tx-hold-multiplier

`lldp tx-hold-multiplier <seconds>`

`no lldp tx-hold-multiplier`

The time-to-live value expressed as a multiple of the `lldpMessageTxInterval` object. The no form of the command sets the parameter to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
<th>Default</th>
<th>Configuration Mode</th>
<th>History</th>
<th>Role</th>
<th>Example</th>
<th>Related Commands</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>seconds</td>
<td>1-8192</td>
<td>Config</td>
<td>3.2.0300</td>
<td>admin</td>
<td></td>
<td>show lldp timers</td>
<td>The actual time-to-live value used in LLDP frames, can be expressed by the following formula: (\text{TTL} = \min(65535, (\text{lldpMessageTxInterval} \times \text{lldpMessageTxHoldMultiplier}))) For example, if the value of <code>lldpMessageTxInterval</code> is '30', and the value of <code>lldpMessageTxHoldMultiplier</code> is '4', then the value '120' is encoded in the TTL field in the LLDP header.</td>
</tr>
</tbody>
</table>
lldp {receive | transmit}

```
lldp {receive | transmit}
no lldp {receive | transmit}
```

Enables LLDP to be received or transmitted on this port.
The no form of the command disables the LLDP to be received or transmitted on this port.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Enabled for receive and Trasmit.</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface Ethernet</td>
</tr>
<tr>
<td>History</td>
<td>3.2.0300</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config interface ethernet 1/1)# lldp receive
switch (config interface ethernet 1/1)# lldp transmit
switch (config interface ethernet 1/1)# |
| Related Commands | show lldp interface |
| Note | The LLDP is disabled by default (globally) |
lldp tlv-select

```
lldp tlv-select {[dcbx] [dcbx-cee] [port-description] [sys-name] [sys-description] [sys-capabilities] [management-address] [none] all}
```

Sets the LLDP basic TLVs to be transmitted on this port.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dcbx</td>
<td>Enables LLDP-DCBX TLVs.</td>
</tr>
<tr>
<td>dcbx-cee</td>
<td>Enables LLDP-DCBX CEE TLVs.</td>
</tr>
<tr>
<td>port-description</td>
<td>LLDP port description TLV.</td>
</tr>
<tr>
<td>sys-name</td>
<td>LLDP system name TLV.</td>
</tr>
<tr>
<td>sys-description</td>
<td>LLDP system description TLV.</td>
</tr>
<tr>
<td>sys-capabilities</td>
<td>LLDP system capabilities TLV.</td>
</tr>
<tr>
<td>management-address</td>
<td>LLDP management address TLV.</td>
</tr>
<tr>
<td>all</td>
<td>all above TLVs.</td>
</tr>
<tr>
<td>none</td>
<td>None of the above TLVs.</td>
</tr>
</tbody>
</table>

Default

all

Configuration Mode

Config Interface Ethernet

History

- 3.2.0300 Initial revision
- 3.3.0000 Added “none” parameter
- 3.3.4302 Added “dcbx” parameter
- 3.3.4402 Added “dcbx-cee” parameter

Role

admin

Example

```
switch (config interface ethernet 1/1)# lldp tlv-select port-description sys-name
switch (config interface ethernet 1/1)#
```

Related Commands

show lldp interface

Note
dcb application-priority

dcb application-priority <selector> <protocol> <priority>

Adds an application to the application priority table.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>selector</th>
<th>Protocol type: ethertype</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>protocol</td>
<td>Protocol field in hexadecimal notation (e.g. ‘0x8906’ for FCoE, ‘0x8914’ for FIP).</td>
</tr>
<tr>
<td></td>
<td>priority</td>
<td>Range: 0-7.</td>
</tr>
</tbody>
</table>

Default
No applications are available. The table is empty.

Configuration Mode
Config

History
3.3.4200
3.4.0008

Role
admin

Example

```
switch (config-if)# dcb application-priority ethertype 0x8906
switch (config-if)#
```

Related Commands
show lldp interface

Note
show lldp local

Syntax Description
N/A

Default
N/A

Configuration Mode
Any Command Mode

History
3.2.0300

Role
admin

Example
```bash
switch (config)# show lldp local
LLDP is Enabled
Local global configuration
Chassis sub type: macAddress (4)
Chassis id: 0002C9030046AF00
System Name: my-switch
System Description: SX1036
Supported capabilities: B,R
Supported capabilities enabled: B
```

Related Commands

Note
show lldp interface

show lldp interface [ethernet <inf>]

Shows LLDP local interface table information.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>inf</th>
<th>Interface number (e.g. 1/1).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.2.0300</td>
<td>First version</td>
</tr>
<tr>
<td></td>
<td>3.3.4200</td>
<td>Updated example</td>
</tr>
<tr>
<td></td>
<td>3.3.4402</td>
<td>Updated example</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config)# show lldp interface ethernet 1/1</td>
<td></td>
</tr>
</tbody>
</table>

TLV flags:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Receive</th>
<th>Transmit</th>
<th>Notification</th>
<th>TLVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>eth1/1</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>PD,SN,SD,SC,MA,PFC,CEE</td>
</tr>
<tr>
<td>eth1/2</td>
<td>Disable</td>
<td>Disable</td>
<td>Enable</td>
<td>PD,SN,SD,MA,AP</td>
</tr>
<tr>
<td>eth1/3</td>
<td>Enable</td>
<td>Disable</td>
<td>Disable</td>
<td>PD,SD,SC,ETS-R,AP,PFC</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

switch (config)#

Related Commands

Note
show lldp interfaces ethernet <inf> remote

show lldp interfaces ethernet <inf> remote

Shows LLDP remote interface table information.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>inf</th>
<th>Local interface number (e.g. 1/1).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.2.0300</td>
<td>First version</td>
</tr>
<tr>
<td></td>
<td>3.3.4200</td>
<td>Updated output</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>
Example

switch (config)# show lldp interfaces ethernet <number> Ethernet <port-number> // example "Ethernet 1/1"
Latest LLDPDU received on <date> // e.g. date: "Thu Feb 14 12:08:29 2013" - new field
Remote Index:
Remote chassis id: <byte array> ; chassis id subtype: <sub-type>
Remote port-id: <byte array> ; port id subtype: <sub-type>
Remote port description: <byte array>
Remote system name: <byte array>
Remote system description: < byte array>
Remote system capabilities supported: <enum parsed as defined in the MIB> ; enable <enum parsed as defined in the MIB>
Management Table //theoretically remote can send more then one management address (Future) RemoteIndex Subtype Address
ifSubtype ifId CID
1 ipv4(1) 10.10.10.10 ifIndex(1) 1(mgmt0) <Oid>
1 ipv4(1) 10.10.10.11 ifIndex(3) 2(mgmt1) <Oid>
Unknown TLVs Table // (Future) Type Info

<integer> <byte-array>
<integer> <byte-array>
Organizationaly-Defined Information Table // (Future) OUI subtype Index DefInfo

<byte-array> <integer> <integer> <byte-array><byte-array> <integer> <integer> <byte-array>
Remote PFC configuration // new section Willing: {enabled, disabled}
MACsec: {enabled, disabled}
Number of supported traffic classes: 4 // range is 1-8
PFC enabled on priorities: 5 7 // it could be "0 1 2 3 4 5 6 7" or "1 3 7" or "None"
WARNING: peer PFC configuration does not match the local PFC configuration // This warning should appear only if the local and remote PFC configuration don’t match!
Remote ETS configuration // new section Willing: {enabled, disabled}
CBS: {enabled, disabled}
Number of supported traffic classes: 3 // range is 1-8
WARNING: peer ETS configuration does not match the local ETS configuration // This warning should appear only if the local and remote ETS configuration don’t match!
Priority assignment table: Priority TC

Traffic class bandwidth table // (No need to have the recommended TC - ETS-Recommended TLV)
TC Bandwidth TSA

Related Commands

Note
show lldp timers

show lldp timers

Shows LLDP timers configuration

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.2.0300</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config)# show lldp timers
msg-tx-interval:30
tx-delay:2
tx-hold:4
tx-reinit-delay:2
switch (config)# |

Related Commands

Note
show lldp statistics global

show lldp statistics global

Shows LLDP global statistics

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.2.0300</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```plaintext
switch (config)# show lldp timers
Remote Table Last Change Time : 10300
Remote Table Inserts : 5
Remote Table Deletes : 0
Remote Table Drops : 0
Remote Table Ageouts : 0
switch (config)#
```

Related Commands

Note
show lldp statistics [interface ethernet <inf>]

show lldp statistics [interface ethernet <inf>]

Shows LLDP interface statistics

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.2.0300</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config)# show lldp statistics ethernet 1/1

Interface Frames  In   In TLVs TLVs Ageout Out
Discarded Errors Total Discarded Unrecognize Frames
-----------------------------------------------------------------------
Eth 1/1            0     0   10   0     0   0   0

switch (config)#
```

Related Commands

Note
show dcb application-priority

show dcb application-priority

Displays application priority admin table.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4200</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config)# show dcb application-priority

Application priority configuration

<table>
<thead>
<tr>
<th>Selector</th>
<th>Protocol</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethertype</td>
<td>0x8906</td>
<td>3</td>
</tr>
<tr>
<td>Ethertype</td>
<td>0x8914</td>
<td>3</td>
</tr>
</tbody>
</table>

Related Commands

Note
5.11 Quality of Service (QoS)

5.11.1 Priority Flow Control and Link Level Flow Control

Priority Flow Control (PFC) provides an enhancement to the existing pause mechanism in Ethernet. The current Ethernet pause option stops all traffic on a link. PFC creates eight separate virtual links on the physical link and allows any of these links to be paused and restarted independently, enabling the network to create a no-drop class of service for an individual virtual link. PFC has 8 possible priorities (3 bits in VLAN header). Each priority can be mapped to one of 4 possible queues in the ingress.

The PFC software offers the following features:

- Provides per-priority enabling or disabling of flow control
- Transmits PFC-PAUSE frames when the receive threshold for a particular traffic class is reached
- Provides the management capability for an administrator to configure the flow control properties on each port of the switch
- Keeps flow control disabled for all priorities on all ports by default
- Allows an administrator to enable or disable flow control per port and per priority level
- Supports flow control only on physical ports, not on logical interfaces such as tunnels or interfaces defined by sharing a physical port in multiple virtual switch contexts
- Uses the configured threshold values to set up the queue buffer spaces accordingly in the datapath
- Provides hardware abstraction layer callouts for the following:
 - Enabling or disabling of flow control on each port for each priority
 - Configuring the queue depth for each priority on each port
- Provides trace logs for execution upon error conditions and for any event notifications from the hardware or datapath. These trace logs are a useful aid in troubleshooting.
- Allows the administrator to configure the minimum and maximum threshold values for flow control. These configurations are applied globally on all ports and priorities.

Priority Based Flow Control (PFC) provides an enhancement to the existing pause flow control mechanism as described in 802.1x.

➢ To enable PFC globally:

Step 1. Log in as admin.

Step 2. Enter config mode. Run:

```bash
switch > enable
switch # configure terminal
```

Step 3. Enable PFC globally on the switch. Run:

```bash
switch (config) # dcb priority-flow-control enable
This action might cause traffic loss while shutting down a port with priority-flow-control mode on
Type 'yes' to confirm enable pfc globally: yes
```
To enable PFC per priority:

Step 1. Log in as admin.
Step 2. Enter config mode. Run:

```bash
switch > enable
switch # configure terminal
```

Step 3. Enable PFC globally on the switch. Run:

```bash
switch (config) # dcb priority-flow-control enable
# dcb priority-flow-control enable
This action might cause traffic loss while shutting down a port with priority-flow-control mode on.
Type 'yes' to confirm enable pfc globally: yes
switch (config) #
```

Step 4. Choose the desirable priority you want to enable using the command `dcb priority-flow-control priority <pri[0..7]> enable`.

```bash
switch (config) # dcb priority-flow-control priority 5 enable
```

To enable PFC per interface:

Step 1. Log in as admin.
Step 2. Change to config mode. Run:

```bash
switch > enable
switch # configure terminal
```

Step 3. Enable PFC globally on the switch. Run:

```bash
switch (config) # dcb priority-flow-control enable
```

Step 4. Choose the desirable priority you want to enable using the command `dcb priority-flow-control priority <pri[0..7]> enable`.

```bash
switch (config) # dcb priority-flow-control priority 5 enable
```

Step 5. Change to Interface mode. Run:

```bash
switch (config) #
switch (config) # interface ethernet 1/1
switch (config interface ethernet 1/1) #
```

Step 6. Enable PFC for the specific interface:

```bash
switch (config interface ethernet 1/1) # dcb priority-flow-control mode on
```

5.11.2 Enhanced Transmission Selection (ETS)

Enhanced Transmission Selection (ETS) provides a common management framework for assignment of bandwidth to traffic classes, for weighted round robin (WRR) scheduling. If a traffic class does not use all the bandwidth allocated to it, other traffic classes can use that available bandwidth. This allows optimal utilization of the network capacity while prioritizing and providing the necessary resources.

The ETS feature has the following attributes:

- ETS global admin:
 - Enable (default) – scheduling mode is WRR according to the configured bandwidth-per-traffic class
- Disable – scheduling mode is Strict Priority (SP)
- Bandwidth percentage for each traffic class: By default each traffic class gets an equal share

The default mapping of priority to traffic classes (per interface) is as follows:
- Priority 0,1 mapped to TC 0
- Priority 2,3 mapped to TC 1
- Priority 4,5 mapped to TC 2
- Priority 6,7 mapped to TC 3

ETS is enabled by default (scheduling is WRR).

➢ *To set the scheduling mode to Strict Priority:*

Step 1. Run the command `dcb ets disable`.

```
switch (config) # no dcb ets enable
```

➢ *To configure the WRR bandwidth percentage:*

Step 1. Make sure ETS feature is enabled. Run:

```
switch (config) # dcb ets enable
```

Step 2. Choose the WRR bandwidth rate and distribution.

By default the WRR distribution function is equal 25% per TC. Changing the WRR bandwidth rate will cause a change in the distribution function, for example if you wish to schedule more traffic on TC-0, TC-1, TC-2 while reducing the amount of traffic sent on TC-3, run the command `dcb ets tc bandwidth`.

```
switch (config) # dcb ets tc bandwidth 30 30 30 10
# show dcb ets

ETS enabled

<table>
<thead>
<tr>
<th>TC</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30%</td>
</tr>
<tr>
<td>1</td>
<td>30%</td>
</tr>
<tr>
<td>2</td>
<td>30%</td>
</tr>
<tr>
<td>3</td>
<td>10%</td>
</tr>
</tbody>
</table>

Number of Traffic Class: 4
switch (config) #
```

Traffic class priorities are <0-3>, where 0 is the lowest and 3 is the highest.
The sum of all traffic class bandwidth value (in percentage) should be 100, otherwise the command fails.

Step 3. Run the command `show dcb ets` to verify the configuration.

```
switch (config) # show dcb ets
ETS enabled

<table>
<thead>
<tr>
<th>TC</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30%</td>
</tr>
<tr>
<td>1</td>
<td>30%</td>
</tr>
<tr>
<td>2</td>
<td>10%</td>
</tr>
<tr>
<td>3</td>
<td>30%</td>
</tr>
</tbody>
</table>

Number of Traffic Class: 4
```

```
switch (config) #
```
5.11.3 Commands

5.11.3.1 Enhanced Transmission Selection (ETS)

dcb ets enable

dcb ets enable
no dcb ets enable

Sets the switch egress scheduling mode to be weighted round robin. The no form of the command sets the switch egress scheduling mode to be strict priority.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>ETS is enabled.</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config)# dcb ets enable
switch (config)# show dcb ets

ETS enabled

<table>
<thead>
<tr>
<th>TC</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25%</td>
</tr>
<tr>
<td>1</td>
<td>25%</td>
</tr>
<tr>
<td>2</td>
<td>25%</td>
</tr>
<tr>
<td>3</td>
<td>25%</td>
</tr>
</tbody>
</table>

Number of Traffic Class: 4

switch (config) #

Related Commands

show dcb ets

Note
dcb ets tc bandwidth

```plaintext
dcb ets tc bandwidth <tc-0> <tc-1> <tc-2> <tc-3>
no dcb ets tc bandwidth
```

Configures the bandwidth limit of the traffic class.
The no form of the command sets the bandwidths per traffic class back to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
<th>Default</th>
<th>Configuration Mode</th>
<th>History</th>
<th>Role</th>
<th>Example</th>
</tr>
</thead>
</table>
| tc-i | 0-100. | 25% per traffic class. | Config | 3.1.0000 | admin | switch (config)# dcb ets tc bandwidth 20 20 30 30
switch (config) # show dcb ets
ETS enabled
| TC | Bandwidth | 0 | 20% |
| 1 | 20% |
| 2 | 30% |
| 3 | 30% |
| Number of Traffic Class: 4
| switch (config) # | |

Related Commands

show dcb ets

Note
The sum of all traffic class bandwidth must be equal to 100.
vlan map-priority

Syntax

- `vlan map priority <priority> traffic-class <tc>`
- `no vlan map priority <priority>`

Maps an VLAN user priority to a traffic class.
The no form of the command sets the mapping back to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
</table>
| **Default** | Priority 0,1 mapped to tc 0.
 Priority 2,3 mapped to tc 1.
 Priority 4,5 mapped to tc 2.
 Priority 6,7 mapped to tc 3. |
| **Configuration Mode** | Config Interface Ethernet |
| **History** | 3.1.0000 |
| **Role** | admin |
| **Example** | `switch (config interface ethernet 1/1) # vlan map-priority 1 traffic-class 2`
 `switch (config interface ethernet 1/1) #` |
| **Related Commands** | `show dcb ets interface` |
| **Note** | |
show dcb ets

show dcb ets

Displays ETS configuration and operational data.

Syntax Description

<table>
<thead>
<tr>
<th>Default</th>
<th>ETS is enabled.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```bash
switch (config)# show dcb ets
ETS enabled

<table>
<thead>
<tr>
<th>TC</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25%</td>
</tr>
<tr>
<td>1</td>
<td>25%</td>
</tr>
<tr>
<td>2</td>
<td>25%</td>
</tr>
<tr>
<td>3</td>
<td>25%</td>
</tr>
</tbody>
</table>

Number of Traffic Class: 4
```

```
switch (config) #
```

Related Commands

Note
show dcb ets interface

show dcb ets interface <type> <number>

Displays ETS configuration and operational data, per interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>ethernet or port-channel</td>
</tr>
<tr>
<td>number</td>
<td>interface number, i.e. 1/1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>ETS is enabled.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
Example

```
switch (config)# show dcb ets interface ethernet 1/1

ETS Port Mode :ON MODE
ETS Oper State :INIT STATE
ETS State Machine Type :Assymetric
-----------------------------------------------
ETS Local Port Info
-----------------------------------------------
TC bandwidth table
-----------------------------------------------
<table>
<thead>
<tr>
<th>TC</th>
<th>Bandwidth</th>
<th>RecomBandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>1</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>2</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>3</td>
<td>25%</td>
<td>25%</td>
</tr>
</tbody>
</table>

priority assignment table
--------------------------------------
<table>
<thead>
<tr>
<th>Priority</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

Number of Traffic Class: 4

Willing Status: Disable
-----------------------------------------------
ETS Admin Port Info
-----------------------------------------------
<table>
<thead>
<tr>
<th>TC</th>
<th>Bandwidth</th>
<th>RecomBandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>1</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>2</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>3</td>
<td>10%</td>
<td>10%</td>
</tr>
</tbody>
</table>

-----------------------------------------------
ETS Remote Port Info
-----------------------------------------------
No Remote Entry is Present
```

Related Commands

Note
5.11.3.2 Priority Flow Control (PFC)

dcb priority-flow-control enable

dcb priority-flow-control enable [force]
no dcb priority-flow-control enable [force]

Enables PFC globally on the switch.
The no form of the command globally disables PFC on the switch.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>force</th>
<th>Forces operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>PFC is disabled.</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.3.0000</td>
<td>Updated Example</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

switch (config)# dcb priority-flow-control enable
This action might cause traffic loss while shutting down a port with priority-flow-control mode on
Type 'yes' to confirm enable pfc globally: yes
switch (config)# show dcb priority-flow-control

PFC enabled
Priority Enabled List : 0 1 2 3 4 5 6 7
Priority Disabled List :

<table>
<thead>
<tr>
<th>TC</th>
<th>Lossless</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface</th>
<th>PFC admin</th>
<th>PFC oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>1/2</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>1/3</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>1/4</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

...

switch (config) #

Related Commands

show dcb priority-flow-control

Note

This command asks the user to approve traffic loss because some interfaces with DCB mode activated might get shut down.
dcb priority-flow-control priority

Syntax

```
dcb priority-flow-control priority <prio> enable
no dcb priority-flow-control priority <prio> enable
```

Enables PFC per priority on the switch.
The no form of the command disables PFC per priority on the switch.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>prio</code></td>
<td>0-7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC is disabled for all priorities.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Config</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>admin</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch (config)# dcb priority-flow-control priority 0 enable</code></td>
</tr>
<tr>
<td><code>switch (config)# show dcb priority-flow-control</code></td>
</tr>
</tbody>
</table>

```
PFC enabled
Priority Enabled List : 0
Priority Disabled List : 1 2 3 4 5 6 7

<table>
<thead>
<tr>
<th>TC</th>
<th>Lossless</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>N</td>
</tr>
</tbody>
</table>
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>PFC admin</th>
<th>PFC oper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>1/1</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>1/2</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>1/3</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>1/4</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
switch (config) #
```

Related Commands

- `show dcb priority-flow-control`

Note
dcb priority-flow-control mode on

`dcb priority-flow-control mode on [force]`

`no dcb priority-flow-control mode`

Enables PFC per interface.
The no form of the command disables PFC per interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>force</th>
<th>Force command implementation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td></td>
<td>PFC is disabled for all interfaces.</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td></td>
<td>Config Interface Ethernet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Config Interface Port Channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Config Interface MLAG Port Channel</td>
</tr>
</tbody>
</table>

History

- **3.1.0000**
- **3.3.4500** Added MLAG port-channel configuration mode

Role

- **admin**

Example

```
switch (config interface ethernet 1/1) # dcb priority-flow-control mode on
switch (config interface ethernet 1/1) # show dcb priority-flow-control
```

Note
show dcb priority-flow-control

show dcb priority-flow-control [interface <type> <inf>] [detail]

Displays DCB priority flow control configuration and status.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>type</th>
<th>• ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• port-channel</td>
<td></td>
</tr>
<tr>
<td>inf</td>
<td>The interface number.</td>
<td></td>
</tr>
<tr>
<td>detail</td>
<td>Adds details information to the show output.</td>
<td></td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Any Command Mode

History: 3.1.0000

Role: admin

Example:

```
switch (config interface ethernet 1/1) # show dcb priority-flow-control

PFC enabled
Priority Enabled List : 0
Priority Disabled List : 1 2 3 4 5 6 7

<table>
<thead>
<tr>
<th>TC</th>
<th>Lossless</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface</th>
<th>PFC admin</th>
<th>PFC oper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>1/1</td>
<td>On</td>
<td>Enabled</td>
</tr>
<tr>
<td>1/2</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>1/3</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>1/4</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Related Commands

Note
5.12 Access Control List

An Access Control List (ACL) is a list of permissions attached to an object, to filter or match switches packets. When the pattern is matched at the hardware lookup engine, a specified action (e.g. permit/deny) is applied. The rule fields represent flow characteristics such as source and destination addresses, protocol and VLAN ID.

ACL support currently allows actions of permit or deny rules, and supports only ingress direction. ACL search pattern can be taken from either L2 or L3 fields, e.g L2/L3 source and destination addresses, protocol, VLAN ID and priority or TCP port.

5.12.1 Configuring Access Control List

Access Control List (ACL) is configured by the user and is applied to a port once the ACL search engine matches search criteria with a received packet.

➢ To configure ACL:

Step 1. Log in as admin.
Step 2. Enter config mode. Run:

```
switch > enable
switch # configure terminal
```

Step 3. Create a MAC / IPv4 ACL (access-list) entity.

```
switch (config) mac access-list mac-acl
switch (config mac access-list mac-acl) #
```

Step 4. Add a MAC / IP rules to the appropriate access-list.

```
switch (config mac access-list mac-acl)seq-number 10 deny 0a:0a:0a:0a:0a:0a mask ff:ff:ff:ff:ff:ff any vlan 6 cos 2 protocol 80
switch (config mac access-list mac-acl) #
```

Step 5. Bind the created access-list to an interface (slot/port or port-channel).

```
switch (config)
switch (config) # interface ethernet 1/1
switch (config interface ethernet 1/1) # mac port access-group mac-acl
```

5.12.2 ACL Actions

An ACL action is a set of actions can be activated in case the packet hits the ACL rule.

➢ To modify the VLAN tag of the egress traffic as part of the ACL “permit” rule:

Step 1. Create access-list action profile:

a. Create an action access-list profile using the command `access-list action <action-profile-name>`

b. Add rule to map a VLAN using the command `vlan-map <vlan-id>` within the action profile configuration mode

Step 2. Create an access-list and bind the action rule:

a. Create an access-list profile using the command `ipv4/mac access-list`

b. Add access list rule using the command `deny/permit (action <action profile name>)`
Step 3. Bind the access-list to an interface using the command `ipv4/mac port access-group`.

Create an action profile and add vlan mapping action:
```
switch (config)#access-list action my-action
switch (config access-list action my-action)# vlan-map 20
switch (config access-list action my-action)# exit
```

Create an access list and bind rules:
```
switch (config)# mac access-list my-list
switch (config mac access-list my-list)# permit any any action my-action
switch (config mac access-list my-list)# exit
```

Bind an access-list to a port:
```
Switch (config)# interface ethernet 1/1
Switch (config interface ethernet 1/1)# mac port access-group my-list
```
5.12.3 Commands

ipv4/mac access-list

```plaintext
{ipv4 | mac} access-list <acl-name>
no {ipv4 | mac} access-list <acl-name>
```

Creates a MAC or IPv4 ACL and enter the ACL configuration mode. The no form of the command deletes the ACL.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ipv4</th>
<th>mac</th>
<th>IPv4 or MAC – access list.</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl-name</td>
<td>User defined string for the ACL.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>No ACL available by default.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.1.1400</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config)# mac access-list my-mac-list
 | switch (config mac access-list my-mac-list)# |
| Related Commands | ipv4/port access-group |
| Note | |
ipv4/mac port access-group

```
{ipv4 | mac} port access-list <acl-name>
no {ipv4 | mac} port access-list <acl-name>
```

Binds an ACL to the interface.
The no form of the command unbinds the ACL from the interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ipv4</th>
<th>mac</th>
<th>IPv4 or MAC – access list.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>acl-name</td>
<td>ACL name.</td>
<td></td>
</tr>
</tbody>
</table>

| Default | No ACL is bind by default. |

Configuration Mode	Config Interface Ethernet
	Config Interface Port Channel
	Config Interface MLAG Port Channel

| History | 3.1.1400 | Added MLAG port-channel configuration mode |
| | 3.3.4500 |

| Role | admin |

| Example | switch (config interface ethernet 1/1) # mac port access-group my-list |
| | switch (config interface ethernet 1/1) # |

| Related Commands | ipv4/mac access-list |

| Note | The access control list should be defined prior to the binding action. |
deny/permit (MAC ACL rule)

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequence-number</td>
<td>Optional parameter to set a specific sequence number for the rule. The range is: 1-500.</td>
</tr>
<tr>
<td>deny</td>
<td>permit</td>
</tr>
<tr>
<td>[any</td>
<td><source-mac></td>
</tr>
<tr>
<td>[any</td>
<td><destination-mac></td>
</tr>
<tr>
<td>protocol</td>
<td>Sets the Ethertype field value from the MAC address. Possible range is: 0x0000-0xffff.</td>
</tr>
<tr>
<td>cos-value</td>
<td>Sets the COS (priority bits) field, possible range is: 0-7.</td>
</tr>
<tr>
<td>vlan-id</td>
<td>Sets the VLAN ID field, possible range is 0-4095.</td>
</tr>
<tr>
<td>vlan-mask <vlan-mask></td>
<td>Sets VLAN group. Range: 0x0000-0xFFFF.</td>
</tr>
<tr>
<td>action</td>
<td>Action name (free string).</td>
</tr>
</tbody>
</table>

Default

No rule is added by default to access control list. Default sequence number is in multiple of 10.

Configuration Mode

Config MAC ACL

History

3.1.1400

3.3.4500 Added vlan-mask parameter

Role

admin

Example

switch (config mac access-list my-list) # seq-number 10 deny 0a:0a:0a:0a:0a mask ff:ff:ff:ff:ff any vlan 6 cos 2 protocol 80 switch (config mac access-list my-list) #

Related Commands

ipv4/mac access-list
ipv4/mac port access-group

Note
deny/permit (IPv4 ACL rule)

[seq-number <sequence-number>] [permit | deny] ip {<source-ip> [mask <ip>] | [any]} {<dest-ip> [mask <ip>] | [any]} [action <action-id>]
no <sequence-number>

Creates a rule for IPv4 ACL.
The no form of the command deletes a rule from the IPv4 ACL.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>sequence-number</th>
<th>Optional parameter to set a specific sequence number for the rule. The range is:1-500.</th>
</tr>
</thead>
<tbody>
<tr>
<td>deny</td>
<td>permit</td>
<td>Determines the type of the rule, deny or permit action. Valid mask values fall in the range 0-255.</td>
</tr>
<tr>
<td>{any</td>
<td><source-ip> [mask <ip>]</td>
<td>Sets source IP and optionally sets a mask for that IP address. The “any” option causes the rule to not check the source IP. Valid mask values fall in the range 0-255.</td>
</tr>
<tr>
<td>{any</td>
<td><destination-ip> [mask <ip>]</td>
<td>Sets destination IP and optionally sets a mask for that MAC. The “any” option causes the rule to not check the destination MAC.</td>
</tr>
</tbody>
</table>

Default
No rule is added by default to access control list. Default sequence number is in multiple of 10.

Configuration Mode
Config IPv4 ACL

History
3.1.1400 First version
3.3.4302 Updated syntax description of mask <ip> parameter

Role
admin

Example
switch (config ipv4 access-list my-list) # seq-number 51 deny ip 1.1.1.1 mask 123.12.13.53 45.45.45.0 mask 123.132.21.123
switch (config ipv4 access-list my-list) #

Related Commands
ipv4/mac access-list
ipv4/mac port access-group

Note
deny/permit (IPv4 TCP/UDP ACL rule)

```
deny | permit [seq-number <sequence-number>] 
{permit | deny} {tcp | udp} {<source-ip> | [mask <ip>] | [any]} {<dest-ip> [mask <ip>] [any]} [eq-source <port-number>] 
[eq-destination <port-number>] [action <action-id>] 
no <sequence-number>
```

Creates a rule for IPv4 UDP/TCP ACL.
The no form of the command deletes a rule from the ACL.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequence-number</td>
<td>Optional parameter to set a specific sequence number for the rule. The range is: 1-500.</td>
</tr>
<tr>
<td>deny</td>
<td>permit</td>
</tr>
<tr>
<td>tcp</td>
<td>udp</td>
</tr>
<tr>
<td>{any</td>
<td><source-ip> [mask <ip>]}</td>
</tr>
<tr>
<td>{any</td>
<td><destination-ip> [mask <ip>]}</td>
</tr>
<tr>
<td>[eq-source <port-number>]</td>
<td>TCP/UDP source port number. Range is 0-65535.</td>
</tr>
<tr>
<td>[eq-destination <port-number>]</td>
<td>TCP/UDP destination port number. Range is 0-65535.</td>
</tr>
</tbody>
</table>

Default
No rule is added by default to access control list.
Default sequence number is in multiple of 10.

Configuration Mode
Config IPv4 ACL

History
3.1.1400

Role
admin

Example
```
switch (config ipv4 access-list my-list) # seq-number 10 deny tcp any any eq-source 1200
switch (config ipv4 access-list my-list) #
```

Related Commands
ipv4/mac access-list
ipv4/mac port access-group

Note
access-list action

```plaintext
access-list action <action-profile-name>
no access-list action <action-profile-name>
```

Creates access-list action profile and entering the action profile configuration mode. The no form of the command deletes the action profile.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>action-profile-name</th>
<th>given name for the profile.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.2.0230</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```plaintext
switch (config)# access-list action my-action
switch (config access-list action my-action)# show access-list action my-action
Access-list Action my-action
Mapped_Vlan_ID |Mapped_port |Counter_set |Policer_ID |
---------------------------------------------------------------
N/A            |N/A         |N/A         |N/A        |
```

Related Commands

Note
vlan-map

```bash
vlan-map <vlan-id>
no vlan-map
```

Adds action to map a new VLAN to the packet (in the ingress port or VLAN). The no form of the command removes the action to map a new VLAN.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
<th>Default</th>
<th>Configuration Mode</th>
<th>History</th>
<th>Role</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-id</td>
<td>vlan-id</td>
<td>0-4095.</td>
<td>Config ACL Action</td>
<td>3.2.0230</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config ACL Action</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.2.0230</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```bash
switch (config access-list action my-action)# vlan-map 10
switch (config access-list action my-action)# show access-list action my-action
Access-list Action my-action
Mapped_VLAN_ID |Mapped_port |Counter_set |Policer_ID |
---------------------------------------------------------------
10             |N/A         |N/A         |N/A       |
```

Related Commands

Note
vlan-pop

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-id VLAN ID: 0-4095.</td>
<td></td>
</tr>
</tbody>
</table>

Default

<table>
<thead>
<tr>
<th>Default</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Mode

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config ACL Action</td>
<td></td>
</tr>
</tbody>
</table>

History

<table>
<thead>
<tr>
<th>History</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.3000</td>
<td></td>
</tr>
</tbody>
</table>

Role

<table>
<thead>
<tr>
<th>Role</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```bash
switch (config access-list action my-action)# vlan-pop
switch (config access-list action my-action)# show access-list action my-action
Access-list Action my-action
Popped_Vlan_ID |Mapped_port |Counter_set |Policer_ID |
<<<<<<<<<<<<<<<<<<<<<<<
N/A |N/A         |N/A         |N/A       |
```

Related Commands

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Value</th>
</tr>
</thead>
</table>

Note
vlan-push

vlan-push <vlan-id>

Pushes (or adds) VLAN frames to traffic.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>vlan-id</th>
<th>VLAN ID: 0-4095</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config ACL Action</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.4.3000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```
switch (config access-list action my-action)# vlan-push 10
switch (config access-list action my-action)# show access-list action
my-action
Access-list Action my-action
Mapped_Vlan_ID |Mapped_port |Counter_set |Policer_ID |
---------------------------------------------------------
10              |N/A         |N/A         |N/A       |
```

Related Commands

Note
show access-list action

`show access-list action {<action-profile-name> | summary}`

Displays the access-list action profiles summary.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>action-profile-name</th>
<th>Filter the table according to the action profile name.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>summary</td>
<td>Display summary of the action list.</td>
</tr>
</tbody>
</table>

Default	N/A
Configuration Mode	Any Command Mode
History	3.2.0230
Role	admin

Example

```
switch (config)# show access-list action my-action
Access-list Action my-action
Mapped_VLAN_ID |Mapped_port |Counter_set |Policer_ID |
-----------------------------------------------
10             |N/A         |N/A         |N/A        |
switch (config)#
```

Related Commands

Note
show mac/ipv4 access-lists

`show [mac |ipv4 |] access-lists <access-list-name>`

Displays the list of rules for the MAC/IPv4 ACL.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ipv4</th>
<th>mac</th>
<th>IPv4 or MAC - access list.</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list-name</td>
<td>ACL name.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Default | N/A |

| Configuration Mode | Any Command Mode |

| History | 3.1.1400 |

| History | 3.3.4500 | Updated output |

| Role | admin |

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
</table>

```
switch (config mac access-list my-list) # show mac access-lists my-list
mac access-list my-list
seq-number|p/d | smac | dmac | protocol|cos |vlan |vlan-mask|action|
--------------------------------------------------------------------
10        |deny |any  |any  |0800    |3    |3    |0x0FFF   |none  |
20        |deny |any  |any  |80      |2    |6    |0x0000   |none  |
30        |deny |any  |any  |any     |any  |any  |0x0ACB   |none  |
40        |deny |any  |any  |any     |any  |any  |N/A      |none  |
switch (config mac access-list my-list) #
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>deny/permit (MAC ACL rule)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>deny/permit (IPv4 ACL rule)</td>
</tr>
<tr>
<td></td>
<td>deny/permit (IPv4 TCP/UDP ACL rule)</td>
</tr>
<tr>
<td></td>
<td>ipv4/mac access-list</td>
</tr>
<tr>
<td></td>
<td>ipv4/mac port access-group</td>
</tr>
</tbody>
</table>

| Note |
show mac/ipv4 access-lists summary

show [mac | ipv4 |] access-lists summary

Displays the summary of number of rules per ACL, and the interfaces attached.

| Syntax Description | ipv4 | mac | IPv4 or MAC - Access list
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list-name</td>
<td>ACL</td>
<td></td>
<td>name</td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Any Command Mode

History: 3.1.1400

Role: admin

Example:
```
switch (config) # show mac access-lists summary
mac access-list my-list
  Total ACEs Configured: 2
  Configured on interfaces:
    Ethernet 1/1
    Ethernet 1/2
switch (config) #
```

Related Commands:
- deny/permit (MAC ACL rule)
- deny/permit (IPv4 ACL rule)
- deny/permit (IPv4 TCP/UDP ACL rule)
- ipv4/mac access-list
- ipv4/mac port access-group

Note
5.13 Port Mirroring

Port mirroring enables data plane monitoring functionality which allows the user to send an entire traffic stream for testing. Port mirroring sends a copy of packets of a port’s traffic stream, called “mirrored port”, into an analyzer port. Port mirroring is used for network monitoring. It can be used for intrusion detection, security breaches, latency analysis, capacity and performance matters, and protocol analysis.

Figure 19 provides an overview of the mirroring functionality.

Figure 19: Overview of Mirroring Functionality

There is no limitation on the number of mirroring sources and more than a single source can be mapped to a single analyzer destination.

5.13.1 Mirroring Sessions

Port mirroring is performed by configuring mirroring sessions. A session is an association of a mirror port (or more) and an analyzer port.

Figure 20: Mirror to Analyzer Mapping
A mirroring session is a monitoring configuration mode that has the following parameters:

Table 24 - Mirroring Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source interface(s)</td>
<td>List of source interfaces to be mirrored.</td>
<td>RW</td>
</tr>
<tr>
<td>Destination interface</td>
<td>A single analyzer port through which all mirrored traffic egress.</td>
<td>RW</td>
</tr>
<tr>
<td>Header format</td>
<td>The format and encapsulation of the mirrored traffic when sent to analyzer.</td>
<td>RW</td>
</tr>
<tr>
<td>Truncation</td>
<td>Enabling truncation segments each mirrored packet to 64 bytes.</td>
<td>RW</td>
</tr>
<tr>
<td>Congestion control</td>
<td>Controls the behavior of the source port when destination port is congested.</td>
<td>RW</td>
</tr>
<tr>
<td>Admin state</td>
<td>Administrative state of the monitoring session.</td>
<td>RW</td>
</tr>
</tbody>
</table>

5.13.1.1 Source Interface

The source interface (mirror port) refers to the interface from which the traffic is monitored. Port mirroring does not affect the switching of the original traffic. The traffic is simply duplicated and sent to the analyzer port. Traffic in any direction (either ingress, egress or both) can be mirrored. There is no limitation on the number of the source interfaces mapped to a mirroring session.

Ingress and egress traffic flows of a specific source interface can be mapped to two different sessions.

LAG

The source interface can be a physical interface or a LAG.

Port mirroring can be configured on a LAG interface but not on a LAG member. When a port is added to a mirrored LAG it inherits the LAG’s mirror configuration. However, if port mirroring configuration is set on a port, that configuration must be removed prior to adding the port to a LAG interface.

When a port is removed from a LAG, the mirror property is switched off for that port.

Control Protocols

All control protocols captured on the mirror port are forwarded to the analyzer port in addition to their normal treatment. For example LACP, STP, and LLDP are forwarded to the analyzer port in addition to their normal treatment by the CPU.

Exceptions to the behavior above are the packets that are being handled by the MAC layer, such as pause frames.

5.13.1.2 Destination Interface

The destination interface is an analyzer port is one to which mirrored traffic is sent. The mirrored packets, are duplicated, optionally modified and sent to the analyzer port. The SwitchX® platform supports up to 7 analyzer ports where any mirror port can be mapped to any analyzer port and more than a single mirror port can be mapped to a single analyzer port.
Packets can be forwarded to any destination using the command `destination interface`.
The analyzer port supports status and statistics as any other port.

LAG
The destination interface cannot be a member of LAG when the header format is local.

Control Protocols
The destination interface may also operate in part as a standard port, receiving and sending out non-mirrored traffic. When the header format is configured as a local port, ingress control protocol packets that are received by the local analyzer port get discarded.

Advanced MTU Considerations
The analyzer port, like its counterparts, is subject to MTU configuration. It does not send packets longer than configured.

When the analyzer port sends encapsulated traffic, the analyzer traffic has additional headers and therefore longer frame. The MTU must be configured to support the additional length, otherwise, the packet is truncated to the configured MTU.

The system on the receiving end of the analyzer port must be set to handle the egress traffic. If it is not, it might discard it and indicate this in its statistics (packet too long).

5.13.1.3 Header Format

Ingress traffic from the source interface can be manipulated in several ways depending on the network layout using the command `header-format`.

If the analyzer system is directly connected to the destination interface, then the only parameters that can be configured on the port are the MTU, speed and port based flow control. Priority flow control is not supported is this case. However, if the analyzer system is indirectly connected to the destination interface, there are two options for switching the mirrored data to the analyzer system:

- A VLAN tag may be added to the Ethernet header of the mirrored traffic
- An Ethernet header can be added with include a new destination address and VLAN tag

It must be taken into account that adding headers increases packet size.
5.13.1.4 Congestion Control

The destination ports might receive pause frames that lead to congestion in the switch port. In addition, too much traffic directed to the analyzer port (for example 40GbE mirror port is directed into 10G analyzer port) might also lead to congestion.

In case of congestion:

- When best effort mode is enabled on the analyzer port, SwitchX drops excessive traffic headed to the analyzer port using tail drop mechanism, however, the regular data (mirrored data heading to its original port) does not suffer from a delay or drops due to the analyzer port congestion.
- When the best effort mode on the analyzer port is disabled, the SwitchX does not drop the excessive traffic. This might lead to buffer exhaustion and data path packet loss.

The default behavior in congestion situations is to drop any excessive frames that may clog the system.

ETS, PFC and FC configurations do not apply to the destination port.

5.13.1.5 Truncation

When enabled, the system can truncate the mirrored packets into smaller 64-byte packets (default) which is enough to capture the packets’ L2 and L3 headers.

5.13.2 Configuring Mirroring Sessions

Figure 22 presents two network scenarios with direct and remote connectivity to the analyzer equipment. Direct connectivity is when the analyzer is connected to the analyzer port of the switch. In this case there is no need for adding an L2 header to the mirrored traffic. Remote connectivity is when the analyzer is indirectly connected to the analyzer port of the switch. In this situation, adding an L2 header may be necessary depending on the network’s setup.
To configure a mirroring session:

Step 1. Create a session. Run:

```bash
switch (config) # monitor session 1
```

This command enters a monitor session configuration mode. Upon first implementation the command also creates the session.

Step 2. Add source interface(s). Run:

```bash
switch (config monitor session 1) # add source interface ethernet 1/1 direction both
```

Step 3. Add destination interface. Run:

```bash
switch (config monitor session 1) # destination interface ethernet 1/2
```

Step 4. (Optional) Set header format. Run:

```bash
switch (config monitor session 1) # header-format add-ethernet-header destination-mac 00:0d:ec:f1:a9:c8 add-vlan 10 priority 5 traffic-class 2
```

For remote connectivity use the header formats `add-vlan` or `add-ethernet-header`. For local connectivity, use `local`.

Step 5. (Optional) Truncate the mirrored traffic to 64-byte packets. Run:

```bash
switch (config monitor session 1) # truncate
```

Step 6. (Optional) Set congestion control. Run:

```bash
switch (config monitor session 1) # congestion pause-excessive-frames
```

The default for this command is to drop excessive frames. The `pause-excessive-frames` option uses flow control to regulate the traffic from the source interfaces.
Step 7. Enable the session. Run:

```
switch (config monitor session 1) # no shutdown
```

5.13.3 Verifying Mirroring Sessions

- To verify the attributes of a specific mirroring session:

```
switch (config) # show monitor session 1
Admin: Enable
Status: Up
Truncate: Enable
Destination interface: eth1/2
Congestion type: pause-excessive-frames
Header format: add-ethernet-header
  - traffic class 2
  - vlan 10
  - priority 5
  - destination-mac 00:0d:ec:f1:a9:c8

Source interfaces
Interface direction
--------------------
eth1/1   both
```

- To verify the attributes of running mirroring sessions:

```
switch (config) # show monitor session summary
Session Admin Status Mode Destination      Source
1   Enable  Up add-eth eth1/2    eth1/1(b)
2   Disable Down add-vlan eth1/2     eth1/8(i), po1(e)
3   Enable  Up add-eth eth1/5    eth1/18(e)
7   Disable Down local
```
5.13.4 Commands

5.13.4.1 Config

monitor session

```
monitor session <session-id>
no monitor session <session-id>
```

Creates session and enters monitor session configuration mode upon using this command for the first time.
The no form of the command deletes the session.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>session-id</td>
<td>The monitor session ID. The range is 1-7.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config)# monitor session 1</td>
</tr>
<tr>
<td></td>
<td>switch (config monitor session 1)#</td>
</tr>
</tbody>
</table>

Related Commands

Note
5.13.4.2 Config Monitor Session

destination interface

- **Syntax:**
  ```plaintext
  destination interface <type> <number> [force]
  no destination interface
  ```

- **Description:**
 Sets the egress interface number.
 The no form of the command deletes the destination interface.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface <type> <number></td>
<td>Sets the interface type and number (e.g. ethernet 1/2)</td>
</tr>
<tr>
<td>force</td>
<td>The user does not need to shutdown the port prior the operation.</td>
</tr>
</tbody>
</table>

Default	no destination interface	
Configuration Mode	Config Monitor Session	
History	3.3.3500	First version
	3.3.4100	Added force argument

Role	admin
Example	`switch (config monitor session 1) # destination interface ethernet 1/2`
Related Commands	`switch (config monitor session 1)#`

| Note | |

shutdown

```plaintext
shutdown
no shutdown
```

Disables the session.
The no form of the command enables the session.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Monitor Session</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config monitor session 1) # no shutdown
switch (config monitor session 1)# |

Related Commands

Note
add source interface

```
add source interface <type> <number> direction <d-type>
no source interface <type> <number>
```

Adds a source interface to the mirrored session.
The no form of the command deletes the source interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface <type> <number></td>
<td>Configures interface as “ethernet” or “port-channel”.</td>
</tr>
</tbody>
</table>
| direction <d-type> | Configures the direction of the mirrored traffic. The options are as follows:
 - egress – sets the egress traffic to be monitored
 - ingress – sets the ingress traffic to be monitored
 - both – sets egress and ingress traffic to be monitored |

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config Monitor Session</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config monitor session 1) # add source interface ethernet 1/1 direction both
switch (config monitor session 1)#
```

Related Commands

Note

If mirroring is configured in one direction (e.g. ingress) on an interface and then is configured in the other direction (e.g. egress), then the ultimate setting is “both”.

header-format

`header-format [local [traffic-class <tc>]] | add-vlan <vlan-id> [priority <prio>]] [traffic-class <tc>]] | add-ethernet-header destination-mac <mac-address> [add-vlan <vlan-id> [priority <prio>]] [traffic-class <tc>]]

no header-format

Sets the header format of the mirrored traffic.

The no form of the command resets the parameter values back to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>The mirrored header of the frame is not changed.</td>
</tr>
<tr>
<td>traffic-class <tc></td>
<td>Changes the egress traffic class of the frame. Range is 0-3.</td>
</tr>
<tr>
<td>add-vlan <vlan-id></td>
<td>An 802.1q VLAN tag is added to the frame.</td>
</tr>
<tr>
<td>priority <prio></td>
<td>The priority to be added to the Ethernet header. Range is 0-7.</td>
</tr>
<tr>
<td>add-ethernet-header</td>
<td>Adds an Ethernet header to the mirrored frame.</td>
</tr>
<tr>
<td>destination-mac</td>
<td>The destination MAC address of the added Ethernet frame.</td>
</tr>
</tbody>
</table>

Default

- no-change
- vlan 1
- priority 0
- traffic-class 0

Configuration Mode

- Config Monitor Session

History

- 3.3.3500

Role

- admin

Example

```bash
switch (config monitor session 1) # header-format add-ethernet-header destination-mac 00:0d:ec:f1:a9:c8 add-vlan 10 priority 5 traffic-class 2
switch (config monitor session 1)#
```

Related Commands

Note

If add-ethernet-header is used, the source MAC address is the one attached to the switch.
truncates the mirrored frames to 64-byte packets. The no form of the command disables truncation.

Syntax Description	N/A
Default	no truncate
Configuration Mode	Config Monitor Session
History	3.3.3500
Role	admin
Example	switch (config monitor session 1) # truncate
switch (config monitor session 1)#	
Related Commands

Note | This command applies for all sessions on the same analyzer port.
congestion

congestion [drop-excessive-frames | pause-excessive-frames]
no congestion

Sets the system’s behavior when congested
The no form of the command disables truncation.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>drop-excessive-frames</th>
<th>Drops excessive frames.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pause-excessive-frames</td>
<td>Pauses excessive frames.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>drop-excessive-frames</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config Monitor Session</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.3.3500</th>
</tr>
</thead>
</table>

| History | 3.3.4000 | Added Syntax Description. |
|---------------------|-------------------------|

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>switch (config monitor session 1) # congestion pause-excessive-frames</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>This command applies for all sessions on the same analyzer port.</th>
</tr>
</thead>
</table>
5.13.4.3 Show

show monitor session

show monitor session <session-id>

Displays monitor session configuration and status.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
<th>Default</th>
<th>Configuration Mode</th>
<th>History</th>
<th>Role</th>
<th>Example</th>
</tr>
</thead>
</table>
| session-id | The monitor session ID. Range is 1-7. | N/A | Any Command Mode | 3.3.3500 | admin | switch (config) # show monitor session 1
Admin: Enable
Status: Up
Truncate: Enable
Destination interface: eth1/2
Congestion type: pause-excessive-frames
Header format: add-ethernet-header
- traffic class 2
- vlan 10
- priority 5
- destination-mac 00:0d:ec:f1:a9:c8
Source interfaces
Interface direction

eth1/1 both
switch (config) # |

Related Commands

Note
show monitor session summary

Displays monitor session configuration and status summary.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```bash
switch (config) # show monitor session summary
Session   Admin    Status   Mode       Destination   Source
1         Enable   Up       add-eth    eth1/2        eth1/1(b)
2         Disable  Down     add-vlan   eth1/2        eth1/8(i), po1(e)
3         Enable   Up       add-eth    eth1/5        eth1/18(e)
7         Disable  Down     local
switch (config) #
```

Related Commands

Note
5.14 sFlow

sFlow (ver. 5) is a procedure for statistical monitoring of traffic in networks. MLNX-OS supports an sFlow sampling mechanism (agent), which includes collecting traffic samples and data from counters. The sFlow datagrams are then sent to a central collector.

The sampling mechanism must ensure that any packet going into the system has an equal chance of being sampled, irrespective of the flow to which it belongs. The sampling mechanism provides the collector with periodical information on the amount (and load) of traffic per interface by loading the counter samples into sFlow datagrams.

The sFlow packets are encapsulated and sent in UDP over IP. The UDP port number that is used is the standard 6343 by default.

5.14.1 Flow Samples

The sFlow agent samples the data path based on packets.

Truncation and sampling rate are the two parameters that influence the flow samples. In case of congestion the flow samples can be truncated to a predefined size before it is assigned to the CPU. The truncation can be set to any value between 64 to 256 bytes with the default being 128 bytes.

The sampling rate can be adjusted by setting an average rate. The system assures that a random number of packets is sampled, however, the sample rate on average converges to the configured rate. Valid values range between 4000 to 16777215 packets.

5.14.2 Statistical Samples

The sFlow agent samples interface counters time based. Polling interval is configurable to any value between 5-3600 seconds with the default being 20 seconds.

The following statistics are gathered by the CPU:

Table 25 - List of Statistical Counters

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total packets</td>
<td>The number of packets that pass through sFlow-enabled ports.</td>
</tr>
</tbody>
</table>
5.14.3 sFlow Datagrams

The sFlow datagrams contain flow samples and statistical samples. The sFlow mechanism uses IP protocol, therefore if the packet length is more than the interface MTU, it becomes fragmented by the IP stack. The MTU may also be set manually to anything in the range of 200-9216 bytes. The default is 1400 bytes.

5.14.4 Sampled Interfaces

sFlow must be enabled on physical or LAG interfaces that require sampling. When adding a port to a LAG, sFlow must be disabled on the port. If a port with enabled sFlow is configured to be added to a LAG, the configuration is rejected. Removing a port from a LAG disables sFlow on the port regardless of the LAG’s sFlow status.

5.14.5 Configuring sFlow

➢ To configure the sFlow agent:

 Step 1. Unlock the sFlow commands. Run:


  ```
  switch (config) # protocol sflow
  ```

 Step 2. Enable sFlow on the system. Run:


  ```
  switch (config) # sflow enable
  ```

 Step 3. Enter sFlow configuration mode. Run:


  ```
  switch (config) # sflow
  switch (config sflow) #
  ```

 Step 4. Set the central collector’s IP. Run:


  ```
  switch (config sflow) # collector-ip 10.10.10.10
  ```

 Step 5. Set the agent-ip used in the sFlow header. Run:


  ```
  switch (config sflow) # agent-ip 20.20.20.20
  ```

 Step 6. (Optional) Set the sampling rate of the mechanism. Run:


  ```
  switch (config sflow) # sampling-rate 16000
  ```

 This means that one every 16000 packet gets collected for sampling.

Table 25 - List of Statistical Counters

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of flow samples</td>
<td>The number of packets that are captured by the sampling mechanism.</td>
</tr>
<tr>
<td>Number of statistic</td>
<td>The number of statistical samples.</td>
</tr>
<tr>
<td>Number of discarded</td>
<td>The number of samples that were discarded.</td>
</tr>
<tr>
<td>Number of datagrams</td>
<td>The number of datagrams that were sent to the collector.</td>
</tr>
</tbody>
</table>
Step 7. (Optional) Set the maximum size of the data path sample. Run:

```bash
switch (config sflow) # max-sample-size 156
```

Step 8. (Optional) Set the frequency in which counters are polled. Run:

```bash
switch (config sflow) # counter-poll-interval 19
```

Step 9. (Optional) Set the maximum size of the datagrams sent to the central collector. Run:

```bash
switch (config sflow) # max-datagram-size 1500
```

Step 10. Enable the sFlow agent on the desired interfaces. Run:

```bash
switch (config interface ethernet 1/1)# sflow enable
switch (config interface port-channel 1)# sflow enable
```

5.14.6 Verifying sFlow

To verify the attributes of the sFlow agent:

```bash
switch (config)# show sflow
```

- sflow protocol enabled
- sflow enabled
- sampling-rate 16000
- max-sampled-size 156
- counter-poll-interval 19
- max-datagram-size 1500
- collector-ip 10.10.10.10
- collector-port 6343
- agent-ip 20.20.20.20

Interfaces
- Ethernet: eth1/1
- Port-channel: po1

Statistics:
- Total Packets: 2000
- Number of flow samples: 1200
- Number of samples discarded: 0
- Number of statistic samples: 800
- Number of datagrams: 300
5.14.7 Commands

5.14.7.1 Config

protocol sflow

- **protocol sflow**
- **no protocol sflow**

Unhides the sFlow commands.
The no form of the command deletes sFlow configuration and hides the sFlow commands.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | `switch (config) # protocol sflow`
| | `switch (config) #` |

Related Commands

Note
sflow enable (global)

```
sflow enable
no sflow enable
```

Enables sFlow in the system.
The no form of the command disables sFlow without deleting the configuration.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch (config) # sflow enable</td>
</tr>
<tr>
<td>switch (config) #</td>
</tr>
</tbody>
</table>

Related Commands

| Note |
sflow

sflow

Enters sFlow configuration mode.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # sflow
switch (config sflow) # |
| Related Commands | |
| Note | |
5.14.7.2 Config sFlow

sampling-rate

```
sampling-rate <rate>
no sampling-rate
```

Sets sFlow sampling ratio.
The no form of the command resets this parameter to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>rate</th>
<th>Sets the number of packets passed before selecting one for sampling. The range is 4000-16777215. Zero disables sampling.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>16000</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config sFlow</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>
| Example | switch (config sflow) # sampling-rate 16111
switch (config sflow) # | |
| Related Commands | | |
| Note | | |
max-sample-size

```
max-sample-size <packet-size>
no max-sample-size
```

Sets the maximum size of sampled packets by sFlow.
The no form of the command resets the parameter to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>packet-size</th>
<th>The sampled packet size. The range is 64-256 bytes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td></td>
<td>128 bytes</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td></td>
<td>Config sFlow</td>
</tr>
<tr>
<td>History</td>
<td></td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td></td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td>switch (config sflow) # max-sample-size 165</td>
</tr>
<tr>
<td></td>
<td></td>
<td>switch (config sflow) #</td>
</tr>
</tbody>
</table>

Related Commands

Note
Sampled payload beyond the configured size is discarded.
counter-poll-interval

counter-poll-interval <seconds>
no counter-poll-interval

Sets the sFlow statistics polling interval.
The no form of the command resets the parameter to its default value.

Syntax Description
- seconds: The sFlow statistics polling interval in seconds. Range is 5-3600 seconds. Zero disables the statistic polling.

Default: 20 seconds

Configuration Mode: Config sFlow

History: 3.3.3500

Role: admin

Example:
```
switch (config sflow) # counter-poll-interval 30
switch (config sflow) #
```

Related Commands

Note
max-datagram-size

max-datagram-size <packet-size>
no max-datagram-size

Sets the maximum sFlow packet size to be sent to the collector. The no form of the command resets the parameter to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>packet-size</td>
<td>The packet size of the packet being sent to the collector. The range is 200-9216 bytes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>1400 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config sFlow</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config sflow) # max-datagram-size 9216
switch (config sflow) #
```

Related Commands

Note

This packet contains the data sample as well as the statistical counter data.
collector-ip

```
collector-ip <ip-address> [udp-port <udp-port-number>]
no collector-ip [<ip-address> udp-port]
```

Sets the collector’s IP.
The no form of the command resets the parameters to their default values.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>The collector IP address.</td>
</tr>
<tr>
<td>udp-port <udp-port-number></td>
<td>Sets the collector UDP port number.</td>
</tr>
</tbody>
</table>

| Default | ip-address: 0.0.0.0 |
| | udp-port-number: 6343 |

Configuration Mode
Config sFlow

History
3.3.3500

Role
admin

Example
```
switch (config sflow) # collector-ip 10.10.10.10
switch (config sflow) #
```

Related Commands

Note
agent-ip

agent-ip {<ip-address> | interface [ethernet <slot/port> | port-channel <channel-group>] | <if-name> | loopback <number> | vlan <id>}
no agent-ip

Sets the IP address associated with this agent.
The no form of the command resets the parameters to their default values.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>Configures a specific ethernet/port-channel interface’s agent IP.</td>
</tr>
<tr>
<td>if-name</td>
<td>Interface name (e.g. mgmt0, mgmt1).</td>
</tr>
<tr>
<td>ip-address</td>
<td>The sFlow agent’s IP address (i.e. the source IP of the packet).</td>
</tr>
<tr>
<td>loopback <number></td>
<td>Loopback interface number. Range: 1-32.</td>
</tr>
<tr>
<td>vlan <id></td>
<td>Interface VLAN. Range: 1-4094.</td>
</tr>
</tbody>
</table>

Default
ip-address: 0.0.0.0

Configuration Mode
Config sFlow

History
3.3.3500

3.3.5200
Updated “interface” parameters

Role
admin

Example
switch (config sflow) # agent-ip 20.20.20.20
switch (config sflow) #

Related Commands

Note
The IP address here is used in the sFlow header.
clear counters

Clears sFlow counters.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config sFlow</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config sflow) # clear counters
switch (config sflow) # |

Note
sflow enable (interface)

```
sflow enable
no sflow enable
```

Enables sFlow on this interface. The no form of the command disables sFlow on the interface.

Syntax Description

- N/A

Default

- disable
- no view-port-channel member

Configuration Mode

- Config Interface Ethernet
- Config Interface Port Channel
- Config Interface MLAG Port Channel

History

3.3.3500

3.3.4500 Added MLAG port-channel configuration mode

Role

- admin

Example

```
switch(config interface ethernet 1/1)# sflow enable
...
switch(config interface port-channel 1)# sflow enable
```

Related Commands

- Note
5.14.7.3 Show

show sflow

show sflow

Displays sFlow configuration and counters.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config)# show sflow
sflow protocol enabled
sflow enabled
sampling-rate 16000
max-sampled-size 156
counter-poll-interval 19
max-datagram-size 1500
collector-ip 10.10.10.10
collector-port 6343
agent-ip 20.20.20.20
Interfaces
  Ethernet: eth1/1
  Port-channel: po1
Statistics:
  Total Packets: 2000
  Number of flow samples: 1200
  Number of samples discarded: 0
  Number of statistic samples: 800
  Number of datagrams: 300
```

Related Commands

Note
5.15 Transport Applications

5.15.1 RDMA over Converged Ethernet (RoCE)

5.15.1.1 RoCE Overview
Remote Direct Memory Access (RDMA) is the remote memory management capability that allows server to server data movement directly between application memory without any CPU involvement. RDMA over Converged Ethernet (RoCE) is a mechanism to provide this efficient data transfer with very low latencies on loss-less Ethernet networks. With advances in data center convergence over reliable Ethernet, ConnectX® EN with RoCE uses the proven and efficient RDMA transport to provide the platform for deploying RDMA technology in mainstream data center application at 10GigE and 40GigE link-speed. ConnectX® EN with its hardware offload support takes advantage of this efficient RDMA transport (InfiniBand) services over Ethernet to deliver ultra-low latency for performance-critical and transaction intensive applications such as financial, database, storage, and content delivery networks. RoCE encapsulates IB transport and GRH headers in Ethernet packets bearing a dedicated ether type. While the use of GRH is optional within InfiniBand subnets, it is mandatory when using RoCE. Applications written over IB verbs should work seamlessly, but they require provisioning of GRH information when creating address vectors. The library and driver are modified to provide mapping from GID to MAC addresses required by the hardware.

5.15.1.1.1 IP Routable (RoCEv2)
A straightforward extension of the RoCE protocol enables traffic to operate in layer 3 environments. This capability is obtained via a simple modification of the RoCE packet format. Instead of the GRH used in RoCE, routable RoCE packets carry an IP header which allows traversal of IP L3 Routers and a UDP header that serves as a stateless encapsulation layer for the RDMA Transport Protocol Packets over IP.

The proposed RoCEv2 packets use a well-known UDP destination port value that unequivocally distinguishes the datagram. Similar to other protocols that use UDP encapsulation, the UDP source port field is used to carry an opaque flow-identifier that allows network devices to implement packet forwarding optimizations (e.g. ECMP) while staying agnostic to the specifics of the protocol header format.
Furthermore, since this change exclusively affects the packet format on the wire, and due to the fact that with RDMA semantics packets are generated and consumed below the AP applications can seamlessly operate over any form of RDMA service (including the routable version of RoCE as shown in Figure 2), in a completely transparent way.

Figure 25: RoCEv2 Protocol Stack

5.15.1.2 RoCE Configuration

In order to function reliably, RoCE requires a form of flow control. While it is possible to use global flow control, this is normally undesirable, for performance reasons.

The normal and optimal way to use RoCE is to use Priority Flow Control (PFC). To use PFC, it must be enabled on all endpoints and switches in the flow path.

In the following section we present instructions to configure PFC on Mellanox ConnectX™ cards. There are multiple configuration steps required, all of which may be performed via PowerShell. Therefore, although we present each step individually, you may ultimately choose to write a PowerShell script to do them all in one step. Note that administrator privileges are required for these steps.

For further information, please refer to the following URL:

5.15.1.2.1 Prerequisites

The following are the driver’s prerequisites in order to set or configure RoCE:

- ConnectX®-3 and ConnectX®-3 Pro firmware version 2.30.3000 or higher

1. Standard RDMA APIs are IP based already for all existing RDMA technologies
• All InfiniBand verbs applications which run over InfiniBand verbs should work on RoCE links if they use GRH headers.
• Set HCA to use Ethernet protocol:

 Display the Device Manager and expand “System Devices”.

5.15.1.2.2 Configuring Windows Host

Since PFC is responsible for flow controlling at the granularity of traffic priority, it is necessary to assign different priorities to different types of network traffic.

As per RoCE configuration, all ND/NDK traffic is assigned to one or more chosen priorities, where PFC is enabled on those priorities.

Configuring Windows host requires configuring QoS.

5.15.1.2.2.1 Using Global Pause Flow Control (GFC)

➢ To use Global Pause Flow Control (GFC) mode, disable QoS and Priority:

```
PS $ Disable-NetQosFlowControl
PS $ Disable-NetAdapterQos
```

5.15.1.3 Configuring SwitchX® Based Switch System

➢ To enable RoCE, the SwitchX should be configured as follows:

• Ports facing the host should be configured as access ports, and either use global pause or Port Control Protocol (PCP) for priority flow control
• Ports facing the network should be configured as trunk ports, and use Port Control Protocol (PCP) for priority flow control

For further information on how to configure SwitchX, please refer to SwitchX User Manual.

5.15.1.4 Configuring Router (PFC only)

The router uses L3’s DSCP value to mark the egress traffic of L2 PCP. The required mapping, maps the three most significant bits of the DSCP into the PCP. This is the default behavior, and no additional configuration is required.

5.15.1.4.1 Copying Port Control Protocol (PCP) Between Subnets

The captured PCP option from the Ethernet header of the incoming packet can be used to set the PCP bits on the outgoing Ethernet header.

5.15.1.5 Configuring the RoCE Mode

Configuring the RoCE mode requires the following:

• RoCE mode is configured per-driver and is enforced on all the devices in the system

The supported RoCE modes depend on the firmware installed. If the firmware does not support the needed mode, the fallback mode would be the maximum supported RoCE mode of the installed NIC.

RoCE mode can be enabled and disabled via PowerShell.
➢ To enable RoCE using the PowerShell:
 • Open the PowerShell and run:

```
Set-MlnxDriverCoreSetting -RoceMode 1
```

➢ To enable RoCEv2 using the PowerShell:
 • Open the PowerShell and run:

```
Set-MlnxDriverCoreSetting -RoceMode 2
```

➢ To disable any version of RoCE using the PowerShell:
 Open the PowerShell and run:

```
Set-MlnxDriverCoreSetting -RoceMode 0
```

➢ To check current version of RoCE using the PowerShell:
 Step 1. Open the PowerShell and run:

```
Get-MlnxDriverCoreSetting
```

 Step 2. Example output:

```
Caption               : DriverCoreSettingData 'mlx4_bus'
Description           : Mellanox Driver Option Settings
  .
  .
  .
  RoceMode              : 0
```
5.16 802.1x Protocol

The 802.1x standard describes a way to authenticate hosts (or supplicants) and to allow connection only to a list of allowed hosts pre-configured on an authentication server. The authentication is performed by the switch (authenticator) which negotiates the authentication with a RADIUS server (authentication server). This allows to block traffic from non-authenticated sources.

The 802.1x protocol defines the following roles:

- **Supplicant** – the host. It provides the authentication credentials to the authenticator and awaits approval.
- **Authenticator** – the device that connects the supplicant to the network, and checks the authentication with the authentication server. The authenticator is also in charge of blocking and isolating of new client till authenticated and allowing communication once the client has passed the authentication. Mellanox switch acts as an authenticator.
- **Authentication server** – a RADIUS server which can authenticate the user.

The 802.1x is available only on access physical ports. It is not available on LAG and MLAG ports.

A local analyzer port cannot support 802.1x protocol.

802.1x cannot be activated on router ports.

802.1x cannot run on a port configured to switchport trunk or hybrid.

Management interfaces cannot be configured as 802.1x port access entity (PAE) authenticators.

5.16.1 802.1x Operating Modes

The following operating modes are supported in 802.1x:

- **Single host** – only one supplicant can communicate through the port.

Once authentication of the supplicant is accepted by the authentication server, the switch allows it access. If the supplicant logs off or the port state is changed, the port becomes unauthenticated. And if a different supplicant tries to access through this port, its bidirectional traffic is discarded (including authentication traffic).
• Multi-host mode – allows connection of multiple hosts over a single port. Only the first supplicant is authenticated. Subsequent hosts have network access without the need to authenticate.

5.16.2 Configuring 802.1x

➢ To configure 802.1x on the switch

Step 1. Enable 802.1x protocol. Run:
```
switch (config) # protocol dot1x
```

Step 2. Enable the system as authenticator. Run:
```
switch (config) # dot1x system-auth-control
```

Step 3. Configure RADIUS server parameters. Run:
```
switch (config) # dot1x radius-server host 10.10.10.10 key my4uth3nt10nk3y retransmit 2 timeout 3
```

Step 4. Enter the configuration mode of an Ethernet interface. Run:
```
switch (config) # interface ethernet 1/1
switch (config interface ethernet 1/1) #
```

Step 5. Configure the interface as a port access entity authenticator. Run:
```
switch (config interface ethernet 1/1) # dot1x pae authenticator
```

Step 6. Configure the interface to perform authentication on ingress traffic. Run:
```
switch (config interface ethernet 1/1) # dot1x port-control auto
```

Step 7. Verify 802.1x configuration. Run:
```
switch (config interface ethernet 1/1) # show dot1x interfaces ethernet 1/1
```

Eth1/1

<table>
<thead>
<tr>
<th>PAE Status:</th>
<th>Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configured host mode:</td>
<td>Multi-host</td>
</tr>
<tr>
<td>Configured port-control:</td>
<td>Auto</td>
</tr>
<tr>
<td>Authentication status:</td>
<td>Unauthorized</td>
</tr>
<tr>
<td>Re-Authentication:</td>
<td>Disabled</td>
</tr>
<tr>
<td>Re-Authentication period (sec):</td>
<td>-</td>
</tr>
<tr>
<td>Tx wait period (sec):</td>
<td>30</td>
</tr>
<tr>
<td>Quiet period (sec):</td>
<td>60</td>
</tr>
<tr>
<td>Max request retry:</td>
<td>2</td>
</tr>
<tr>
<td>Last EAPOL RX source MAC:</td>
<td>00:00:00:00:00:00</td>
</tr>
</tbody>
</table>

```
switch (config interface ethernet 1/1) #
```
5.16.3 Commands

protocol dot1x

```plaintext
protocol dot1x  
no protocol dot1x
```

Enables 802.1x EAPOL protocol.
The no form of the command disables 802.1x EAPOL protocol.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.4.2008</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config)# protocol dot1x</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
dot1x clear-statistics

dot1x clear-statistics

Resets the 802.1x counters on all or a specific port.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td></td>
<td>Config Interface Ethernet</td>
</tr>
<tr>
<td>History</td>
<td>3.4.2008</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config)# dot1x clear-statistics</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td></td>
</tr>
</tbody>
</table>

Note
dot1x pae authenticator

Syntax

```
dot1x pae authenticator  
no dot1x pae authenticator
```

Configures the port as a 802.1x port access entity (PAE) authenticator. The no form of the command disables the port from being a 802.1x PAE authenticator.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface Ethernet</td>
</tr>
<tr>
<td>History</td>
<td>3.4.2008</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config interface ethernet 1/2)# dot1x system-auth-control
```

Related Commands

Note
dot1x host-mode

Syntax
dot1x host-mode [multi-host | single-host]
no dot1x host-mode

Configures the authentication mode to either multi-host or single-host. The no form of the command resets the parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>multi-host</td>
<td>Sets the interface to operate in a port-based mode</td>
</tr>
<tr>
<td>single-host</td>
<td>Sets the interface to operate in a MAC-based mode with support of a single supplicant per interface</td>
</tr>
</tbody>
</table>

Default
single-host

Configuration Mode
Config Interface Ethernet

History
3.4.2008
3.4.2300 Added “single-host” option

Role
admin

Example
switch (config interface ethernet 1/2)# dot1x host-mode single-host

Related Commands

Note
dot1x port-control

dot1x port-control [auto | force-authorized | force-unauthorized]

no dot1x port-control

Configures 802.1x port access entity (PAE) port-control. The no form of the command resets the parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>The authenticator uses PAE authentication services to allow or block the port traffic</td>
</tr>
<tr>
<td>force-authorized</td>
<td>Allows traffic on this port regardless of supplicant authorization</td>
</tr>
<tr>
<td>force-unauthorized</td>
<td>Blocks traffic on this port regardless of supplicant authorization</td>
</tr>
</tbody>
</table>

Default

Force-authorized

Configuration Mode

Config Interface Ethernet

History

3.4.2008

Role

admin

Example

```
switch (config interface ethernet 1/2)# dot1x port-control auto
```

Related Commands

Note
dot1x radius-server host

```
dot1x radius-server host <IP address> [enable | auth-port <port> | key <password> | prompt-key | retransmit <retries> | timeout <seconds>]
no dot1x radius-server host <IP address> enable
```

Configure 802.1x RADIUS server IP address.
The no form of the command disables 802.1x RADIUS server.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auth-port</td>
<td>Sets 802.1x RADIUS port to use with this server. Range: 1-65535.</td>
</tr>
<tr>
<td>enable</td>
<td>Sets 802.1x RADIUS as administratively enabled</td>
</tr>
<tr>
<td>key</td>
<td>Configures 802.1x global RADIUS shared secret for servers.</td>
</tr>
<tr>
<td>prompt-key</td>
<td>Prompts for key, rather than entering on command line</td>
</tr>
<tr>
<td>retransmit</td>
<td>Configure 802.1x global RADIUS retransmit count for servers. The time configured is in seconds. Range: 0-5.</td>
</tr>
<tr>
<td>timeout</td>
<td>Configures 802.1x global RADIUS timeout value for servers. The time configured is in seconds. Range: 1-60.</td>
</tr>
</tbody>
</table>

Default

- auth-port: 1812
- key: empty string
- retransmit: 1
- timeout: 3

Configuration Mode

Config

History

3.4.2008

Role

admin

Example

```
switch (config)# dot1x radius-server host 10.10.10.10 auth-port 65535 prompt-key enable
```

Related Commands

Note

- The no form of the various parameters resets them to their default values as indicated in the Default section above
- It is possible to configure up to 5 RADIUS servers
- It is possible to configure only 1 authentication port per RADIUS server IP
dot1x reauthenticate

```
dot1x reauthenticate
no dot1x reauthenticate
```

Enables supplicant re-authentication according to the configuration of command “dot1x timeout reauthentication”.
The no form of the command disables supplicant re-authentication.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>No re-authentication</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface Ethernet</td>
</tr>
<tr>
<td>History</td>
<td>3.4.2008</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config interface ethernet 1/2)# dot1x reauthenticate</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
dot1x system-auth-control

```
dot1x system-auth-control
no dot1x system-auth-control
```

Enables the system as authenticator.
The no form of the command disables the system as authenticator.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.4.2008</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config)# dot1x system-auth-control</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
dot1x timeout reauthentication

```
dot1x timeout reauthentication <period>
no dot1x timeout reauthentication
```

Configures the number of seconds between re-authentication attempts. The no form of the command resets the parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Default Configuration Mode</th>
<th>3600 seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config Interface Ethernet</td>
<td>Admin</td>
</tr>
<tr>
<td>History</td>
<td>3.4.2008</td>
</tr>
</tbody>
</table>

Example

```
switch (config interface ethernet 1/2)# dot1x timeout reauthentication 3600
```

Related Commands

Note
dot1x timeout quiet-period

Syntax Description

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>60 seconds</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Mode

Config Interface Ethernet

History

3.4.2008

Role

admin

Example

switch (config interface ethernet 1/2)# dot1x timeout quiet-period 60

Related Commands

Note

Configures the number of seconds that the authenticator remains quiet following a failed authentication exchange with the supplicant. The no form of the command resets the parameter to its default.
dot1x timeout tx-period

```
dot1x timeout tx-period <period>
no dot1x timeout tx-period
```

Configures the maximum number of seconds that the authenticator waits for supplicant response of EAP-request/identify frame before retransmitting the request. The no form of the command resets the parameter to its default.

Syntax Description

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>30 seconds</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Mode

Config Interface Ethernet

History

3.4.2008

Role

admin

Example

```
switch (config interface ethernet 1/2)# dot1x timeout quiet-period 30
```

Related Commands

-

Note

-

dot1x max-req

`dot1x max-req <retries>`
`no dot1x max-req`

Configures the maximum amount of retries for the authenticator to communicate with the supplicant over EAP.
The no form of the command resets the parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>retries</td>
<td>The number of request retries. Range: 1-10.</td>
</tr>
</tbody>
</table>

Default
2

Configuration Mode
Config Interface Ethernet

History
3.4.2008

Role
admin

Example
```
switch (config interface ethernet 1/2)# dot1x max-req 2
```

Related Commands

Note
show dot1x

show dot1x

Displays 802.1x information on all interfaces.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.4.2008</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config)# show dot1x

System authentication is enabled

---------------------------------------------------------------------
<table>
<thead>
<tr>
<th>Port</th>
<th>Pae</th>
<th>Host-mode</th>
<th>Port-control</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth1/1</td>
<td>Enabled</td>
<td>multi-host</td>
<td>auto</td>
<td>unauthorized</td>
</tr>
<tr>
<td>Eth1/2</td>
<td>Disabled</td>
<td>multi-host</td>
<td>force-authorized</td>
<td>down</td>
</tr>
<tr>
<td>Eth1/3</td>
<td>Disabled</td>
<td>multi-host</td>
<td>force-authorized</td>
<td>down</td>
</tr>
<tr>
<td>Eth1/4</td>
<td>Disabled</td>
<td>multi-host</td>
<td>force-authorized</td>
<td>down</td>
</tr>
<tr>
<td>Eth1/5</td>
<td>Disabled</td>
<td>multi-host</td>
<td>force-authorized</td>
<td>down</td>
</tr>
<tr>
<td>Eth1/6</td>
<td>Disabled</td>
<td>multi-host</td>
<td>force-authorized</td>
<td>down</td>
</tr>
<tr>
<td>Eth1/7</td>
<td>Disabled</td>
<td>multi-host</td>
<td>force-authorized</td>
<td>down</td>
</tr>
<tr>
<td>Eth1/8</td>
<td>Disabled</td>
<td>multi-host</td>
<td>force-authorized</td>
<td>down</td>
</tr>
<tr>
<td>Eth1/9</td>
<td>Disabled</td>
<td>multi-host</td>
<td>force-authorized</td>
<td>down</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Related Commands

Note
show dot1x interfaces ethernet

Syntax Description
show dot1x interfaces ethernet <slot>/<port>

Displays 802.1x interface information.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th><slot>/<port></th>
<th>Ethernet interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.4.2008</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```
switch (config)# show dot1x interfaces ethernet 1/2

Eth1/2
   PAE Status:                       Enabled
   Configured host mode:            Multi-host
   Configured port-control:         Auto
   Authentication status:           Unauthorized
   Re-Authentication:               Enabled
   Re-Authentication period (sec):   3600
   Tx wait period (sec):            30
   Quiet period (sec):              60
   Max request retry:               2
   Last EAPOL RX source MAC:        00:00:00:00:00:00
switch (config interface ethernet 1/2)#
```

Related Commands

Note
show dot1x interfaces ethernet statistics

Displays 802.1x interface information.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th><slot>/<port></th>
<th>Ethernet interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.4.2008</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config)# show dot1x interfaces ethernet 1/2 statistics</td>
<td></td>
</tr>
</tbody>
</table>

Eth1/2
EAPOL frames received: 3
EAPOL frames transmitted: 2
EAPOL Start frames received: 1
EAPOL Logoff frames received: 0
EAP Response-ID frames received: 2
EAP Response frames received: 0
EAP Request-ID frames transmitted: 2
EAP Request frames transmitted: 0
Invalid EAPOL frames received: 0
EAP length error frames received: 0
Last EAPOL frame version: 1
Last EAPOL frame source: 00:1A:A0:02:E9:8E

Related Commands

Note
show dot1x radius

show dot1x radius

Displays 802.1x RADIUS settings.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.4.2008</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config)# show dot1x radius
802.1x RADIUS defaults:
   Key: ********
   Timeout: 3
   Retransmit: 1
No 802.1x RADIUS servers configured.
switch (config)#
```

Related Commands

Note
6 IP Routing

6.1 General

6.1.1 IP Interfaces
MLNX-OS supports 3 types of IP interfaces.

• VLAN interface
• Loopback interface
• Router ports

VLAN interface is a logical IPv4 interface created per subnet over a specific 802.1Q VLAN ID. If two hosts from two different subnets need to communicate (via the IP layer), the network administrator needs to configure two interface VLANs, one for each of the subnets. The user may configure up to 64 VLAN interfaces.

Each interface VLAN has the following attributes:

• Admin state
• Operational state
• MAC address
• IP address and mask
• MTU
• Description
• Set of counters

Loopback interface is a logical software entity where traffic transmitted to this interface is immediately received on the sending end.

Router port is a regular switch port configured to operate as an L3 interface. Router ports are assigned an IP address and all L3 commands become applicable to them.

Once configured, router ports no longer partake in the bridging activities of the switch and VLANs configured on them are separate from the pool allocated for the switch ports.

6.1.1.1 Configuring a VLAN Interface

➢ To configure a VLAN interface:

Step 1. Create a VLAN. Run:

```
switch (config)# vlan 10
switch (config vlan 10)# exit
```

Step 2. Assign a physical interface to this VLAN. Run:

```
switch (config)# interface ethernet 1/1
switch (config interface ethernet 1/1)# switchport mode access
```
Step 3. There must be at least one interface in the operational state “UP”.

```
switch (config)# show interface ethernet 1/1 status
Port Operational state Speed Negotiation
---- --------------- ----- ----------------
Eth1/1 Up 40 Gbps No-Negotiation
```

Step 4. Create a VLAN interface that matches the VLAN. Run:

```
switch (config)# interface vlan 10
```

Step 5. Configure an IP address and a network mask to the interface. Run:

```
switch (config)# ip address 10.10.10.10 /24
```

Step 6. Verify VLAN interface configuration. Run:

```
switch (config)# show interface vlan 10
```

6.1.1.2 Configuring a Loopback Interface

➢ **To configure a loopback interface:**

Step 1. Create a loopback interface. Run:

```
switch (config)# interface loopback 2
```

Step 2. Configure an IP address on the loopback interface. Run:

```
switch (config)# ip address 20.20.20.20 /32
```

Step 3. Verify loopback interface configuration. Run:

```
switch (config)# show interfaces loopback 2
```

<table>
<thead>
<tr>
<th>Loopback 2</th>
<th>Internet Address: 20.20.20.20/32</th>
<th>Broadcast address: 20.20.20.20</th>
<th>MTU: 1500 bytes</th>
<th>Description: my-loopback</th>
</tr>
</thead>
</table>

switch (config) #
6.1.1.3 Configuring a Router Port

Step 1. Enter an Ethernet interface’s configuration context. Run:

```
switch (config)# interface ethernet 1/10
switch (config interface ethernet 1/10)#
```

Step 2. Configure the Ethernet interface to become an L3 router port. Run:

```
switch (config interface ethernet 1/10)# no switchport force
```

Step 3. Configure an IP address on the router port. Run:

```
switch (config interface ethernet 1/10)# ip address 100.100.100.100 /24
```

Step 4. Verify router port configuration. Run:

```
switch (config interface ethernet 1/10)# show interfaces ethernet 1/10
```

```
Eth1/10
  Admin state: Enabled
  Operational state: Down
  Description: N\A
  Mac address: 00:02:c9:96:c6:d8
  MTU: 1500 bytes (Maximum packet size 1522 bytes)
  Flow-control: receive off send off
  Actual speed: 40 Gbps
  Width reduction mode: Unknown
  DHCP client: Disabled
  IP Address: 100.100.100.100 /24
  Broadcast address: 100.100.100.255
  Arp timeout: 1500 seconds
  VRF: default
  MAC learning mode: Enabled
  Last clearing of "show interface" counters : 00:00:01
  60 seconds ingress rate: 0 bits/sec, 0 bytes/sec, 0 packets/sec
  60 seconds egress rate: 0 bits/sec, 0 bytes/sec, 0 packets/sec

  Rx
  0 packets
  0 unicast packets
  0 multicast packets
  0 broadcast packets
  0 bytes
  0 error packets
  0 discard packets

  Tx
  0 packets
  0 unicast packets
  0 multicast packets
  0 broadcast packets
  0 bytes
  0 discard packets
```
6.1.2 Equal Cost Multi-Path Routing (ECMP)

Equal-cost multi-path routing (ECMP) is a routing strategy where next-hop packet forwarding to a single destination can occur over multiple paths.

In Figure 26, routers R1 and R2 can both access each of their router peer networks. Router R1 routing table for 10.0.40/24 will contain the following routes:

- 10.0.10.2
- 10.0.20.2
- 10.0.30.2

![Figure 26: ECMP](image)

The load balancing function of the ECMP is configured globally on the system. Hash algorithm can be symmetric or asymmetric. In symmetric hash functions bidirectional flows between routes will follow the same path, while in asymmetric hash functions, bidirectional traffic can follow different paths in both directions.

The following load balancing types are supported:

- Source IP & Port – source IP (SIP) and source UDP/TCP port: If the packet is not UDP/TCP, only SIP is used for the hash calculation. This is an asymmetric hash function.
- Destination IP & Port – destination IP (DIP) and destination UDP/TCP port: If the packet is not UDP/TCP, only DIP is used for the hash calculation. This is an asymmetric hash function.
- Source and Destination IP & Port – destination and source IP, as well as destination and source UDP/TCP port: If the packet is not UDP/TCP, only SIP/DIP are used for the hash calculation. This is a symmetric hash function.
- Traffic Class: Load balance based on the traffic class assigned to the packet. This is an asymmetric hash function.
- All (default): all above fields are part of the hash calculations. This is a symmetric hash function.

6.1.2.1 Hash Functions

It is advised that LAG and ECMP hash function configuration over more than one hop is different. If the same hash function is used over two hops, all the traffic sorted from one hop to following one will arrive already having the same characteristics, which will render the next hash
function useless. For example, configure load-balancing on the first hop based on source IP while on the next hop based on destination IP.

Figure 27: Multiple Hash Functions

6.1.3 Virtual Routing and Forwarding

Virtual routing and forwarding (VRF) allows multiple routing table instances to coexist within the same router simultaneously. Since the routing instances are independent, IP addresses on each routing table may overlap without conflicting with each other.

VRF can be used for the following purposes:

- Ensure customer privacy and security
- Separate between management and user data
- Support customers with the same address space
- Support VPN

Multiple routing instances defined in the router can have different purposes and can be configured in different manners:

- Different IP interfaces can be attached to different VRFs (only one IP interface can be in a single VRF)
- Routing in VRF can be enabled or disabled
- Each VRF component can run its own routing protocol independently from other instances
- Differently configured IPv4 and IPv6 services

The first VRF in the system is created automatically and it is called “default” VRF. It cannot be deleted or configured.
6.1.4 IPv4 Routing Mode

The resources available for IPv4 routing are as follows:

- number of IPv4 neighbors – 2048
- number of IPv4 unicast routes – 4096
- number of IPv4 multicast routes – 672

Prior to upgrading to this software release the user must align the number of configured multicast routes to number defined above.
6.1.5 Commands

6.1.5.1 General

ip l3

ip l3 [force]
no ip l3 [force]

Enables IP routing capabilities.
The no form of the command disables IP routing and removes its configuration.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>If operating with Ethernet system profile: L3</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.4.1802</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # ip l3 force
switch (config) # |
| Related Commands | N/A |
| Note | N/A |
vrf definition

vrf definition <vrf-name>

Creates the VRF.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf-name</td>
<td>VRF session name</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>Configuration Mode</th>
<th>History</th>
<th>Role</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Config</td>
<td>3.4.2008</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Related Commands

N/A

Notes

Only 1 VRF is supported aside from the default VRF
routing-context vrf

```
routing-context vrf <vrf-name>
```

Enters the active-context of the specified session.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>vrf-name</th>
<th>VRF session name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.4.2008</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>
| Example | switch (config) # routing-context vrf my-vrf
| | switch (config) # |
| Related Commands | N/A | |
| Notes | • If a routing-context is configured, the user does not have to explicitly specify the VRF name parameter in this or any other VRF command
| | • If no routing-context is configured and the user does not specify the VRF name, default VRF is used |
ip routing

ip routing \[vrf <vrf-name>\]

Enables L3 forwarding between high speed interfaces.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>vrf-name</th>
<th>VRF session name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.4.1802</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4.2008</td>
<td>Added VRF parameter</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>
| Example | switch (config) # ip routing vrf my-vrf
| | switch (config) # |
| Related Commands | N/A | |
| Notes | • RD must be configured to enable IP routing on the VRF
| | • If no routing-context is specified, the “routing-context” VRF is automatically configured. |
description

description <description>

no description force

Creates the VRF.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>description</th>
<th>Text string</th>
</tr>
</thead>
<tbody>
<tr>
<td>force</td>
<td>force</td>
<td>Forces deletion (no confirmation needed if configuration exists inside the VRF)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config VRF Definition</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.4.2008</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch (config vrf definition my-vrf) # description vrf-description</td>
</tr>
<tr>
<td>switch (config vrf definition my-vrf) #</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>N/A</th>
</tr>
</thead>
</table>

| Notes | |
|-------| |
rd

rd [<ip addr>:<0-65,535> | <AS Number>:<0-4,294,967,295> | <AS Number>:<ip addr>]

Adds a route distinguisher (RD) to the VRF configuration mode.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ip-addr</th>
<th>IPv4 address</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS Number</td>
<td>Asynchronous machine number</td>
<td></td>
</tr>
</tbody>
</table>

Default
N/A

Configuration Mode
Config VRF Definition

History
3.4.2008

Role
admin

Example
switch (config vrf definition my-vrf) # rd 10.10.10:2
switch (config vrf definition my-vrf) #

Related Commands
N/A

Notes
• RDs internally identify routes belonging to a VRF to distinguish overlapping or duplicate IP address ranges. This allows the creation of distinct routes to the same IP address for different VPNs. The RD is a 64-bit number made up of an AS number or IPv4 address followed by a user-selected ID number. Once an RD has been assigned to a VRF it cannot be changed. To change the RD, remove the VRF then create it again. VRF is not active until an RD is defined.
• An RD must be defined to enable IP routing on the VRF
vrf forwarding

Syntax

`vrf forwarding <vrf-name>`

Maps an interface to VRF.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>vrf-name</th>
<th>VRF session name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface Ethernet set as router port</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.4.2008</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config interface ethernet 1/2) # vrf forwarding my-vrf</td>
<td></td>
</tr>
</tbody>
</table>

Notes

N/A
show ip routing

show ip routing [vrf <vrf-name> | all]

Displays IP routing information per VRF.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>vrf</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Displays information for specific VRF</td>
<td>Displays information on all VRFs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.2.0230</td>
</tr>
<tr>
<td></td>
<td>3.4.2008</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # show ip routing vrf all</td>
</tr>
<tr>
<td></td>
<td>VRF Name: my-vrf</td>
</tr>
<tr>
<td></td>
<td>------------------------------</td>
</tr>
<tr>
<td></td>
<td>IP routing: disabled</td>
</tr>
<tr>
<td></td>
<td>VRF Name: default</td>
</tr>
<tr>
<td></td>
<td>------------------------------</td>
</tr>
<tr>
<td></td>
<td>IP routing: enabled</td>
</tr>
<tr>
<td></td>
<td>switch (config) #</td>
</tr>
</tbody>
</table>

| Related Commands | N/A |
| Notes | If no routing-context is specified, the “routing-context” VRF is automatically displayed. |
show routing-context vrf

Displays VRF active context.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.4.2008</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # show routing-context vrf
| | VRF active context: my-vrf
| | switch (config) # |
| Related Commands | N/A |
| Notes | |
show vrf

show vrf [<vrf-name> | all]

Displays VRF information.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>all</th>
<th>Displays information for all VRF instances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vrf-name</td>
<td>Name of VRF instance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.4.2008</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show vrf my-vrf

VRF Info
  Name: my-vrf
  RD: 10.10.10.10:2
  Description: Test VRF
  IP routing state: Enabled
  Protocols: IPv4
    Interfaces: Eth1/2

switch (config) #
```

Related Commands

N/A

Notes

If no routing-context is specified, the “routing-context” VRF is automatically displayed.
6.1.5.2 IP Interfaces

switchport

```
switchport [force]
no switchport [force]
```

Configures the Ethernet interface as a regular switchport. The no form of the command configures the Ethernet interface as a router port.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>force</th>
<th>Forces configuration even if the interface’s admin state is enabled.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
| Configuration Mode | Config Interface Ethernet
| | Config Interface Port Channel | |
| History | 3.3.5200 | |
| Role | admin | |
| Example | switch (config interface ethernet 1/10)# no switchport force |

Related Commands

Note
encapsulation dot1q vlan

```
encapsulation dot1q vlan <vlan-id> [force]
no encapsulation dot1q vlan [force]
```

Enables L2 802.1Q encapsulation of traffic on a specified router port in a VLAN. The no form of the command disables L2 802.1Q encapsulation of traffic on a specified router port in a VLAN.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-id</td>
<td>Enables L2 802.1Q encapsulation of traffic on a router port in a VLAN.</td>
</tr>
<tr>
<td>force</td>
<td>Forces admin state down.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config Interface Ethernet</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5200</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config interface ethernet 1/10)# encapsulation dot1q vlan 10
```

Related Commands

Note
6.1.5.3 Interface VLAN

interface vlan

```
interface vlan <vlan-id>
no interface vlan <vlan-id>
```

Creates a VLAN interface and enters the interface VLAN configuration mode. The no form of the command deletes the VLAN interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
<th>Default</th>
<th>Configuration Mode</th>
<th>History</th>
<th>Role</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-id</td>
<td>A numeric range of 1-4094</td>
<td>N/A</td>
<td>Config</td>
<td>3.2.0230</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Related Commands

- ip routing
- vlan <vlan-id>
- switchport mode
- switchport access
- show interfaces vlan

Note

- Make sure the VLAN was created, using the command “vlan <vlan-id>” in the global configuration mode
- The VLAN must be assigned to one of the L2 interfaces. To do so, run the command “switchport...”
- At least one interface belong to that VLAN must be in UP state
ip address

ip address <ip-address> <mask>
no ip address <ip-address> <mask>

Enters user-defined description for the interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ip-address</th>
<th>IPv4 address</th>
</tr>
</thead>
<tbody>
<tr>
<td>mask</td>
<td></td>
<td>There are two possible ways to the mask:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• /length (i.e. /24)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Network address (i.e. 255.255.255.0)</td>
</tr>
</tbody>
</table>

Default	0.0.0.0/0
Configuration Mode	Config Interface VLAN
History	3.2.0230
Role	admin

Example

```
switch (config interface vlan 10) # ip address 10.10.10.10 /24
switch (config interface vlan 10) #
```

Related Commands

- interface vlan
- show interfaces vlan

Note
ip address dhcp

Enables DHCP on this VLAN interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface VLAN</td>
</tr>
<tr>
<td>History</td>
<td>3.4.2008</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config interface vlan 10) # ip address dhcp
switch (config interface vlan 10) #
```

Related Commands

- interface vlan
- show interfaces vlan

Note
counters

 counters
 no counters

Enables counters on the IP interface.
The no form of the command disables counters gathering on the IP interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>counters are disabled.</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface VLAN</td>
</tr>
<tr>
<td>History</td>
<td>3.2.0230</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config interface vlan 10) # counters
| | switch (config interface vlan 10) # |
| Related Commands | counters
| | interface vlan
| | show interfaces vlan |
| Note | • Enabling counters for the router interface adds delay to the traffic stream
| | • There are maximum of 16 counter sets |
description

```
description <string>
no description
```

Enters a description for the interface.
The no form of the command sets the description to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>string</th>
<th>User defined string</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface VLAN</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.2.0230</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>
| Example | switch (config interface vlan 10) # description my-ip-interface
switch (config interface vlan 10) # |
| Related Commands | interface vlan
show interfaces vlan |
| Note | |
mtu

```
mtu <size> [force]
no mtu
```

Sets the MTU for the interface.
The no form of the command sets the MTU to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>1500-9216</td>
</tr>
<tr>
<td>force</td>
<td>Forces command implementation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>1522</th>
</tr>
</thead>
</table>

Configuration Mode

Config Interface VLAN

History

3.2.0230

Role

admin

Example

```
switch (config interface vlan 10)# mtu 9216
switch (config interface vlan 10 #
```

Related Commands

- interface vlan
- show interfaces vlan

Note
shutdown

shutdown
no shutdown

Disables the interface.
The no form of the command enables the interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>The interface is enabled.</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface VLAN</td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | `switch (config interface vlan 20) # shutdown`
| Related Commands | `interface vlan` |
| Note | |
clear counters

clear counters

Clears the interface counters.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface VLAN</td>
</tr>
<tr>
<td>History</td>
<td>3.2.0230</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config interface vlan 10) # clear counters
switch (config interface vlan 10) # |
| Related Commands | interface vlan
counters |

Note
ip icmp redirect

Enables ICMP redirect.
The no form of the command disables ICMP redirect.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Enabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface VLAN</td>
</tr>
<tr>
<td>History</td>
<td>3.4.0010</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config interface vlan 10) # no ip icmp redirect</td>
</tr>
<tr>
<td>Related Commands</td>
<td>interface vlan counters</td>
</tr>
<tr>
<td>Note</td>
<td>• ICMP redirect transmits messages to hosts alerting them about the existence of more efficient routes to a specific destination</td>
</tr>
</tbody>
</table>
show ip interface

show ip interface [vrf <vrf-name> | all] [brief]

Displays IP interfaces information per VRF.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>all</th>
<th>Displays information on all VRFs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>brief</td>
<td>Displays IP interfaces information in a shortened form</td>
</tr>
</tbody>
</table>

Default
N/A

Configuration Mode
Any Command Mode

History
3.4.2008

Role
admin

Example

```bash
switch (config) # show ip interface vrf all brief
Interface     Address/Mask       Admin-state     Oper-state     MTU     VRF
mgmt0         10.224.22.27/24        Enabled        Up            1500     default
mgmt1         0.0.0.0/0              Enabled        Down          1500     default
Vlan 20        20.20.20.1/24          Enabled        Down          1500     my-vrf
Eth1/1         1.1.1.1/24              Enabled        Down          1500     my-vrf
Loopback 10    10.10.10.1/32           Enabled        Up            1500     my-vrf
Vlan 30        30.30.30.1/24          Enabled        Down          1500     default
Eth1/2         2.2.2.2/24              Enabled        Down          1500     default
Loopback 11    11.11.11.1/32           Enabled        Up            1500     default
```

```bash
switch (config) # show ip interface vrf my-vrf brief
Interface     Address/Mask       Admin-state     Oper-state     MTU     VRF
Vlan 20        20.20.20.1/24          Enabled        Down          1500     my-vrf
Eth1/1         1.1.1.1/24              Enabled        Down          1500     my-vrf
Loopback 10    10.10.10.1/32           Enabled        Up            1500     my-vrf
```

```bash
switch (config) # show ip interface vrf default brief
Interface     Address/Mask       Admin-state     Oper-state     MTU     VRF
mgmt0         10.224.22.27/24        Enabled        Up            1500     default
mgmt1         0.0.0.0/0              Enabled        Down          1500     default
Vlan 30        30.30.30.1/24          Enabled        Down          1500     default
Eth1/2         2.2.2.2/24              Enabled        Down          1500     default
Loopback 11    11.11.11.1/32           Enabled        Up            1500     default
```

Related Commands
N/A

Notes
If no routing-context is specified, the “routing-context” VRF is automatically displayed.
6.1.5.4 Loopback Interface

interface loopback

interface loopback <id>
no interface loopback <id>

Creates a loopback interface and enters the interface configuration mode. The no form of the command deletes the interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
<th>Default</th>
<th>Configuration Mode</th>
<th>History</th>
<th>Role</th>
<th>Example</th>
</tr>
</thead>
</table>
| id | A numeric range of 0-31 | N/A | Config | 3.2.3000 | admin | switch (config) # interface loopback 10
switch (config interface loopback 10) # |

Related Commands

Note
- Up to 32 loopback interfaces can be configured
- Within the loopback configuration mode, you can configure description and ip-address
- MTU cannot be configured on the loopback interface
ip address

Syntax

```
ip address <ip-address> <mask>
no ip address <ip-address> <mask>
```

Enters user-defined description for the interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IPv4 address.</td>
</tr>
<tr>
<td>mask</td>
<td>There are two possible ways to the mask:</td>
</tr>
<tr>
<td></td>
<td>• /length – only /32 is possible</td>
</tr>
<tr>
<td></td>
<td>• Network address (i.e. 255.255.255.0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>0.0.0.0/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config Interface Loopback</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config interface loopback 10) # ip address 10.10.10.10 /32</td>
</tr>
<tr>
<td>Related Commands</td>
<td>interface loopback</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
description

```
description <string>
no description
```

Enters a description for the interface.
The no form of the command sets the description to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>string</th>
<th>User defined string.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>""</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface Loopback</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config interface loopback 10) # description my-ip-interface</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>interface loopback</td>
<td></td>
</tr>
</tbody>
</table>

| Note |
show interfaces loopback

show interface loopback <id>

Shows the attribute of the interface loopback.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>id</th>
<th>A numeric range of 1-32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.2.3000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # show interfaces loopback 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loopback 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internet Address: 2.2.2.2/32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Broadcast address: 2.2.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MTU: 1500 bytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: my-loopback</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch (config) #</td>
<td></td>
</tr>
</tbody>
</table>

Related Commands

Note
6.1.5.5 Routing and ECMP

ip route

```
ip route [vrf <vrf-name>] <IP prefix> <netmask> <next hop IP address>
no ip route [vrf <vrf-name>] <IP prefix> <netmask> <next hop IP address>
```

Configures a static route inside VRF.
The no form of the command removes the static route configured.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf-name</td>
<td>VRF session name</td>
</tr>
<tr>
<td>ip prefix</td>
<td>IP address</td>
</tr>
<tr>
<td>netmask</td>
<td>There are two possible ways to the mask:</td>
</tr>
<tr>
<td></td>
<td>• /length (i.e. /24)</td>
</tr>
<tr>
<td></td>
<td>• Network address (i.e. 255.255.255.0)</td>
</tr>
<tr>
<td>next hop IP address</td>
<td>IP address of the next hop.</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config

History

- 3.1.0000
- 3.4.2008 Added VRF parameter

Role

admin

Example

```
switch (config) # ip route vrf my-vrf 80.80.80.0 /24 20.20.20.2
```

Related Commands

N/A

Notes

If no routing-context is specified, the “routing-context” VRF is automatically configured.
ip load-sharing

ip load-sharing <type>
no ip load-sharing

This command sets the ECMP load sharing mode.
The no form of the command sets the load-sharing to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• source-ip-port</td>
</tr>
<tr>
<td></td>
<td>• destination-ip-port</td>
</tr>
<tr>
<td></td>
<td>• source-destination-ip-port</td>
</tr>
<tr>
<td></td>
<td>• traffic-class</td>
</tr>
<tr>
<td></td>
<td>• all</td>
</tr>
</tbody>
</table>

Default

all

Configuration Mode

Config

History

3.2.0230

Role

admin

Example

switch (config) # ip load-sharing all
switch (config) # show ip load-sharing
Load sharing: all
switch (config)

Related Commands

ip route

Note
show ip route

`show ip route [vrf [<vrf-name> | all]] [-a | static | summary]`

Displays routing table of VRF instance.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>all</th>
<th>Displays routing tables for all VRF instances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-a</td>
<td>Displays static routes currently inactive due to the interface being down</td>
</tr>
<tr>
<td></td>
<td>static</td>
<td>Displays static route</td>
</tr>
<tr>
<td></td>
<td>summary</td>
<td>Displays route summary</td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Any Command Mode

History

- 3.1.0000: First version
- 3.3.3500: Added Distance/Metric column
- 3.4.0000: Added -a parameter
- 3.4.2008: Added VRF parameter
- 3.4.3000: Updated Notes section

Role: admin
Example

```plaintext
switch (config) # show ip route vrf my-vrf

VRF Name: my-vrf

-------------------------------
Destination       Mask         Gateway          Interface     Source        Distance/Metric
10.10.10.1         255.255.255.255 0.0.0.0  loopback10  direct       0/0
20.20.20.0         255.255.255.0     0.0.0.0  vlan20       direct       0/0
80.80.80.0         255.255.255.0     20.20.20.2 vlan20       static      1/0

switch (config) # show ip route vrf my-vrf static

VRF Name: my-vrf

-------------------------------
Destination       Mask         Gateway          Interface     Source        Distance/Metric
80.80.80.0         255.255.255.0     20.20.20.2 vlan20       static      1/0

switch (config) # show ip route vrf my-vrf summary

VRF Name: my-vrf

-------------------------------
Route Source Routes
direct           2
static           1
ospf             0
bgp              0
DHCP             0
Total            3

switch (config) # show ip route vrf my-vrf -a

VRF Name: my-vrf

-------------------------------
Destination       Mask         Gateway          Interface     Source        Distance/Metric
90.90.90.0         255.255.255.0     1.1.1.2  NA            static      1/0
```

Related Commands

- `ip route`

Notes

- If no routing-context is specified, the “routing-context” VRF is automatically displayed
- If no default route exists, then the message “Route not found” is printed
show ip load-sharing

show ip load-sharing
Displays ECMP hash attribute.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.2.0230</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # show ip load-sharing
Load sharing: all
switch (config) # |
| Related Commands | ip load-sharing |
| Note | |
6.1.5.6 Network to Media Resolution (ARP)

ip arp

```
ip arp [vrf <vrf-name>] <ip-address> <mac-address>
no ip arp <ip-address>
```

Configures IP ARP properties of VRF
The no form of the command deletes the static ARP configuration.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>vrf-name</th>
<th>VRF session name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IP address</td>
<td>IPv4 address</td>
</tr>
<tr>
<td></td>
<td>mac-address</td>
<td>MAC address (format XX:XX:XX:XX:XX:XX)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.4.2008</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # ip arp vrf my-vrf 20.20.20.2 aa:bb:cc:dd:ee:ff
```

Related Commands

N/A

Notes

If no routing-context is specified, the “routing-context” VRF is automatically configured.
ip arp timeout

ip arp timeout <timeout-value>
no ip arp timeout

Sets the dynamic ARP cache timeout.
The `no` form of the command sets the timeout to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>timeout-value</th>
<th>Time (in seconds) that an entry remains in the ARP cache. Range: 60-28800.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>1500 seconds</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface VLAN</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.2.0230</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example
```
switch (config) # ip arp timeout 2000
switch (config) # show ip arp

ARP Timeout: 2000

Total number of entries: 55
IP Address  MAC Address            Interface
1.0.0.2     00:02:c9:5c:30:40       Vlan11
1.0.0.3     00:11:22:33:44:55       Vlan11
2.0.0.2     00:02:c9:5c:30:40       Vlan12
3.0.0.2     00:02:c9:5c:30:40       Vlan13
4.0.0.2     00:02:c9:5c:30:40       Vlan14
```

Related Commands
ip arp
show ip arp

Note
This value is used as the ARP timeout whenever a new IP interface is created.
clear ip arp

clear ip arp [vrf <vrf-name>] [interface <type> | <IP-address>]

Clears the dynamic ARP cache for the specific VRF session.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>vrf-name</th>
<th>VRF session name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interface</td>
<td>Clears dynamic ARP entries for a interface</td>
</tr>
<tr>
<td></td>
<td>ip-address</td>
<td>Clears dynamic ARP entries for a specific IP address</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.2.0230</td>
</tr>
<tr>
<td>History</td>
<td>3.4.2008</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config) # clear ip arp vrf my-vrf</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td>ip arp</td>
</tr>
<tr>
<td>Notes</td>
<td>If no routing-context is specified, the “routing-context” VRF is automatically configured.</td>
</tr>
</tbody>
</table>
show ip arp

```plaintext
show ip arp [vrf [<vrf-name> | all]] [interface <type> | count]  
```

Displays all ARP information for VRF instance.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>all</th>
<th>Displays all ARP information for all VRF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interface</td>
<td>Displays all ARP information for specific interface</td>
</tr>
<tr>
<td></td>
<td>count</td>
<td>Displays number of ARPs for specific VRF</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Any Command Mode

History

3.3.3000

3.4.2008 Added VRF parameter

Role

`admin`

Example

```
switch (config) # show ip arp vrf my-vrf

VRF Name: my-vrf
-----------------------------
Total number of entries: 2

<table>
<thead>
<tr>
<th>Address</th>
<th>Type</th>
<th>Hardware Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.2</td>
<td>Static ETH</td>
<td>00:11:22:33:44:55</td>
<td>eth 1/1</td>
</tr>
</tbody>
</table>

switch (config) # show ip arp vrf my-vrf interface ethernet 1/1

VRF Name: my-vrf
-----------------------------
Total number of entries: 1

<table>
<thead>
<tr>
<th>Address</th>
<th>Type</th>
<th>Hardware Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.2</td>
<td>Static ETH</td>
<td>00:11:22:33:44:55</td>
<td>eth 1/1</td>
</tr>
</tbody>
</table>

switch (config) # show ip arp vrf my-vrf interface vlan 20

VRF Name: mmm
-----------------------------
Total number of entries: 1

<table>
<thead>
<tr>
<th>Address</th>
<th>Type</th>
<th>Hardware Address</th>
<th>Interface</th>
</tr>
</thead>
</table>
```

Related Commands

ip arp

Notes

If no routing-context is specified, the “routing-context” VRF is automatically displayed.
6.1.5.7 IP Diagnostic Tools

ping

Sends ICMP echo requests to a specified host.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Linux Ping options</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf</td>
<td>Specifies VRF instance name</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.1.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.4.2008 Added VRF parameter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch (config) # ping 172.30.2.2</td>
</tr>
<tr>
<td>PING 172.30.2.2 (172.30.2.2) 56(84) bytes of data,</td>
</tr>
<tr>
<td>64 bytes from 172.30.2.2: icmp_seq=1 ttl=64 time=0.703 ms</td>
</tr>
<tr>
<td>64 bytes from 172.30.2.2: icmp_seq=2 ttl=64 time=0.187 ms</td>
</tr>
<tr>
<td>64 bytes from 172.30.2.2: icmp_seq=3 ttl=64 time=0.166 ms</td>
</tr>
<tr>
<td>64 bytes from 172.30.2.2: icmp_seq=4 ttl=64 time=0.161 ms</td>
</tr>
<tr>
<td>64 bytes from 172.30.2.2: icmp_seq=5 ttl=64 time=0.153 ms</td>
</tr>
<tr>
<td>64 bytes from 172.30.2.2: icmp_seq=6 ttl=64 time=0.144 ms</td>
</tr>
<tr>
<td>^C</td>
</tr>
<tr>
<td>--- 172.30.2.2 ping statistics ---</td>
</tr>
<tr>
<td>6 packets transmitted, 6 received, 0% packet loss, time 5004ms</td>
</tr>
<tr>
<td>rtt min/avg/max/mdev = 0.144/0.252/0.703/0.202 ms</td>
</tr>
<tr>
<td>Switch (config) #</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>traceroute</th>
</tr>
</thead>
</table>

| Note | When using -I option use the interface name + interface number, for example “ping -I vlan10” |
traceroute

Traces the route packets take to a destination.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf</td>
<td></td>
<td>Specifies VRF instance name</td>
</tr>
<tr>
<td>-4</td>
<td></td>
<td>Uses IPv4.</td>
</tr>
<tr>
<td>-6</td>
<td></td>
<td>Uses IPv6</td>
</tr>
<tr>
<td>-d</td>
<td></td>
<td>Enables socket level debugging.</td>
</tr>
<tr>
<td>-F</td>
<td></td>
<td>Sets DF ("do not fragment" bit) on.</td>
</tr>
<tr>
<td>-I</td>
<td></td>
<td>Uses ICMP ECHO for tracerouting.</td>
</tr>
<tr>
<td>-T</td>
<td></td>
<td>Uses TCP SYN for tracerouting.</td>
</tr>
<tr>
<td>-U</td>
<td></td>
<td>Uses UDP datagram (default) for tracerouting.</td>
</tr>
<tr>
<td>-n</td>
<td></td>
<td>Does not resolve IP addresses to their domain names.</td>
</tr>
<tr>
<td>-r</td>
<td></td>
<td>Bypasses the normal routing and send directly to a host on an attached network.</td>
</tr>
<tr>
<td>-A</td>
<td></td>
<td>Performs AS path lookups in routing registries and print results directly after the corresponding addresses.</td>
</tr>
<tr>
<td>-V</td>
<td></td>
<td>Prints version info and exit.</td>
</tr>
<tr>
<td>-f</td>
<td></td>
<td>Starts from the first_ttl hop (instead from 1).</td>
</tr>
<tr>
<td>-g</td>
<td></td>
<td>Routes packets throw the specified gateway (maximum 8 for IPv4 and 127 for IPv6).</td>
</tr>
<tr>
<td>-i</td>
<td></td>
<td>Specifies a network interface to operate with.</td>
</tr>
<tr>
<td>-m</td>
<td></td>
<td>Sets the max number of hops (max TTL to be reached). Default is 30.</td>
</tr>
<tr>
<td>-N</td>
<td></td>
<td>Sets the number of probes to be tried simultaneously (default is 16).</td>
</tr>
<tr>
<td>-p</td>
<td></td>
<td>Uses destination port. It is an initial value for the UDP destination port (incremented by each probe, default is 33434), for the ICMP seq number (incremented as well, default from 1), and the constant destination port for TCP tries (default is 80).</td>
</tr>
<tr>
<td>-t</td>
<td></td>
<td>Sets the TOS (IPv4 type of service) or TC (IPv6 traffic class) value for outgoing packets.</td>
</tr>
<tr>
<td>-l</td>
<td></td>
<td>Uses specified flow_label for IPv6 packets.</td>
</tr>
</tbody>
</table>
-w Sets the number of seconds to wait for response to a probe (default is 5.0). Non-integer (float point) values allowed too.

-q Sets the number of probes per each hop. Default is 3.

-s Uses source src_addr for outgoing packets.

-z Sets minimal time interval between probes (default is 0). If the value is more than 10, then it specifies a number in milliseconds, else it is a number of seconds (float point values allowed too).

Default
N/A

Configuration Mode
Config

History
3.1.0000

3.4.2008 Added VRF parameter

Role
admin

Example
switch (config) # traceroute 192.168.10.70
trace route to 192.168.10.70 (192.168.10.70), 30 hops max, 40 byte packets
1 172.30.0.1 (172.30.0.1) 3.632 ms 2.849 ms 3.544 ms
2 10.222.128.46 (10.222.128.46) 3.176 ms 3.289 ms 3.656 ms
3 10.158.128.30 (10.158.128.30) 15.331 ms 15.819 ms 16.388 ms
4 10.158.128.65 (10.158.128.65) 20.468 ms 7.893 ms 12.27 ms
5 10.7.34.115 (10.7.34.115) 16.405 ms 11.985 ms 12.264 ms
6 192.168.10.70 (192.168.10.70) 16.377 ms 16.091 ms 20.475 ms
switch (config) #

Related Commands

Note
• The following flags are not supported: -6, -l, -A
• When using -i option use the interface name + interface number, for example “traceroute -i vlan10”
tcpdump

tcpdump [vrf <vrf-name>] [-aAdefLnNOpqRSStuVvxX] [-c count] [-C file_size]
 [-r file] [-s snaplen] [-T type] [-w file]
 [-W filecount] [-y datalinktype] [-Z user]
 [expression]

Invokes standard binary, passing command line parameters straight through. Runs in
foreground, printing packets as they arrive, until the user hits Ctrl+C.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>vrf</th>
<th>Specifies VRF instance name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.1.0000</td>
<td></td>
</tr>
<tr>
<td>3.4.2008</td>
<td>Added VRF parameter</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>
| Example | switch (config) # tcpdump

 09:37:38.678812 IP 192.168.10.7.ssh > 192.168.10.1.54155: P
 1494624:1494800(176) ack 625 win 90
 <nop,nop,timestamp 5842763 858672398>
 09:37:38.678860 IP 192.168.10.7.ssh > 192.168.10.1.54155: P
 1494800:1495104(304) ack 625 win 90
 <nop,nop,timestamp 5842763 858672398>
 ...
 9141 packets captured
 9142 packets received by filter
 0 packets dropped by kernel
 switch (config) # |

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>• When using -i option use the interface name + interface number, for example “tcpdump -i vlan10”</td>
</tr>
<tr>
<td></td>
<td>• For all flag options of this command refer to the linux ‘man page’ of tcp dump.</td>
</tr>
</tbody>
</table>
6.1.5.8 QoS

qos map dscp-to-pcp preserve-pcp

qos map dscp-to-pcp preserve-pcp
no qos map dscp-to-pcp preserve-pcp

Configures the router to copy PCP bits when transferring data from one subnet to another.
The no form of the command disables this ability.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config) # qos map dscp-to-pcp preserve-pcp
switch (config) # |

Related Commands

Note

• This command applies the configuration for all router interfaces
• As part of its function, the router performs DSCP to PCP bits mapping (fixed mapping). By activating the command the router preserves the PCP bits from one subnet to another subnet (PCP bits are copied).
6.2 IPv6

IP version 6 (IPv6) is a routing protocol which succeeds IPv4. With the expansion of the Internet and data bases IPv6 addresses consist of 128 bits whose purpose is to allow networks to include a significantly higher number of nodes by increasing the pool of available unique IP addresses. IPv6 packets alleviate overhead and allow for future customizability.

Textual representations of IPv6 addresses consist of 128 bits made up from eight 16-bit hexadecimal numbers separated by colons. IPv6 addresses may be abbreviated as follows:

- You may omit leading zeros in each 16-bit sequence
- You may replace an entire sequence with a double colon if it equals zero

For example, these addresses represent the same IPv6 address:
- af23:0000:0000:0000:1284:037d:35ce:2401
- af23:0:0:0:1284:37d:35ce:2401
- af23::1284:37d:35ce:2401

IPv6 addresses typically denote a 64-bit network prefix and a 64-bit host address.

Only static IPv6 and ECMP are supported.

The number of static IPv6 addresses supported is 64.

6.2.1 Neighbor Discovery Protocol

Neighbor Discovery (ND) decides relationships between neighbors and replaces ARP, ICMP, and ICMP redirect in IPv4.

Five kinds of ICMPv6 packets are defined by ND:

- Neighbor advertisement
- Router advertisement
- Neighbor solicitation
- Router solicitation
- Redirect

ND checks whether a neighboring node’s address has changed, whether the neighbor is still reachable, and also resolves the address of the neighbor which a packet is being forwarded to. ND is also useful for network nodes for discovering other nodes and performing basic link-layer configuration.
6.2.2 Configuring IPv6

Figure 28: IPv6 Network

To configure Router1:

Step 1. Enable IP routing. Run:
```
switch (config)# ip routing
```

Step 2. Enable forwarding IPv6 unicast packets. Run:
```
switch (config)# ipv6 routing
```

Step 3. Configure the VLAN interfaces. Run:
```
switch (config)# interface vlan 10
switch (config interface vlan 10) # exit
switch (config)# interface vlan 30
switch (config interface vlan 30) # exit
switch (config)# interface vlan 50
switch (config interface vlan 50) # exit
```

Step 4. Enable IPv6 on the VLAN interfaces. Run:
```
switch (config)# interface vlan 10 ipv6 enable
switch (config)# interface vlan 30 ipv6 enable
switch (config)# interface vlan 50 ipv6 enable
```

Step 5. Configure IPv6 addresses for each one of the VLAN interfaces. Run:
```
switch (config)# interface vlan 10 ipv6 address 2101:db01::1 /64
switch (config)# interface vlan 30 ipv6 address 2103:db01::2 /64
switch (config)# interface vlan 50 ipv6 address 2105:db01::1 /64
```

Step 6. Configure IPv6 unicast. Run:
```
switch (config)# ipv6 route 2002:db01:: /64 2101:db01::2
```

Step 7. Configure IPv6 unicast. Run:
```
switch (config)# ipv6 route 2002:db01:: /64 2105:db01::2
```

To configure Router2:

Step 1. Disable prefix mode on the CLI. Run:
```
switch (config)# no cli default prefix-mode enable
```
Step 2. Enable the VLANs on the system. Run:

```
switch (config)# vlan 10
switch (config vlan 10) # exit
switch (config)# vlan 20
switch (config vlan 20) # exit
switch (config)# vlan 50
switch (config vlan 50) # exit
```

Step 3. Configure the switch ports to accept the VLANs of which they are part only. Run:

```
switch (config)# interface ethernet 1/1 switchport access vlan 10 // port2
switch (config)# interface ethernet 1/2 switchport access vlan 50 // port8
switch (config)# interface ethernet 1/36 switchport access vlan 20 // port5
```

Step 4. Disable spanning tree. Run:

```
switch (config)# no spanning-tree
```

Step 5. Enable IP routing. Run:

```
switch (config)# ip routing
```

Step 6. Enable forwarding IPv6 unicast packets. Run:

```
switch (config)# ipv6 routing
```

Step 7. Configure the VLAN interfaces. Run:

```
switch (config)# interface vlan 10
switch (config interface vlan 10) # exit
switch (config)# interface vlan 20
switch (config interface vlan 20) # exit
switch (config)# interface vlan 50
switch (config interface vlan 50) # exit
```

Step 8. Enable IPv6 on the VLAN interfaces. Run:

```
switch (config)# interface vlan 10 ipv6 enable
switch (config)# interface vlan 20 ipv6 enable
switch (config)# interface vlan 50 ipv6 enable
```

Step 9. Configure IPv6 addresses for each one of the VLAN interfaces. Run:

```
switch (config)# interface vlan 10 ipv6 address 2101:db01::2 /64
switch (config)# interface vlan 20 ipv6 address 2102:db01::1 /64
switch (config)# interface vlan 50 ipv6 address 2105:db01::2 /64
```

Step 10. Configure IPv6 unicast. Run:

```
switch (config)# ipv6 route 2103:db01:: /64 2101:db01::1
```

Step 11. Configure IPv6 unicast. Run:

```
switch (config)# ipv6 route 2103:db01:: /64 2105:db01::1
```
Ping neighbor to verify IPv6 configuration:

```
switch (config)# ping6 2101:db01::2
PING 2101:db01::2(2101:db01::2) 56 data bytes
64 bytes from 2101:db01::2: icmp_seq=1 ttl=64 time=0.371 ms
64 bytes from 2101:db01::2: icmp_seq=2 ttl=64 time=0.620 ms
64 bytes from 2101:db01::2: icmp_seq=3 ttl=64 time=0.192 ms
64 bytes from 2101:db01::2: icmp_seq=4 ttl=64 time=0.277 ms
64 bytes from 2101:db01::2: icmp_seq=5 ttl=64 time=0.231 ms
```
6.2.3 Commands

ipv6 enable

```plaintext
ipv6 enable
no ipv6 enable
```

Assigns automatic local IPv6 address to the interface.
The no form of the command deassigns that automatic local address and disables IPv6 if no static IPv6 address has been assigned to the interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Unassigned</td>
</tr>
</tbody>
</table>
| Configuration Mode | Config Interface VLAN
 | Config Interface Loopback
 | Config Interface Ethernet configured as a router port
 | Config Interface Port Channel configured as a router port |
| History | 3.4.1100 |
| Role | admin |
| Example | switch (config vlan 10) # ipv6 enable |

Related Commands

Note
- Assigning an IPv6 address to an interface enables IPv6 processing on the interface also.
ipv6 address

ipv6 address <ipv6-address> /<length>
no ipv6 address <ipv6-address> [/<length>]

Enables IPv6 processing and assigns an IPv6 address to the interface. The no form of the command removes the specified IPv6 address.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>length</td>
<td>Mask length for the associated address space. Range: 1-128.</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config Interface VLAN
Config Interface Loopback
Config Interface Ethernet configured as a router port
Config Interface Port Channel configured as a router port

History

3.4.1100

Role

admin

Example

switch (config vlan 10) # ipv6 address fe80:ac10::fa01:0202 /120
switch (config vlan 10) # ipv6 address fe80:ac10::fa01:0202/120

Related Commands

Note

- An interface can have up to 16 IPv6 address assignments
- If the no command does not include a specific address, all address assignments are removed from the interface
- The mask length may be configured without a space (i.e. <ipv6-address>/<length>)
ipv6 nd managed-config-flag

`ipv6 nd managed-config-flag`
`no ipv6 nd managed-config-flag`

Sets the managed address configuration flag in IPv6 router advertisements. The no form of the command restores the default setting.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Managed address configuration flag is not set</td>
</tr>
</tbody>
</table>
| Configuration Mode | Config Interface VLAN
 Config Interface Loopback
 Config Interface Ethernet configured as a router port
 Config Interface Port Channel configured as a router port |
| History | 3.4.1100 |
| Role | admin |
| Example | switch (config vlan 10) # ipv6 nd managed-config-flag |

Related Commands

Note
ipv6 nd ns-interval

ipv6 nd ns-interval <period>
no ipv6 nd ns-interval

Configures the interval between IPv6 neighbor solicitation (NS) transmissions. The no form of the command restores the default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>period</th>
<th>In milliseconds. Range: 1000-4294967295.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>1000 milliseconds</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface VLAN</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.4.1100</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config vlan 10) # ipv6 nd ns-interval 1500</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ipv6 nd other-config-flag

ipv6 nd other-config-flag
no ipv6 nd other-config-flag

Indicates that other configuration information is available via DHCPv6.
The no form of the command removes the other configuration flag.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Not set</td>
</tr>
</tbody>
</table>
| Configuration Mode | Config Interface VLAN
 | Config Interface Loopback
 | Config Interface Ethernet configured as a router port
 | Config Interface Port Channel configured as a router port |
| History | 3.4.1100 |
| Role | admin |
| Example | switch (config vlan 10) # ipv6 nd other-config-flag |
| Related Commands | |
| Note | |
ipv6 nd prefix

ipv6 nd prefix <ipv6-address> /<length> [no-advertise] [no-autoconfig] [no-onlink] [valid-time {<time> | infinite}] [preferred-time {<time> | infinite}]

no ipv6 nd prefix <prefix>

Configures inclusion for router advertisements (RAs) for neighbor. The no form of the command removes the corresponding IPv6 nd prefix.

Syntax Description

<table>
<thead>
<tr>
<th>Description</th>
<th>ipv6-address</th>
<th>length</th>
<th>no-advertise</th>
<th>valid-time</th>
<th>preferred-time</th>
<th>no-autoconfig</th>
<th>no-onlink</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 address. Format: a:b:c:d:e:f:g:h.</td>
<td>IPv6 address. Format: a:b:c:d:e:f:g:h.</td>
<td>Prefix length for the associated address space. Range: 1-128.</td>
<td>Prevents advertising of the specified prefix.</td>
<td>Time in seconds. Range: 0-4294967295. The value “infinite” is the same as the maximum value possible.</td>
<td>Time in seconds. Range: 0-4294967295. The value “infinite” is the same as the maximum value possible.</td>
<td>Indicates that this prefix can be used for stateless address configuration</td>
<td>Indicates that this prefix can be used for on-link determination</td>
</tr>
</tbody>
</table>

Default

- valid-time: 2592000 seconds
- preferred-time: 604800 seconds
- no-autoconfig: autoconfig enabled
- no-onlink: Set

Configuration Mode

- Config Interface VLAN
- Config Interface Loopback
- Config Interface Ethernet configured as a router port
- Config Interface Port Channel configured as a router port

History

- 3.4.1100

Role

- admin

Example

```
switch (config vlan 10) # ipv6 nd prefix fe80:ac10::fa01:0202 /120
```

Related Commands

Note

Valid time must be larger than preferred time
ipv6 nd ra dns-servers lifetime

ipv6 nd ra dns-servers lifetime {<time> | infinite}
no ipv6 nd ra dns-servers lifetime

Sets the default value for the lifetime of any recursive DNS server (RDNSS) configured on the interface.
The no form of the command removes the lifetime value.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>time Possible values:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 0 – RDNSS configured on the command mode interface without a custom lifetime value must not be used</td>
</tr>
<tr>
<td></td>
<td>• 1-4294967295 – in seconds</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>infinite Equivalent to 4294967295.</th>
</tr>
</thead>
</table>

Default
If no lifetime period is configured on the interface, the default value is 1.5 times the maximum RA interval set by the command “ipv6 nd ra interval”.

Configuration Mode

- Config Interface VLAN
- Config Interface Loopback
- Config Interface Ethernet configured as a router port
- Config Interface Port Channel configured as a router port

History
3.4.1100

Role
admin

Example

switch (config vlan 10) # ipv6 nd ra dns-servers lifetime infinite

Related Commands

- A lifetime value set for an individual RDNSS overrides this value.
- The lifetime value is the maximum amount of time after a route advertisement packet is sent that the RDNSS referenced in the packet may be used for name resolution.
ipv6 nd ra dns-server

Syntax

ipv6 nd ra dns-server <ip-address> [lifetime [<time> | infinite]]
no ipv6 nd ra dns-server [<ip-address>]

Description

Configures the IPv6 address of a preferred recursive DNS server (RDNSS) to include in the neighbor-discovery router advertisements (RAs).

The no form of the command removes the RDNSS from the configuration.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP address of RDNSS</td>
</tr>
</tbody>
</table>
| lifetime | Maximum lifetime value for the specified RDNSS entry. Possible values:
| | • 0 – RDNSS address must no longer be used
| | • 1-4294967295 in seconds
| infinite | Equivalent to 4294967295 seconds. |

Default

If no lifetime period is configured on the interface, the default value is 1.5 times the maximum RA interval set by the command “ipv6 nd ra interval”.

Configuration Mode

Config Interface VLAN
Config Interface Loopback
Config Interface Ethernet configured as a router port
Config Interface Port Channel configured as a router port

History

3.4.1100

Role

admin

Example

switch (config vlan 10) # ipv6 nd ra dns-server fe80:ac10::fa01:0202 lifetime infinite

Related Commands

Note

- Including RDNSS information in RAs provides DNS server configuration for connected IPv6 hosts without requiring DHCPv6
- Multiple servers can be configured on the interface by using the command repeatedly
- A lifetime value for the RDNSS can optionally be specified with this command, and overrides any default value configured for the interface using the ipv6 nd ra dns-servers lifetime command
- Lifetime must be configured according to the following:
 MaxRtrAdvInterval <= lifetime <= 2*MaxRtrAdvInterval; where MaxRtrAdvInterval is the maximum RA interval
ipv6 nd ra dns-suffix

```
ipv6 nd ra dns-suffix <domain-name> [lifetime {<time> | infinite}]
no ipv6 nd ra dns-suffix [<domain-name>]
```

Creates a DNS search list (DNSSL) to include in the neighbor-discovery router advertisements (RAs)

The no form of the command resets the value of this parameter to its default.

1. As defined in RFC 6106.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain-name</td>
<td>Domain suffix for IPv6 hosts to append to short unqualified domain names for DNS queries. The suffix must contain only alphanumeric characters, “.” (periods), “-” (hyphens), and must begin and end with an alphanumeric character.</td>
</tr>
<tr>
<td>lifetime</td>
<td>Sets the maximum time, in seconds (relative to the time the packet is sent), over which this DNSSL domain name MAY be used for name resolution. Lifetime must be bounded as follows: MaxRtrAdvInterval <= Lifetime <= 2*MaxRtrAdvInterval</td>
</tr>
</tbody>
</table>
| time | Possible values:
 - 0 – DNSSL must not be used for name resolution
 - 1-4294967295 – in seconds |
| infinite | A value of all one bits (0xffffffff) equivalent to 4294967295. |

Default

The value configured in the command “ipv6 nd ra dns-server”.

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Config Interface VLAN</td>
<td></td>
</tr>
<tr>
<td>Config Interface Loopback</td>
<td></td>
</tr>
<tr>
<td>Config Interface Ethernet configured as a router port</td>
<td></td>
</tr>
<tr>
<td>Config Interface Port Channel configured as a router port</td>
<td></td>
</tr>
</tbody>
</table>

History

3.4.1100

Role

admin

Example

```
switch (config vlan 10) # ipv6 nd ra dns-suffix example lifetime infinite
```

Related Commands

- The DNSSL contains the domain names of DNS suffixes for IPv6 hosts to append to short, unqualified domain names for DNS queries
- Multiple DNS domain names can be added to the DNSSL by reusing the command
- A lifetime value for the DNSSL can optionally be specified with this command which overrides any default value configured for the interface using the command “ipv6 nd ra dns-suffixes lifetime”

1. As defined in RFC 6106.
ipv6 nd ra dns-suffixes lifetime

ipv6 nd ra dns-suffixes lifetime {<time> | infinite}
no ipv6 nd ra dns-suffixes lifetime

Creates a DNS search list (DNSSL) to include in the neighbor-discovery router advertisements (RAs). The no form of the command resets the value of this parameter to its default.

Syntax Description

<table>
<thead>
<tr>
<th>Domain suffix for IPv6 hosts to append to short unqualified domain names for DNS queries. The suffix must contain only alphanumeric characters, “.” (periods), “-” (hyphens), and must begin and end with an alphanumeric character.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain-name</td>
</tr>
<tr>
<td>time Possible values:</td>
</tr>
<tr>
<td>• 0 – DNSSL must not be used for name resolution if no custom value is configured</td>
</tr>
<tr>
<td>• 1-4294967295 – in seconds</td>
</tr>
<tr>
<td>time</td>
</tr>
<tr>
<td>infinite Equivalent to 4294967295.</td>
</tr>
<tr>
<td>infinite</td>
</tr>
</tbody>
</table>

Default 1.5 times the RA interval configured on the interface

Configuration Mode Config Interface VLAN
Config Interface Loopback
Config Interface Ethernet configured as a router port
Config Interface Port Channel configured as a router port

History 3.4.1100

Role admin

Example switch (config vlan 10) # ipv6 nd ra dns-suffix example lifetime
infinite

Related Commands

Note

• The DNSSL contains the domain names of DNS suffixes for IPv6 hosts to append to short, unqualified domain names for DNS queries
• Multiple DNS domain names can be added to the DNSSL by reusing the command

1. As defined in RFC 6106.
ipv6 nd ra hop-limit

`ipv6 nd ra hop-limit <limit>`

`no ipv6 nd ra hop-limit`

Sets a suggested hop-limit value to be included in route advertisement (RA) packets. The no form of the command resets the parameter to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>limit</td>
<td>The hop-limit value to be included by attached hosts in outgoing packets.</td>
</tr>
<tr>
<td>• 0 – unspecified (by this router)</td>
<td></td>
</tr>
<tr>
<td>• 1-255 – number of hops</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>Limit value is 64</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Config Interface VLAN</td>
<td></td>
</tr>
<tr>
<td>Config Interface Loopback</td>
<td></td>
</tr>
<tr>
<td>Config Interface Ethernet configured as a router port</td>
<td></td>
</tr>
<tr>
<td>Config Interface Port Channel configured as a router port</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.4.1100</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

Example

```
switch (config vlan 10) # ipv6 nd ra hop-limit 70
```
ipv6 nd ra interval max-period

ipv6 nd ra interval max-period <time> [min-period <time>]
nov6 nd ra interval

Configures the interval between IPv6 router advertisement (RA) transmissions. The no form of the command resets the parameter to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>Maximum interval between successive IPv6 router advertisement transmissions. Range: 4-1800 seconds.</td>
</tr>
<tr>
<td>min-period</td>
<td>Minimum interval between successive IPv6 router advertisement transmissions.</td>
</tr>
</tbody>
</table>

- **Default**
 - max-period: 600 seconds
 - min-period: See Note

- **Configuration Mode**
 - Config Interface VLAN
 - Config Interface Loopback
 - Config Interface Ethernet configured as a router port
 - Config Interface Port Channel configured as a router port

- **History**
 - 3.4.1100

- **Role**
 - admin

- **Example**
 - `switch (config vlan 10) # ipv6 nd ra interval max-period 600`

- **Related Commands**

- **Note**
 - The min-period must be 0.33 * <max-period> if <max-period> is >= 9 seconds; otherwise, the default is MaxRtrAdvInterval
 - The parameter min-period must be no less than 3 seconds and no greater than 0.75*max-period
ipv6 nd ra lifetime

```
ipv6 nd ra lifetime <time>
no ipv6 nd ra lifetime
```

Configures the value that the switch places in the router lifetime field of IPv6 router advertisements (RAs).

The no form of the command resets the parameter to its default value.

Syntax Description	time	The router lifetime specifies the period that the router can be considered as a default router by RA recipients in seconds.
		• 0 – the router should not be considered a default router on this interface
		• 1-9000 – lifetime period advertised in RAs should not be less than the max router advertisement interval

<table>
<thead>
<tr>
<th>Default</th>
<th>3*<max router advertisement interval></th>
</tr>
</thead>
</table>

| Configuration Mode | Config Interface VLAN
| | Config Interface Loopback
| | Config Interface Ethernet configured as a router port
| | Config Interface Port Channel configured as a router port |

<table>
<thead>
<tr>
<th>History</th>
<th>3.4.1100</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>switch (config vlan 10) # ipv6 nd ra lifetime 300</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
</table>
ipv6 nd ra mtu suppress

ipv6 nd ra mtu suppress

no ipv6 nd ra mtu suppress

Suppresses the router advertisement (RA) MTU option to ensure that all nodes on a link use the same MTU value. The no form of the command restores the MTU option to enabled.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>
| **Configuration Mode** | Config Interface VLAN
 Config Interface Loopback
 Config Interface Ethernet configured as a router port
 Config Interface Port Channel configured as a router port |
| **History** | 3.4.1100 |
| **Role** | admin |
| **Example** | switch (config vlan 10) # ipv6 nd ra mtu suppress |

Related Commands

Note

If not suppressed, MTU of the interface is advertised.
ipv6 nd ra suppress

ipv6 nd ra suppress [all]
no ipv6 nd ra suppress

Suppresses periodic IPv6 router advertisement (RA) transmissions. The no form of the command restores the transmission of RAs.

Syntax Description

| Syntax Description | all | Configures the switch to suppress all RAs, including those responding to a router solicitation. |

Default

Only unsolicited RAs transmitted periodically are suppressed

Configuration Mode

- Config Interface VLAN
- Config Interface Loopback
- Config Interface Ethernet configured as a router port
- Config Interface Port Channel configured as a router port

History

3.4.1100

Role

admin

Example

```
switch (config vlan 10) # ipv6 nd ra suppress all
```

Related Commands

Note
ipv6 nd reachable-time

```
ipv6 nd reachable-time <time>
no ipv6 nd reachable-time
```

Sets the time period the switch includes in the reachable time field of out-going advertisements (RAs).
The no form of the command resets the parameter to its default value.

Syntax Description

- **time**
 - In milliseconds; the reachable time defines the period that a node assumes a neighbor is reachable after having received a reachability confirmation. Range: 0-3600000 where “0” means unspecified by this router.

Default

0 (unspecified)

Configuration Mode

- Config Interface VLAN
- Config Interface Loopback
- Config Interface Ethernet configured as a router port
- Config Interface Port Channel configured as a router port

History

3.4.1100

Role

admin

Example

```
switch (config vlan 10) # ipv6 nd reachable-time 30000
```

Related Commands

Note

- RAs that advertise zero seconds indicate that the router does not specify a reachable time
- The default value to use for calculating neighbor reachability time is 30 seconds
ipv6 nd router-preference

ipv6 nd router-preference

```
ipv6 nd router-preference {high | medium | low}
no ipv6 nd router-preference
```

Sets the value the switch enters in the default router preference (DRP) field of router advertisements (RAs) it sends.

The no form of the command resets the parameter to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Medium</td>
</tr>
</tbody>
</table>
| **Configuration Mode** | Config Interface VLAN
| | Config Interface Loopback
| | Config Interface Ethernet configured as a router port
| | Config Interface Port Channel configured as a router port |
| **History** | 3.4.1100 |
| **Role** | admin |
| **Example** | switch (config vlan 10) # ipv6 nd router-preference high |

Related Commands

Note

- IPv6 hosts maintain a default router list from which to select a router for traffic to offlink destinations. The router’s address is then saved in the destination cache. The neighbor discovery protocol (NDP) prefers routers that are reachable or probably reachable over routers whose reachability is unknown or suspect. For reachable or probably reachable routers, NDP can either select the same router every time or cycle through the router list. DRP values specify a host’s preferred router.
- If router lifetime is zero, preference value must be medium
ipv6 nd retrans-timer

```plaintext
ipv6 nd retrans-timer <time>
no ipv6 nd retrans-timer
```

Advertises the time between neighbor solicitation (NS) messages in ICMPv6 router advertisement messages. The no form of the command resets the parameter to its default value.

| Syntax Description | time | In milliseconds; the time between retransmitted neighbor solicitation messages. Possible values:
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>0 (unspecified)</td>
<td></td>
</tr>
</tbody>
</table>
| Configuration Mode | Config Interface VLAN
 | Config Interface Loopback
 | Config Interface Ethernet configured as a router port
 | Config Interface Port Channel configured as a router port |
| History | 3.4.1100 |
| Role | admin |
| Example | switch (config vlan 10) # ipv6 nd retrans-timer |

Note
ipv6 nd dad attempts

```
ipv6 nd dad attempts <number>
no ipv6 nd dad attempts
```

Sets the number of consecutive neighbor solicitation messages sent for duplicate address detection (DAD) validation.

The no form of the command resets the value to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
</table>
| number | Number of attempts:
| | • 0 – DAD is not performed
| | • Valid range: 1-1000 |

<table>
<thead>
<tr>
<th>Default</th>
<th>1</th>
</tr>
</thead>
</table>

Configuration Mode
- Config Interface VLAN
- Config Interface Loopback
- Config Interface Ethernet configured as a router port
- Config Interface Port Channel configured as a router port

History
3.4.1100

Role
admin

Example
```
switch (config vlan 10) # ipv6 nd dad attempts 10
```

Related Commands

Note
ipv6 neighbor

ipv6 neighbor <ipv6-addr> {ethernet <port> | port-channel <port-channel> | vlan <vlan-id>} <mac_addr>
no ipv6 neighbor <ipv6-addr> [{ethernet <port> | port-channel <port-channel> | vlan <vlan-id}>]

Creates an IPv6 neighbor discovery cache static entry. The no form of the command removes the specified static entry from the IPv6 neighbor discovery cache.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ipv6-addr</th>
<th>IPv6 address</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet <port></td>
<td>Ethernet port. Format <slot>/<port>.</td>
<td></td>
</tr>
<tr>
<td>vlan <vlan-id></td>
<td>VLAN ID</td>
<td></td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Config

History: 3.4.1100

Role: admin

Example: switch (config vlan 10) # ipv6 neighbor 2001:db01::1 vlan 10 4:4:4:4:4

Related Commands

Note: This command do not affect any dynamic entries in the cache.
clear ipv6 neighbors

clear ipv6 neighbors [ethernet <port> | port-channel <port-channel> | vlan <vlan-id>] [ipv6-addr]

Removes the specified dynamic IPv6 neighbor discovery cache entries.

Syntax Description
- vlan VLAN interface
- ipv6-addr IPv6 address

Default
N/A

Configuration Mode
Config

History
3.4.1100

Role
admin

Example
switch (config) # clear ipv6 neighbors ethernet 1/4

Related Commands

Note
- Commands that do not specify an IPv6 address remove all dynamic entries for the listed interface
- Commands that do not specify an interface remove all dynamic entries
- See the command “clear ipv6 neighbors” on page 139
ipv6 route

`ipv6 route <ipv6-address> /<length> <next-hop> [distance]`

`no ipv6 route <ipv6-address> /<length> [next-hop]`

Creates an IPv6 static route.
The no form of the command deletes static routes.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>Prefix length for the associated address space. Range: 1-128.</td>
</tr>
<tr>
<td>next-hop</td>
<td>IPv6 address of the next-hop</td>
</tr>
<tr>
<td>distance</td>
<td>Administrative distance assigned to route. Options include:</td>
</tr>
<tr>
<td></td>
<td>• No parameter – route is assigned a default administrative distance of 1</td>
</tr>
<tr>
<td></td>
<td>• 1-255 – the administrative distance assigned to route</td>
</tr>
</tbody>
</table>

Default

No distance parameter indicated: Administrative distance of 1

Configuration Mode

Config

History

3.4.1100

Role

admin

Example

```
switch (config) # ipv6 route 3003:db01:: /64 2001:db01::1
switch (config) #
```

Related Commands

None

Note

- Static routes have a default administrative distance of 1
- Assigning a higher administrative distance to a static route configures it to be overridden by dynamic routing data.
- Multiple routes which are configured to the same destination with the same administrative distance comprise an Equal Cost Multi-Path (ECMP) route
- A no command not including a source deletes all statements to the destination
ipv6 routing

`ipv6 routing`

`no ipv6 routing`

Enables forwarding IPv6 unicast packets.
The no form of the command disables IPv6 unicast routing.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.4.1100</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # ipv6 routing
```

Related Commands

Note

- When routing is enabled, the switch attempts to deliver inbound packets to destination addresses by forwarding them to interfaces or next hop addresses specified by the IPv6 routing table.
show ipv6 interface

`show ipv6 interface [{{ethernet <port> | port-channel <port-channel> | vlan <vlan-id>}}| brief]`

Displays the status of specified routed interfaces that are configured for IPv6.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet <port></td>
<td>Displays output pertaining to the specified Ethernet interface</td>
</tr>
<tr>
<td>port-channel <port-channel></td>
<td>Displays output pertaining to the specified LAG interface</td>
</tr>
<tr>
<td>vlan <vlan-id></td>
<td>Displays output pertaining to the specified VLAN interface</td>
</tr>
<tr>
<td>brief</td>
<td>Shows basic IPv6 information regarding all IPv6 interfaces</td>
</tr>
</tbody>
</table>

Default
N/A

Configuration Mode
Any Command Mode

History
3.4.1100

Role
admin

Example

```
switch (config) # show ipv6 interface

Vlan10 is Enabled, line protocol is UP
  IPv6: Enabled
  Link-local address: fe80:ff00:652:14ff:fe2d:9808
  Global Unicast Addresses:
  2001:db01::2 /64
  Joined Group Addresses:
    ff02::1
    ff02::2
    ff02::1:ff2d:9808
  MTU: 1500 bytes
  ICMP error messages limited to every milliseconds: 100
  ICMP redirects: enabled
  ND DAD: enabled
  Number of DAD attempts: 1
  ND reachable time (milliseconds): 30000
  ND advertised retransmit interval (milliseconds): 0
  ND router advertisements maximum interval (seconds): 600
  ND router advertisements minimum interval (seconds): 198
  ND router advertisements managed configuration flag: unset
  ND router advertisements other configuration flag: unset
  ND solicited router advertisement: suppressed
  ND router advertisements lifetime (seconds): 1800
  ND advertised default router preference: medium
  ND router advertisements hop-limit: 64
```

Related Commands

Note
show ipv6 neighbors

show ipv6 neighbors [{ethernet <port> | port-channel <port-channel> | vlan <vlan-id>} | <ipv6-addr> | summary]

Displays IPv6 neighbor discovery (ND) cache information.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet <port></td>
<td>Shows output pertaining to the specified Ethernet interface.</td>
</tr>
<tr>
<td>vlan <vlan-id></td>
<td>Shows output pertaining to the specified VLAN interface.</td>
</tr>
<tr>
<td>ipv6-addr</td>
<td>IPv6 address of individual neighbor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Any Command Mode</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.4.1100</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch (config) # show ipv6 route</td>
</tr>
<tr>
<td>IPv6 Address</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
</tbody>
</table>

| Related Commands |

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
</table>
show ipv6 route

show ipv6 route [<ipv6-addr> <prefix>] [connected | static | summary]

Displays IPv6 neighbor discovery (ND) cache information.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ipv6-addr</th>
<th>Filters routes by IPv6 address or prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>longer-prefixes</td>
<td>Displays output for longer prefix entries</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Displays entries for routes to networks directly connected to the switch</td>
</tr>
<tr>
<td></td>
<td>static</td>
<td>Displays entries added through CLI commands</td>
</tr>
<tr>
<td></td>
<td>summary</td>
<td>Displays the current contents of the IPv6 routing table in summary format</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.4.1100</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show ipv6 route
Destination  Mask   Gateway      Interface  Source      Distance/Metric
fe80::       64     ::           mgmt0      Connected   256/1
fe80::       64     ::           mgmt1      Connected   256/1
2001:db01::  64     ::           vlan10     Connected   1/1
3003:db01::  64     2001:db01::1 vlan10     Static      1/20
switch (config) #
```

Related Commands

Note
6.3 **OSPF**

Open Shortest Path First (OSPF) is a link-state routing protocol for IP networks. It uses a link state routing algorithm and falls into the group of interior routing protocols, operating within a single autonomous system (AS).

OSPF-speaking routers send Hello packets to all OSPF-enabled IP interfaces. If two routers sharing a common data link agree on certain parameters specified in their respective Hello packets, they become neighbors.

Adjacencies, which can be thought of as virtual point-to-point links, are formed between some neighbors. OSPF defines several network types and several router types. The establishment of an adjacency is determined by the types of routers exchanging Hellos and the type of network over which the Hello packets are exchanged.

Each router sends link-state advertisements (LSAs) over all adjacencies. The LSAs describe all of the router’s links, or interfaces, the router's neighbors, and the state of the links. These links might be to stub networks (those without another router attached), to other OSPF routers, to networks in other areas, or to external networks (those learned from another routing process). Because of the varying types of link-state information, OSPF defines multiple LSA types.

Each router receiving an LSA from a neighbor records the LSA in its link-state database and sends a copy of the LSA to all of its other neighbors. By flooding LSAs throughout an area, all routers will build identical link-state databases.

When the databases are complete, each router uses the SPF algorithm to calculate a loop-free graph describing the shortest (lowest cost) path to every known destination, with itself as the root.

When all link-state information has been flooded to all routers in an area, and neighbors have verified that their databases are identical, it means the link-state databases have been synchronized and the route tables have been built. Hello packets are exchanged between neighbors as keepalives, and LSAs are retransmitted. If the network topology is stable, no other activity should occur.

For OSPF network design over Mellanox L2 VMS, please refer to Mellanox Virtual Modular Switch Reference Guide.

6.3.1 Router ID

The router ID is a 32-bit number assigned to the router running the OSPF protocol. This number uniquely identifies the router within an Autonomous System.

Router ID can be configured statically, however, if it is not configured, then the default election is as follows:

- If a loopback interface already exists, the router ID takes the loopback IP address;
- Otherwise, the lowest IP address is elected as router ID

6.3.2 ECMP

Equal-cost multi-path (ECMP) routing is a routing strategy where next-hop packet forwarding to a single destination can occur over multiple paths. The OSPF link-state routing algorithm can find multiple routes to the same destination, all multiple routes are added to the routing table only if those routes are equal-cost routes.
In case there are several routes with different cost, only the route with the lowest cost is selected. In case there are multiple routes with the same lowest cost, all of them are used (up to maximum of 64 ECMP routes).

ECMP is not configurable but is enabled by default for OSPF.

6.3.3 Configuring OSPF

Figure 29: OSPF Basic Topology

![OSPF Basic Topology Diagram]

Precondition steps:

1. Make sure an L3 license is installed. For a list of the available licenses see Section 2.4, “Licenses,” on page 31.
2. Enable IP routing functionality. Run:
   ```
   switch (config)# ip routing
   ```
3. Enable the desired VLAN. Run:
   ```
   switch (config)# vlan 10
   switch (config)# vlan 20
   ```
4. Add this VLAN to the desired interface. Run:
   ```
   switch (config)# interface ethernet 1/1
   switch (config ethernet 1/1)# switchport access vlan 10
   switch (config ethernet 1/1)# exit
   switch (config)# interface ethernet 1/2
   switch (config)# switchport access vlan 20
   ```

It is recommended to disable STP before enabling OSPF. Use the command `no spanning-tree`.

The following configuration example refers to Router 2 in Figure 29. The remainder of the routers in the figure are configured similarly.
Step 5. Create a VLAN interface. Run:

```
switch (config)# interface vlan 10
```

Step 6. Apply IP address to the VLAN interface. Run:

```
switch (config interface vlan 10)# ip address 10.10.10.2 /16
```

Step 7. Enable the interface. Run:

```
switch (config interface vlan 10)# no shutdown
```

Step 8. Create a second VLAN interface. Run:

```
switch (config)# interface vlan 20
```

Step 9. Apply IP address to the second VLAN interface. Run:

```
switch (config interface vlan 20)# ip address 10.10.20.2 /16
```

Step 10. Enable the second interface. Run:

```
switch (config interface vlan 20)# no shutdown
```

Basic OSPF Configuration:

Step 1. To enable OSPF configuration run:

```
switch (config)# protocol ospf
```

Step 2. To create a router OSPF instance run:

```
switch (config)# router ospf
```

Only one instance of OSPF is supported.

Step 3. Associate the VLAN interfaces to the OSPF area. Area 0 is the backbone area, run:

```
switch (config interface vlan 10)# ip ospf area 0
switch (config interface vlan 10)# exit
switch (config)# interface vlan 20
switch (config interface vlan 20)# ip ospf area 0
```

6.3.4 Verifying OSPF

To verify OSPF configuration and status:

Step 1. Verify OSPF configuration and status. Run:

```
switch (config) # show ip ospf
```

Routing Process 1 with ID 10.10.10.10 vrf-default

Stateful High Availability disabled
Graceful-restart is not supported
Supports only single TOS (TOS 0) route
Opaque LSA not supported
OSPF Admin State is enabled
Step 2. Verify the OSPF neighbors status. Make sure that each neighbor reaches FULL state with its peer to enable it take part in all dynamic routing changes in the network. Run:

```
switch (config) # show ip ospf neighbors

Neighbor 10.10.10.1, interface address 10.10.10.2
In the area 0.0.0.0 via interface Vlan 10
Neighbor priority is 1, State is FULL
BDR is 10.10.10.1
Options 0
Dead timer due in 35

Neighbor 10.10.20.1, interface address 10.10.20.2
In the area 0.0.0.0 via interface Vlan 20
Neighbor priority is 1, State is FULL
BDR is 10.10.20.1
Options 0
Dead timer due in 35
```

Switch (config) #
Step 3. Verify the OSPF Interface configuration and status run:

```
switch (config) # show ip ospf interface

Interface Vlan is 10 Enabled, line protocol is Down
IP address 10.10.10.2, Mask 255.255.0.0
Process ID 1 VRF Default, Area 0.0.0.0
OSPF Interface Admin State is enabled
State DOWN, Network Type BROADCAST, Cost 1
Transmit delay 1 sec, Router Priority 1
No designated router on this network
No backup designated router on this network
Timer intervals (sec's): Hello 10, Dead 40, Wait 40, Retransmit 5
No authentication
Number of opaque link LSAs: 0, checksum sum 0

Interface Vlan is 20 Enabled, line protocol is Up
IP address 10.10.20.2, Mask 255.255.0.0
Process ID 1 VRF Default, Area 0.0.0.0
OSPF Interface Admin State is enabled
State DESIGNATED ROUTER, Network Type BROADCAST, Cost 1
Transmit delay 1 sec, Router Priority 1
No designated router on this network
No backup designated router on this network
Timer intervals (sec's): Hello 10, Dead 40, Wait 40, Retransmit 5
No authentication
Number of opaque link LSAs: 0, checksum sum 0

switch (config) #
```
6.3.5 Commands

6.3.5.1 Config

protocol ospf

```
protocol ospf
no protocol ospf
```

Enables Open Shortest Path First Protocol (OSPF), and unhides the related OSPF commands. The no form of the command deletes the OSPF configuration and hides the OSPF related commands.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>OSPF feature is disabled.</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config)# protocol ospf</td>
</tr>
<tr>
<td>Related Commands</td>
<td>ip routing</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
router ospf

```
router ospf
no router ospf
```

Enters router OSPF configuration mode, and creates default OSPF instance if not exist. The no form of the command deletes the OSPF instance.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>No router OSPF is created.</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| **Example** | switch (config)# router ospf
switch (config router ospf)# |
| **Related Commands** | N/A |
| **Note** | Only one OSPF instance is supported. |
6.3.5.2 Config Router

router-id

`router-id <ip-address>`

`no router-id`

Sets Router ID for the OSPF instance.
The no form of the command causes automatic election of router ID by the router.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ip-address</th>
<th>The Router id in IP address format.</th>
</tr>
</thead>
</table>
| Default | | The router ID is a 32-bit number assigned to the router running the OSPF protocol. This number uniquely identifies the router within an Autonomous System. Router ID can be configured statically, however, if it is not configured, then the default election is as follows:
 • If a loopback interface already exists, the router ID takes the loopback IP address;
 • Otherwise, the lowest IP address is elected as router ID. |

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config OSPF Router</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config router ospf)# router-id 10.10.10.10
```

Related Commands

N/A

Note
shutdown

shutdown

no shutdown

Disables the OSPF instance.
The no form of the command enables the OSPF instance.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Enable (no shutdown)</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config OSPF Router</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config router ospf)# shutdown</td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note
auto-cost reference-bandwidth

auto-cost reference-bandwidth <ref-bw>
no auto-cost reference-bandwidth

Configures reference-bandwidth in Gb/s (Default) or Mb/s.
The no form of the command resets this parameter to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>value</th>
<th>Range: 1-4294</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Gb/s</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config OSPF Router</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config router ospf)# auto-cost reference-bandwidth</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
distance

distance <value>
no distance

Configures the OSPF route administrative distance. The no form of the command resets this parameter to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>value</th>
<th>OSPF administrative distance. Range is 1-255.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config OSPF Router</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config router ospf)# distance 100</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
redistribute

redistribute \{bgp | direct | static\}
no redistribute \{bgp | direct | static\}

Import routes from other routing protocols as well as any statically configured routers into OSPF. The no form of the command disables the importing of the routes.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Direct</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct</td>
<td>Redistribute directly connected routes.</td>
<td></td>
</tr>
<tr>
<td>bgp</td>
<td>Redistribute routes from BGP protocol.</td>
<td></td>
</tr>
<tr>
<td>static</td>
<td>Redistribute static configured routes.</td>
<td></td>
</tr>
</tbody>
</table>

Default: Disable (no redistribution)

Configuration Mode: Config OSPF Router

History: 3.2.1000

Role: admin

Example: switch (config router ospf)# redistribute direct

Related Commands: N/A

Note: Routes from multiple protocols can be imported in parallel.
timers throttle spf

```
timers throttle spf <spf-delay> <spf-hold>
no timers throttle spf
```

Sets the OSPF throttle SPF timers.
The no form of the command resets the timers to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>spf-delay</td>
<td>The interval by which SPF calculations delayed after a topology change reception. Range is 0-100 milliseconds.</td>
</tr>
<tr>
<td>spf-hold</td>
<td>The minimum delay between two consecutive delay calculations. Range is 0-1000 milliseconds.</td>
</tr>
</tbody>
</table>

| Default | spf-delay: 1 millisecond
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>spf-hold: 10 millisecond</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config OSPF Router</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.3.3500</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>switch (config router ospf)# timers throttle spf 100 1000</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Note</th>
<th></th>
</tr>
</thead>
</table>
area default-cost

area <area-id> default-cost <cost>
no area <area-id> default-cost

Specifies cost for the default summary route sent into an OSPF stub or not-so-stubby area (NSSA).
The no form of the command sets the cost to the default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>area-id</th>
<th>OSPF area-id. Range is 0-4294967295.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cost</td>
<td>The cost for the default summary route. Range is 1-16777215.</td>
</tr>
</tbody>
</table>

Default
The summary route cost is based on the area border router that generated the summary route.

Configuration Mode
Config OSPF Router

History
3.3.3500

Role
admin

Example
switch (config router ospf)# area 0 default-cost 100

Related Commands
N/A

Note
Base cost for all calculation is 56Gbe.
area range

area <area-id> range <ip-address> <prefix> [not-advertise]

no area <area-id> range <ip-address> <prefix> [not-advertise]

Consolidates and summarizes routes at an OSPF area boundary. The no form of the command removes the ip-prefix range from summarization.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>area-id</td>
<td>OSPF area-ID. Range is 0-4294967295.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP Address.</td>
</tr>
<tr>
<td>not-advertise</td>
<td>Suppresses routes that match the specified IP address.</td>
</tr>
<tr>
<td>prefix</td>
<td>Network prefix (in the format of /24, or 255.255.255.0 for example).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config OSPF Router</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config router ospf)# area 0 range 10.10.10.10 /24</td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
area stub

area <area-id> stub [no-summary]
no area <area-id> [stub [no-summary]]

Configures an area as an OSPF stub area (an area is created if non-existent). The no form of the command removes the stub area configuration and changes the area to normal, or deletes the area (if stub is not used).

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>area-id</th>
<th>OSPF area-ID. Range is 0-4294967295.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no-summary</td>
<td>Summary route will not be advertized into the stub area.</td>
</tr>
</tbody>
</table>

Default: Summary route will be advertized.

Configuration Mode: Config OSPF Router

History: 3.3.3500

Role: admin

Example:

```
switch (config router ospf)# area 0 stub
```

Related Commands: N/A

Note
area nssa

area <area-id> nssa [default-information-originate [metric <m-value>] [metric-type <m-type>]] [nosummary] [translate type7 always]
no area <area-id> nssa [default-information-originate | [no-summary] [translate type7 always]

Configures an area as an OSPF not-so-stubby (NSSA) area. The no form of the command removes the NSSA area configuration and changes the area to default.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>area-id</td>
<td>OSPF area ID. Range is 0-4294967295.</td>
</tr>
<tr>
<td>default-information-originate</td>
<td>A default type7 LSA (Link State Advertisements) is generated into the NSSA area.</td>
</tr>
<tr>
<td>m-type</td>
<td>Metric type for OSPF. Range is 1-2.</td>
</tr>
<tr>
<td>m-value</td>
<td>Metric value for OSPF. Range is 1-65535.</td>
</tr>
<tr>
<td>no-summary</td>
<td>Summary route will not be advertised into the NSSA area.</td>
</tr>
<tr>
<td>translate type7 always</td>
<td>Type7 LSAs is translated to type5 LSAs (Link State Advertisements).</td>
</tr>
</tbody>
</table>

Default

Default m-type:2
Default m-value:10

Configuration Mode

Config OSPF Router

History

3.3.3500

Role

admin

Example

```
switch (config router ospf)# area 0 nssa
```

Related Commands

N/A

Note

An area can be either stub, NSSA or normal.
summary-address

```
summary-address <ip-address> <prefix> [not-advertise]
no summary-address <ip-address> <prefix> [not-advertise]
```

Creates aggregate addresses for the OSPF protocol. The no form of the command disables the aggregation of the ip-address.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>The summary IP address.</td>
</tr>
<tr>
<td>not-advertise</td>
<td>Suppresses routes that match the specified ip-address.</td>
</tr>
<tr>
<td>prefix</td>
<td>Network prefix (in the format of /24 or 255.255.255.0, for example).</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config OSPF Router

History

3.3.3500

Role

admin

Example

```
switch (config router ospf)# summary-address 10.10.10.10 /24
```

Related Commands

N/A

Note

Maximum of 1500 summarized IP addresses can be configured.
6.3.5.3 Interface

ip ospf cost

ip ospf cost <cost>

no ip ospf cost <cost>

Sets OSPF cost of sending packet of this interface.
The no form of the command resets this parameter to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cost</td>
<td>The Interface cost used by the OSPF. Range is 1-65535.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config Interface VLAN</td>
<td></td>
</tr>
<tr>
<td>Config Interface Ethernet configured as a router port</td>
<td></td>
</tr>
<tr>
<td>Config Interface Port Channel configured as a router port</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.3.3500</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

Example

`switch (config interface vlan 10)# ip ospf cost 100`

Related Commands

N/A

Note
ip ospf dead-interval

```
ip ospf dead-interval <seconds>
no ip ospf dead-interval
```

Configures the interval during which at least one Hello packet must be received from a neighbor before the router declares that neighbor as down. The no form of the command resets this parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>seconds</th>
<th>The dead-interval timer, in seconds. Range is 1-65535.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
| Configuration Mode | Config Interface VLAN
 Config Interface Ethernet configured as a router port
 Config Interface Port Channel configured as a router port |
| History | 3.3.3500| |
| Role | admin | |
| Example | switch (config interface vlan 10)# ip ospf dead-interval 10 |
| Related Commands | N/A | |
| Note | The value must be the same for all nodes on the network. |
ip ospf hello-interval

```
ip ospf hello-interval <seconds>
no ip ospf hello-interval
```

Configures the interval between Hello packets that OSPF sends on the interface. The no form of the command resets this parameter to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>The Hello interval timer, in seconds. Range is 1-65535.</td>
</tr>
</tbody>
</table>

| Default | 10 |

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config Interface VLAN</td>
<td></td>
</tr>
<tr>
<td>Config Interface Ethernet configured as a router port</td>
<td></td>
</tr>
<tr>
<td>Config Interface Port Channel configured as a router port</td>
<td></td>
</tr>
</tbody>
</table>

| History | 3.3.3500 |

| Role | admin |

| Example | switch (config interface vlan 10)# ip ospf hello-interval 20 |

| Related Commands | N/A |

| Note | The value must be the same for all nodes on the network. |
ip ospf priority

Syntax

```
ip ospf priority <number>
no ip ospf priority
```

Configures the priority for this OSPF interface. The no form of the command resets this parameter to default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>The Interface priority used by the OSPF protocol. Range is 0-255</td>
</tr>
</tbody>
</table>

Default

1

Configuration Mode

- Config Interface VLAN
- Config Interface Ethernet configured as a router port
- Config Interface Port Channel configured as a router port

History

3.3.3500

Role

admin

Example

```
switch (config interface vlan 10)# ip ospf priority 100
```

Related Commands

N/A

Note

- Use the “ip ospf priority” command to set the router priority, which determines the designated router for this network. When two routers are attached to a network, both attempt to become the designated router.
- The router with the higher router priority takes precedence. If there is a tie, the router with the higher router ID takes precedence. A router with a router priority set to zero cannot become the designated router or backup designated router.
ip ospf network

`ip ospf network <type>`

`no ip ospf network`

Sets the OSPF interface network type. The no form of the command resets the interface network type to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>type</th>
<th>The network type on this interface. The options are ‘broadcast’ or ‘point-to-point’.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td></td>
<td>broadcast</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td></td>
<td>Config Interface VLAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Config Interface Ethernet configured as a router port</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Config Interface Port Channel configured as a router port</td>
</tr>
<tr>
<td>History</td>
<td></td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td></td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td><code>switch (config interface vlan 10)# ip ospf network point-to-point</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
| Note | | • The network type influences the behavior of the OSPF interface. An OSPF network type is usually broadcast, which uses OSPF multicasting capabilities. Under this network type, a designated router and backup designated router are elected. For point-to-point networks, there are only two neighbors and multicast is not required.
• All routers on the same network should have the same network type. |
ip ospf retransmit-interval

ip ospf retransmit-interval <seconds>
no ip ospf retransmit-interval

Configures the time between OSPF link-state advertisement (LSA) retransmissions for adjacencies that belongs to the interface. The no form of the command resets this parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>seconds</th>
<th>The retransmit interval in seconds. Range is 0-3600.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface VLAN</td>
<td>Config Interface Ethernet configured as a router port</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config interface vlan 10)# ip ospf retransmit-interval 10</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ip ospf passive-interface

```yaml
ip ospf passive-interface
no ip ospf passive-interface
```

Suppresses flooding of OSPF routing updates on an interface.
The no form of the command reverts the status to active OSPF interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Active interface (no ip ospf passive-interface)</td>
</tr>
</tbody>
</table>
| Configuration Mode | Config Interface VLAN
| | Config Interface Ethernet configured as a router port
| | Config Interface Port Channel configured as a router port |
| History | 3.3.3500 |
| Role | admin |
| Example | switch (config interface vlan 10)# ip ospf passive-interface |
| Related Commands | N/A |

Note
ip ospf transmit-delay

```
ip ospf transmit-delay <seconds>
no ip ospf transmit-delay
```

Sets the estimated time required to send an OSPF link-state update packet. The no form of the command resets this parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>seconds</th>
<th>The transmit-delay interval in seconds. Range is 0-3600.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td></td>
<td>Config Interface VLAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Config Interface Ethernet configured as a router port</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Config Interface Port Channel configured as a router port</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td>switch (config interface vlan 10)# ip ospf transmit-delay 2</td>
</tr>
<tr>
<td>Related Commands</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ip ospf shutdown

ip ospf shutdown

no ip ospf shutdown

Disables the OSPF instance on the interface.

The no form of the command enables the OSPF on this interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Enabled (no shutdown)</td>
</tr>
</tbody>
</table>
| **Configuration Mode** | Config Interface VLAN
 | Config Interface Ethernet configured as a router port
 | Config Interface Port Channel configured as a router port |
| **History** | 3.3.3500 |
| **Role** | admin |
| **Example** | `switch (config interface vlan 10)# ip ospf shutdown` |
| **Related Commands** | N/A |
| **Note** | |
ip ospf authentication

```
ip ospf authentication [message-digest]
no ip ospf authentication
```

Specifies the authentication type for OSPF.
The no form of the command disables the authentication.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>message-digest</th>
<th>Specifies that message-digest authentication (MD5) is used.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled (no)</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface VLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Config Interface Ethernet configured as a router port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Config Interface Port Channel configured as a router port</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config interface vlan 10)# ip ospf authentication</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>• Without message-digest option, a simple password authentication will be used.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Message-digest authentication can be enabled only if a key is configured.</td>
<td></td>
</tr>
</tbody>
</table>

ip ospf authentication-key

ip ospf authentication-key [auth-type] <password>
no ip ospf authentication-key

To assign a password for simple password authentication for the OSPF. The no form of the command deletes the simple password authentication key.

| Syntax Description | auth-type | The authentication type:
| | | 0 – unencrypted password
| | | 7 – MD5 key
| password | | Authentication password, up to 8 alphanumeric string. |

Default
Unencrypted password

Configuration Mode
Config Interface VLAN
Config Interface Ethernet configured as a router port
Config Interface Port Channel configured as a router port

History
3.3.3500

Role
admin

Example
```
switch (config interface vlan 10)# ip ospf authentication-key 0
mycleartextpassword
```

Related Commands
N/A

Note
- When selecting an encrypted password “7”, the user must input a password encrypted with an MD5 key.
- When selecting an unencrypted password “0”, the user must input a cleartext password. Then when examining the running-config, it exhibits the encrypted password.
ip ospf message-digest-key

`ip ospf message-digest-key <key-id> md5 [auth-type] <key>`

`no ip ospf message-digest-key <key-id>`

Sets the message digest key for MD5 authentication.
The no form of the command deletes the key for MD5 authentication.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auth-type</td>
<td>The authentication type: 0 - Unencrypted password 7 - MD5 key</td>
</tr>
<tr>
<td>key</td>
<td>Authentication password, up to 8 alphanumeric string.</td>
</tr>
<tr>
<td>key-id</td>
<td>Alphanumeric password of up to 16 bytes.</td>
</tr>
</tbody>
</table>

| Default | Unencrypted (no) |
| Configuration Mode | Config Interface VLAN
Config Interface Ethernet configured as a router port
Config Interface Port Channel configured as a router port |
History	3.3.3500
Role	admin
Example	`switch (config interface vlan 10)# ip ospf message-digest-key mykeyid md5 7 mykey`
Related Commands	N/A
Note	The user cannot delete the last key until authentication is disabled.
ip ospf area

ip ospf area <area-id>
no ip ospf area

Sets OSPF area of this interface (and creates the area if non-existent). The no form of the command removes the interface from the area.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>area-id</th>
<th>OSPF area ID. Range is 0-4294967295.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
| Configuration Mode | Config Interface VLAN
| | Config Interface Ethernet configured as a router port
| | Config Interface Port Channel configured as a router port
| | Config Interface Loopback | |
| History | 3.3.3500 | |
| Role | admin | |
| Example | switch (config interface vlan 10)# ip ospf area 0 |
| Related Commands | N/A | |
| Note | | |
6.3.5.4 Show

show ip ospf

Description
Displays general OSPF configuration and status.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config)# show ip ospf
Routing Process 201 with ID 192.0.2.1 VRF default
Admin Status is Enabled
Stateful High Availability enabled
Graceful-restart is configured
```

Related Commands
N/A

Note
show ip ospf border-routers

`show ip ospf border-routers`

Displays routing table entries to an Area Border Routers.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td></td>
</tr>
</tbody>
</table>

```
switch# show ip ospf border-routers
OSPF Process ID p1, vrf default Internal Routing Table
Codes: i - Intra-area route, I - Inter-area route
i 40.40.40.40 [10], ABR, Area 0.0.0.0, SPF 71 via 192.0.2.1, Ethernet2/1
i 60.60.60.60 [20], ABR, Area 0.0.0.0, SPF 71 via 192.0.2.1, Ethernet2/1
i 40.40.40.40 [10], ABR, Area 0.0.0.1, SPF 71 via 192.0.2.1, Ethernet2/2
i 60.60.60.60 [20], ABR, Area 0.0.0.1, SPF 71 via 192.0.2.1, Ethernet2/2
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>N/A</th>
</tr>
</thead>
</table>

| Note |

Mellanox Technologies Confidential | 754 |
show ip ospf database

Displays the OSPF database.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>adv-router <ip-address></td>
<td>Filters per advertise router</td>
</tr>
<tr>
<td>area-id</td>
<td>Filters the command per OSPF area-id. Range is 0-4294967295.</td>
</tr>
<tr>
<td>link-state-id</td>
<td>The link state ID</td>
</tr>
<tr>
<td>self-originated</td>
<td>Self Originate</td>
</tr>
<tr>
<td>summary</td>
<td>Summarizes the output of the OSPF database.</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Any Command Mode

History

3.3.3500

Role

admin

Example

Router# show ip ospf database
OSPF Router with ID (50.50.50.50) (Process ID p1)
Router Link States (Area 0)
Link ID ADV Router Age Seq# Checksum Link Count
40.40.40.40 40.40.40.40 930 0x80000004 0x2ea1 3
50.50.50.50 50.50.50.50 935 0x80000002 0x8b52 1
60.60.60.60 60.60.60.60 943 0x800003c5 0x9854 2
Network Link States (Area 0)
Link ID ADV Router Age Seq# Checksum
209.165.201.3 60.60.60.60 944 0x80000001 0x7179
192.0.2.1 50.50.50.50 935 0x80000001 0x516a
Summary Network Link States (Area 0)
Link ID ADV Router Age Seq# Checksum
209.165.201.3 40.40.40.40 929 0x80000000 0x249e
209.165.201.1 50.50.50.50 928 0x80000001 0x5b2f
209.165.201.1 60.60.60.60 1265 0x8000003c 0xf49b
192.0.2.0 40.40.40.40 943 0x80000000 0x53f3
192.0.2.0 50.50.50.50 935 0x80000001 0x26f8
192.0.2.0 60.60.60.60 930 0x80000000 0x7b51

Related Commands

N/A

Note

N/A
show ip ospf interface

show ip ospf interface [vlan <vlan-id>] [brief]

Displays the OSPF related interface configuration.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>brief</th>
<th>Gives a brief summary of the output.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vlan <vlan-id></td>
<td>Displays OSPF interface configuration and status per VLAN interface.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td></td>
</tr>
</tbody>
</table>

```
switch# show ip ospf interface ethernet 1/5
Ethernet1/5 is up, line protocol is down
IP address 192.0.2.1, Process ID 201 VRF RemoteOfficeVRF, area 0.0.0.10
Enabled by interface configuration
State DOWN, Network type BROADCAST, cost 4
Index 1, Transmit delay 1 sec, Router Priority 1
No designated router on this network
No backup designated router on this network
0 Neighbors, flooding to 0, adjacent with 0
Timer intervals: Hello 10, Dead 40, Wait 40, Retransmit 5
No authentication
Number of opaque link LSAs: 0, checksum sum 0
```

This example shows how to display OSPF information in a brief format:

```
switch# show ip ospf interface brief
OSPF Process ID 201 VRF default
Total number of interface: 1
Interface ID Area Cost State Neighbors Status
VL 2 0.0.0.0 65535 DOWN 0 down
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>N/A</th>
</tr>
</thead>
</table>

| **Note** | |
show ip ospf neighbors

show ip ospf neighbors [vlan <vlan-id>] [neighbor-id]

Displays the OSPF related interface neighbor configuration.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan <vlan-id></td>
<td>Displays OSPF interface configuration and status per VLAN interface.</td>
</tr>
<tr>
<td>neighbor-id</td>
<td>Filters the output per a specific OSPF neighbor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>Configuration Mode</th>
<th>History</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Any Command Mode</td>
<td>3.3.3500</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
Router# show ip ospf neighbors 10.199.199.137
Neighbor 10.199.199.137, interface address 192.0.2.37
In the area 0.0.0.0 via interface Ethernet2/1
Neighbor priority is 1, State is FULL
Options 2
Dead timer due in 0:00:32
Link State retransmission due in 0:00:04
Neighbor 10.199.199.137, interface address 209.165.201.189
In the area 0.0.0.0 via interface Ethernet4/3
Neighbor priority is 5, State is FULL
Options 2
Dead timer due in 0:00:32
Link State retransmission due in 0:00:03
```

This example shows how to display the neighbors that match the neighbor ID on an interface:
```
Router# show ip ospf neighbors ethernet 2/1 10.199.199.137
Neighbor 10.199.199.137, interface address 192.0.2.37
In the area 0.0.0.0 via interface Ethernet2/1
Neighbor priority is 1, State is FULL
Options 2
Dead timer due in 0:00:32
Link State retransmission due in 0:00:04
```

This example shows how to display detailed information about OSPF neighbors:
```
Router# show ip ospf neighbors detail
Neighbor 192.168.5.2, interface address 10.225.200.28
In the area 0 via interface GigabitEthernet1/0/0
Neighbor priority is 1, State is FULL, 6 state changes
DR is 10.225.200.28 BDR is 10.225.200.30
Options is 0x42
LLS Options is 0x1 (LR), last OOB-Resync 00:03:08 ago
Dead timer due in 00:09:46
Index 1/1, retransmission queue length 0, number of retransmission 1
First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)
Last retransmission scan length is 1, maximum is 1
Last retransmission scan time is 0 msec, maximum is 0 msec
```
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>N/A</th>
</tr>
</thead>
</table>

| Note | |
show ip ospf request-list

show ip ospf request-list <neighbor-id> vlan <vlan-id>

Displays the OSPF list of all link-state advertisements (LSAs) requested by a router.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>neighbor-id</th>
<th>Filers the output per a specific OSPF neighbor.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vlan-id</td>
<td>Filers the output per a specific VLAN ID.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td></td>
</tr>
</tbody>
</table>
| | Router# show ip ospf request-list 40.40.40 ethernet 2/1
| | OSPF Process ID p1
| | Neighbor 40.40.40.40, interface Ethernet2/1, address 192.0.2.1
| | 1 LSAs on request-list
| | Type LS ID ADV RTR Seq NO Age Checksum
| | 1 192.0.2.12 192.0.2.12 0x8000020D 8 0x6572 |

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
show ip ospf retransmission-list

`show ip ospf retransmission-list <neighbor-id> vlan <vlan-id>`

Displays the OSPF list of all link-state advertisements (LSAs) waiting to be resent to neighbors.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>neighbor-id</th>
<th>Filers the output per a specific OSPF neighbor.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vlan-id</td>
<td>Filers the output per a specific VLAN ID.</td>
</tr>
</tbody>
</table>

- **Default**: N/A
- **Configuration Mode**: Any Command Mode
- **History**: 3.3.3500
- **Role**: admin

Example

```
Router# show ip ospf retransmission-list 192.0.2.11 ethernet 2/1
OSPF Router with ID (192.0.2.12) (Process ID 1)
Neighbor 192.0.2.11, interface Ethernet2/1 address 209.165.201.11
Link state retransmission due in 3764 msec, Queue length 2
Type LS ID ADV RTR Seq NO Age Checksum
1 192.0.2.11 192.0.2.12 0x80000210 0 0xB196
```

Related Commands: N/A

Note: N/A
show ip ospf summary-address

show ip ospf summary-address

Displays a list of all summary address redistribution information configured on the OSPF.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config)# show ip ospf summary-address
Display of Summary addresses for External Routes and area ranges for the summary LSAs
OSPF Process default
OSPF External Summary Address and area-range Configuration Information

<table>
<thead>
<tr>
<th>Network Mask</th>
<th>Area</th>
<th>Advertise</th>
<th>LSA type</th>
<th>Metric</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.1 255.255.255.0</td>
<td>NA</td>
<td>Advertise</td>
<td>Type5</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>2.2.2.0 255.255.255.0</td>
<td>10.10.10.10</td>
<td>Not Advertise</td>
<td>Type3</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Related Commands | N/A |

Note
6.4 BGP

Border Gateway Protocol (BGP) is an exterior gateway protocol which is designed to transfer routing information between routers. It maintains and propagates a table of routes which designates network reachability among autonomous systems (ASs).

BGP neighbors, or peers, are routers configured manually to converse using the BGP protocol on top of a TCP session on port 179. A BGP speaker periodically sends keep-alive messages to maintain the connection. Network reachability includes such information as forwarding destinations (IPv4 or IPv6) together with a list of ASs that this information traverses and other attributes, so it becomes possible to construct a graph of AS connectivity without routing loops. BGP makes possible to apply policy rules to enforce connectivity graph.

BGP routers communicate through TCP connection on port 179. Connection between BGP neighbors is configured manually or can be established dynamically by configuring dynamic listen groups. When BGP runs between two peers in the same AS, it is referred to as Internal BGP (iBGP, or Interior Border Gateway Protocol). When it runs between separate ASs, it is called External BGP (eBGP, or Exterior Border Gateway Protocol). Both sides can initiate a connection, after the initial connectivity is created, BGP state machine drives both sides to enter into ESTABLISHED state where they can exchange UPDATE messages with reachability information.

6.4.1 State Machine

In order to make decisions in its operations with peers, a BGP peer uses a simple finite state machine (FSM) that consists of six states: Idle; Connect; Active; OpenSent; OpenConfirm; and Established. For each peer-to-peer session, a BGP implementation maintains a state variable that tracks which of these six states the session is in. The BGP protocol defines the messages that each peer should exchange in order to change the session from one state to another.

The first state is the “Idle” state. In “Idle” state, BGP initializes all resources, refuses all inbound BGP connection attempts and initiates a TCP connection to the peer. The second state is “Connect”. In the “Connect” state, the router awaits the TCP connection to complete and transitions to the “OpenSent” state if successful. If unsuccessful, it initializes the ConnectRetry timer and transitions to the “Active” state upon expiration. In the “Active” state, the router resets the ConnectRetry timer to zero and returns to the “Connect” state. In the “OpenSent” state, the router sends an Open message and waits for one in return in order to transition to the “OpenConfirm” state. KeepAlive messages are exchanged and, upon successful receipt, the router is placed into the “Established” state. In the “Established” state, the router can send/receive: KeepAlive; Update; and Notification messages to/from its peer.

6.4.2 Configuring BGP

Figure 30: Basic BGP Configuration
Follow these steps for basic BGP configuration on two switches (Router 1 and Router 2):

Preconditions:

Step 1. Make sure the license installed supports L3.

Step 2. Enable IP routing functionality. Run:

```bash
switch (config)# ip routing
```

Step 3. Enable the desired VLAN. Run:

```bash
switch (config)# vlan 10
```

The same VLAN must be configured on both switches.

Step 4. Add this VLAN to the desired interface. Run:

```bash
switch (config)# interface ethernet 1/1
switch (config ethernet 1/1)# switchport access vlan 10
```

Step 5. Create a VLAN interface. Run:

```bash
switch (config)# interface vlan 10
```

Step 6. Apply IP address to the VLAN interface on Router 1. Run:

```bash
switch (config interface vlan 10)# ip address 10.10.10.1 /24
```

Step 7. Apply IP address to the VLAN interface on Router 2. Run:

```bash
switch (config interface vlan 10)# ip address 10.10.10.2 /24
```

Step 8. Enable the interface. Run:

```bash
switch (config interface vlan 10)# no shutdown
```

Configure BGP:

Step 1. Enable BGP. Run:

```bash
switch (config)# protocol bgp
```

Step 2. Configure an AS number that identifies the BGP router. Run:

```bash
switch (config)# router bgp 100
```

To run iBGP, the AS number of all remote neighbors should be similar to the local AS number of the configured router.

Step 3. Configure BGP Router 1 neighbor. Run:

```bash
switch (config router bgp 100)# neighbor 10.10.10.2 remote-as 100
```

Step 4. Configure BGP Router 2 neighbor. Run:

```bash
switch (config router bgp 100)# neighbor 10.10.10.1 remote-as 100
```
6.4.3 Verifying BGP

Step 1. Check the general status of BGP. Run:

```
switch (config)# show ip bgp summary
BGP router identifier 10.10.10.1, local AS number 100
BGP table version is 100, main routing table version 100
0 network entries using 0 bytes of memory
0 path entries using 0 bytes of memory
0 BGP AS-PATH entries using 0 bytes of memory
0 BGP community entries using 0 bytes of memory
0 BGP extended community entries using 0 bytes of memory
Neighbor     V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down      State/PfxRcd
10.10.10.2   0  100    100     76       3    0    0 00:0:10:19 ESTABLISHED
```

- Verify that the state of each BGP neighbor reached to ESTABLISHED state.
- In case the neighbor is disabled (shutdown). The state of the neighbor will be IDLE.
- BGP incoming and outgoing messages should be incremented.
- The AS number of each neighbor is the correct one.

Step 2. Check the status of the neighbors. Run:

```
switch (config)# show ip bgp neighbors
BGP neighbor is 10.10.10.2, remote AS 100, external link
  BGP version 0, remote router ID 0.0.0.0
  BGP State = ESTABLISHED
  Last read 0:00:00:00, last write 0:00:00:00, hold time is 180, keepalive
  interval is 60 seconds
  Configured hold time is 180, keepalive interval is 60 seconds
  Minimum holdtime from neighbor is 0 seconds
switch (config)#
```

You should be able to see running BGP counters and ESTABLISHED state per active neighbor.
6.4.4 Commands

6.4.4.1 Config

protocol bgp

```
protocol bgp
no protocol bgp
```

Enables BGP feature, and unhides BGP related commands.
The no form of the command deletes all BGP configuration and hides BGP related commands.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config)# protocol bgp
| | switch (config)# |
| Related Commands | ip routing |
| Note | |

clear ip bgp

```markdown
clear ip bgp [{<ip-address> | all} [soft] [in | out]]
```

Clears BGP learned routes from the BGP table and resets the connection to the neighbor.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>A BGP peer IP address. Only the specified neighbor is reset.</td>
</tr>
<tr>
<td>all</td>
<td>All BGP peers. All BGP neighbors are reset.</td>
</tr>
<tr>
<td>soft</td>
<td>Clears BGP learned routes from the BGP table without resetting the connection to the neighbor.</td>
</tr>
<tr>
<td>in</td>
<td>Inbound routes are reset.</td>
</tr>
<tr>
<td>out</td>
<td>Outbound routes are reset.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006 First release</td>
</tr>
<tr>
<td></td>
<td>3.3.5200 Updated description</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config)# clear ip bgp all</td>
</tr>
<tr>
<td></td>
<td>switch (config)#</td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Note</td>
<td>This command removes BGP IPv4 learned routes from the routing table, reads all routes from designated peers, and sends routes to those peers as required.</td>
</tr>
</tbody>
</table>
router bgp

router bgp <as-number>
no router bgp <as-number>

Creates and enters a BGP instance with the specified AS number.
The no form of the command deletes all router BGP instance configuration.

Syntax Description

| as-number | Autonomous system number: A unique number to be used to identify the AS. The AS is a number which identifies the BGP router to other routers and tags the routing information passed along. Range: 1-65535. |

Default

N/A

Configuration Mode

Config

History

3.3.5006 First version
3.3.5200 Updated syntax description

Role

admin

Example

switch (config)# router bgp 100
switch (config router bgp 100)#

Related Commands

ip routing

Note
6.4.4.2 Config Router

shutdown

```
shutdown
no shutdown
```

Gracefully disables BGP protocol without removing existing configuration. The no form of the command enables BGP.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Enabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Router BGP</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config router bgp 100)# no shutdown</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
</table>
aggregate-address

aggregate-address <prefix> [summary-only] [as-set] [attribute-map]
no aggregate-address <prefix> [summary-only] [as-set] [attribute-map]

Creates an aggregate route in the BGP database.
The no form of the command disables ECMP across AS paths.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>prefix</th>
<th>Destination to aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>summary-only</td>
<td></td>
<td>Contributor routes are not advertised.</td>
</tr>
<tr>
<td>as-set</td>
<td></td>
<td>Includes AS_PATH information from contributor routes as AS_SET attributes</td>
</tr>
<tr>
<td>attribute-map</td>
<td></td>
<td>Assigns attribute values in set commands of the map’s permit clauses. Deny clauses and match commands in permit clauses are ignored.</td>
</tr>
</tbody>
</table>

Default
Disabled

Configuration Mode
Config Router BGP

History
3.4.0000

Role
admin

Example
switch-e07c04 [standalone: master] (config router bgp 4) # aggregate-address 3.5.3.7 /32

Related Commands

Note
- Aggregate routes combine the characteristics of multiple routes into a single route that the switch advertises
- Aggregation can reduce the amount of information that a BGP speaker is required to store and transmit when advertising routes to other BGP speakers
- Aggregate routes are advertised only after they are redistributed
bestpath as-path multipath-relax

bestpath as-path multipath-relax
no bestpath as-path multipath-relax

Enables ECMP across AS paths.
The no form of the command disables ECMP across AS paths.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Router BGP</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
</tr>
<tr>
<td></td>
<td>3.3.5200</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

switch (config router bgp 100)# bestpath as-path multipath-relax

Related Commands

maximum-paths

Note

- With this option disabled, only routes with exactly the same AS path as the best route to a destination are considered for ECMP.
- With this option enabled, all routes with similar length AS path as the best route are considered for ECMP.
bgp fast-external-fallover

bgp fast-external-fallover
no bgp fast-external-fallover

Terminates eBGP sessions of any directly adjacent peer without waiting for the hold-down timer to expire if the link used to reach the peer goes down. The no form of the command waits for hold-down timer to expire before terminating eBGP sessions.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>no bgp fast-external-fallover</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Router BGP</td>
</tr>
<tr>
<td>History</td>
<td>3.4.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config router bgp 100)# bgp fast-external-fallover</td>
</tr>
<tr>
<td>Related Commands</td>
<td>maximum-paths</td>
</tr>
<tr>
<td>Note</td>
<td>Although this feature improves BGP conversion time, it may cause instability in your BGP table due to a flapping interface.</td>
</tr>
</tbody>
</table>
bgp listen limit

```
bgp listen limit <maximum>
no bgp listen limit
```

Limits the number of dynamic BGP peers allowed on the switch. The no form of the command resets to the default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>maximum</th>
<th>The maximum number of dynamic BGP peers to be allowed on the switch. Range: 1-128.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Router BGP</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.4.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config router bgp 100)# bgp listen limit 101</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
bgp listen range

```
bgp listen range <ip-prefix> <length> peer-group <peer-group-name> remote-as <as-number>
no bgp listen range <ip-prefix> <length>
```

Identifies a range of IP addresses from which the switch will accept incoming
dynamic BGP peering requests.
After applying the no form of the command, the switch will no longer accept dynamic
peering requests on the range.

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-prefix</td>
<td>IP address</td>
</tr>
<tr>
<td>length</td>
<td>Mask length (e.g. /24 or 255.255.255.254)</td>
</tr>
<tr>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
<tr>
<td>remote-as <as-number></td>
<td>Remote peer’s number.</td>
</tr>
</tbody>
</table>

Default

100

Configuration Mode

Config Router BGP

History

3.4.0000

Role

admin

Example

```
switch (config router bgp 100)# bgp listen range 10.10.10.10 /24 peer-group my-group remote-as 13
```

Related Commands

- To create a static peer group, use the command `neighbor peer-group`
- Neighbors in a dynamic peer group are configured as a group and cannot be configured individually.

Note
bpg redistribute-internal

 bgp redistribute-internal
 no bgp redistribute-internal

Enables iBGP redistribution into an interior gateway protocol (IGP). The no form of the command disables iBGP redistribution into an interior gateway protocol (IGP).

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-prefix</td>
<td>IP address</td>
</tr>
<tr>
<td>length</td>
<td>Mask length (e.g. /24 or 255.255.255.254)</td>
</tr>
<tr>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
<tr>
<td>remote-as <as-number></td>
<td>Remote peer’s number.</td>
</tr>
</tbody>
</table>

Default

Disabled

Configuration Mode

Config Router BGP

History

3.4.0000

Role

admin

Example

```
switch (config router bgp 100)# bgp redistribute-internal
```

Related Commands

Note
cluster-id

```
cluster-id <ip-address>
no cluster-id <ip-address>
```

Configures the cluster ID in a cluster with multiple route reflectors.
The no form of the command resets the cluster ID for route reflector.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>The route reflector cluster ID</td>
</tr>
<tr>
<td></td>
<td>• 0.0.0.1 to 255.255.255.255 Valid cluster ID number</td>
</tr>
<tr>
<td></td>
<td>• 0.0.0.0 removes the cluster-ID from the switch (similar to “no cluster-id”)</td>
</tr>
</tbody>
</table>

Default

Cluster ID is the same as Router ID

Configuration Mode

Config Router BGP

History

- 3.2.1000 First version
- 3.4.0000 Updated syntax description

Role

admin

Example

```
switch (config router bgp 100)# cluster-id 10.10.10.10
```

Related Commands

N/A

Note
client-to-client reflection

client-to-client reflection
no client-to-client reflection

The switch will be configured as a route reflector.
The no form of the command stops the switch from being a route reflector.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>client-to-client reflection is enabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Router BGP</td>
</tr>
<tr>
<td>History</td>
<td>3.2.1000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config router bgp 100)# client-to-client reflection</td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
distance

distance <external> <internal> <local>
no distance

Sets the administrative distance of the routes learned through BGP. The no form of the command resets the administrative distance its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>external</td>
<td>Administrative distance for external BGP routes.</td>
<td>1-255</td>
</tr>
<tr>
<td>internal</td>
<td>Administrative distance for internal BGP routes.</td>
<td>1-255</td>
</tr>
<tr>
<td>local</td>
<td>Administrative distance for local BGP routes.</td>
<td>1-255</td>
</tr>
</tbody>
</table>

Default

- external: 200
- internal: 200
- local: 200

Configuration Mode

- Config Router BGP

History

- 3.3.5006

Role

- admin

Example

- switch (config router bgp 100)# distance 10 20 30

Related Commands

- N/A

Note

- Routers use administrative distances to decide on a route when two protocols provide routing information to the same destination.
- Lower distance values correspond to higher reliability.
- Routes are external when learned from an external autonomous system.
- Routes are internal when learned from a peer in the local autonomous system.
- Local routes are those networks listed with a network router configuration command, often as back doors, for the router or for the networks being redistributed from another process.
- BGP routing tables do not include routes with a distance of 255.
graceful-restart stalepath-time

```bash
graceful-restart stalepath-time <interval>
no graceful-restart stalepath-time
```

Configures the maximum time that stale routes from a restarting BGP neighbor are retained after a BGP session is reestablished with that peer. The no form of the command resets to the default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>300 seconds</th>
</tr>
</thead>
</table>

Configuration Mode

- **Config Router BGP**

History

- 3.4.0000

Role

- admin

Example

```
switch (config router bgp 100)# graceful-restart stalepath-time 350
```

Related Commands

- N/A

Note
graceful-restart helper

graceful-restart helper
no graceful-restart helper

Enables BGP graceful restart helper mode on the switch for all BGP neighbors. The no form of the command disables BGP graceful restart helper mode on the switch for all BGP neighbors.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Graceful restart is enabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Router BGP</td>
</tr>
<tr>
<td>History</td>
<td>3.4.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config router bgp 100)# graceful-restart helper</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note
- When graceful restart helper mode is enabled, the switch retains routes from neighbors capable of graceful restart while those neighbors are restarting BGP
- Individual neighbor configuration takes precedence over the global configuration
maximum-paths

```plaintext
maximum-paths [ibgp] <maximum-path>
```

Configures the maximum number of parallel eBGP/iBGP routes that the switch installs in the routing table.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ibgp</td>
<td>Sets the configuration on the internal BGP.</td>
</tr>
<tr>
<td>maximum-path</td>
<td>The number of routes to install to the routing table.</td>
</tr>
</tbody>
</table>

Default

1

Configuration Mode

Config Router BGP

History

3.3.5006

3.3.5200 Updated description and notes

Role

admin

Example

```text
switch (config router bgp 100)# maximum-paths ibgp 10
switch (config router bgp 100)#
```

Related Commands

N/A

Note

- This command provides an ECMP parameter that controls the number of equal-cost paths that the switch installs in the routing table for each destination.
- The action is effective after BGP restart.
- If the parameter “ibgp” is not used, the setting is applied on routes learned from peers from other ASs; if “ibgp” is used, the setting is applied to routes learned from peers of the same AS.
neighbor advertisement-interval

neighbor {<ip-address> | <peer-group-name>} advertisement-interval <delay>
no neighbor {<ip-address> | <peer-group-name>} advertisement-interval

Sets the minimum route advertisement interval (MRAI) between the sending of BGP routing updates.
The no form of the command disables this function.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>A BGP peer IP address</td>
</tr>
<tr>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
<tr>
<td>delay</td>
<td>Time (in seconds) is specified by an integer. Range: 0-600.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>30 seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config Router BGP</td>
</tr>
<tr>
<td>History</td>
<td>3.4.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config router bgp 100)# neighbor 10.10.10.10 advertisement-interval 90
```

Related Commands

Note
neighbor allowas-in

```
neighbor {<ip-address> | <peer-group-name>} allowas-in [number]
no neighbor {<ip-address> | <peer-group-name>} allowas-in
```

Configures the switch to permit the advertisement of prefixes containing duplicate autonomous switch numbers (ASNs).
The no form of the command disables this function.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>A BGP peer IP address</td>
<td></td>
</tr>
<tr>
<td>peer-group-name</td>
<td>Peer group name</td>
<td></td>
</tr>
<tr>
<td>number</td>
<td>Number of switch’s (ASN) allowed in path. Range: 1-10.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config Router BGP</td>
</tr>
<tr>
<td>History</td>
<td>3.4.0000 First version</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config router bgp 100)# neighbor 10.10.10.10 allowas-in 2</td>
</tr>
<tr>
<td>Related Commands</td>
<td>ip routing router bgp <as-number></td>
</tr>
</tbody>
</table>

Note

Neighbors from the same AS as the router are considered as iBGP peers, and neighbors from other ASs are considered eBGP peers.
neighbor description

neighbor {<ip-address> | <peer-group-name>} description <string>
no neighbor {<ip-address> | <peer-group-name>} description

Associates descriptive text with the specified peer or peer group. The no form of the command removes the description from the peer.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ip-address</th>
<th>IP address of the neighbor.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
<tr>
<td></td>
<td>string</td>
<td>Free string, up to 80 characters in length.</td>
</tr>
</tbody>
</table>

Default
No description

Configuration Mode
Config Router BGP

History
3.3.5006 First version
3.3.5200 Updated example

Role
admin

Example
switch (config router bgp 100)# neighbor 10.10.10.10 description The next door neighbor

Related Commands
N/A

Note
The peer description only appears in the show commands.
neighbor ebgp-multihop

neighbor {<ip-address> | <peer-group-name>} ebgp-multihop [<ttl>]
no neighbor {<ip-address> | <peer-group-name>} ebgp-multihop

Enables BGP to connect to external peers that are not directly connected to the switch. The no form of the command applies the system disables connecting to external peers.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP address of the BGP-speaking neighbor</td>
</tr>
<tr>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>ttl: 1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config Router BGP</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.3.5006</th>
<th>First version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.3.5200</td>
<td>Updated default</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

Example

switch (config router bgp 100)# neighbor 10.10.10.10 ebgp-multihop 5

Related Commands

ip routing
neighbor <ip-address> remote-as <as-number>

Note

The command does not establish the multi-hop if the only route to the peer is the default route (0.0.0.0).
neighbor export-localpref

```
neighbor {<ip-address> | <peer-group-name>} export-localpref <value>
no neighbor {<ip-address> | <peer-group-name>} export-localpref
```

Configures the local preference value sent to the specified peer or peer group. The no form of the command resets the local preference to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP address of the BGP-speaking neighbor</td>
</tr>
<tr>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
<tr>
<td>value</td>
<td>Preference value. Range: 0-2147483647.</td>
</tr>
</tbody>
</table>

Default

100

Configuration Mode

Config Router BGP

History

3.4.0000 First version

Role

admin

Example

```
switch (config router bgp 100)# neighbor 10.10.10.10 export-localpref 100
```
neighbor graceful-restart helper

neighbor {<ip-address> | <peer-group-name>} graceful-restart helper
no neighbor {<ip-address> | <peer-group-name>} graceful-restart helper

Enables BGP graceful restart helper mode for the specified BGP neighbor or peer group. The no form of the command

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ip-address</th>
<th>IP address of the BGP-speaking neighbor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
</tbody>
</table>

Default	Graceful restart is enabled	
Configuration Mode	Config Router BGP	
History	3.4.0000	First version
Role	admin	

Example

```
switch (config router bgp 100)# neighbor graceful-restart helper
```

Related Commands

Note

- When graceful restart helper mode is enabled, the switch retains routes from neighbors capable of graceful restart while those neighbors are restarting BGP
- Individual neighbor configuration takes precedence over the global configuration
neighbor import-localpref

neighbor {<ip-address> | <peer-group-name>} import-localpref <value>
no neighbor {<ip-address> | <peer-group-name>} import-localpref

Configures the local preference value assigned to routes received from the specified
peer or peer group.
The no form of the command resets the local preference to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ip-address</th>
<th>IP address of the BGP-speaking neighbor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
<tr>
<td></td>
<td>value</td>
<td>Preference value. Range: 0-2147483647.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config Router BGP</td>
</tr>
<tr>
<td>History</td>
<td>3.4.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config router bgp 100)# neighbor 10.10.10.10 import-localpref 100</td>
</tr>
</tbody>
</table>

Related Commands

Note
neighbor local-as

neighbor {<ip-address> | <peer-group-name>} local-as <as-id> [no-prepend | replace-as]
no neighbor {<ip-address> | <peer-group-name>} local-as

Enables the modification of the AS path attribute for routes received from an eBGP neighbor.
The no form of the command disables AS path modification for the specified peer or peer group.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ip-address</th>
<th>IP address of the BGP-speaking neighbor</th>
</tr>
</thead>
<tbody>
<tr>
<td>peer-group-name</td>
<td></td>
<td>Peer group name</td>
</tr>
<tr>
<td>no-prepend</td>
<td></td>
<td>local-as number is not prepended to the routes received from external neighbors</td>
</tr>
<tr>
<td>replace-as</td>
<td></td>
<td>Prepends only the local autonomous system number (as configured with the IP address argument) to the AS path attribute.</td>
</tr>
</tbody>
</table>

Default

12000

Configuration Mode

Config Router BGP

History

3.4.0000 First version

Role

admin

Example

switch-e07c04 [standalone: master] (config router bgp 4) # neighbor 100.100.100.100 local-as 123

Related Commands

ip routing
neighbor <ip-address> remote-as <as-number>

Note

- This function allows the switch to appear as a member of a different autonomous system (AS) to external peers.
- To disable peering with the neighbor run the command `clear ip bgp`
neighbor maximum-prefix

neighbor {<ip-address> | <peer-group-name>} maximum-prefix <maximum> [warning-only]
no neighbor {<ip-address> | <peer-group-name>} maximum-prefix

Configures the number of BGP routes the switch accepts from a specified neighbor and defines an action when the limit is exceeded. The no form of the command removes the limitation.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP address of the BGP-speaking neighbor</td>
</tr>
<tr>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
<tr>
<td>maximum</td>
<td>Number of BGP routes the switch accepts from a specified neighbor. Range: 1-2147483647.</td>
</tr>
<tr>
<td>warning-only</td>
<td>Only generates a warning rather than disconnecting the neighbor</td>
</tr>
</tbody>
</table>

Default

12000

Configuration Mode

Config Router BGP

History

3.4.0000 First version

Example

switch (config router bgp 100)# neighbor 10.10.10.10 maximum-prefix 12000 warning-only

Related Commands

ip routing
neighbor <ip-address> remote-as <as-number>

Note
neighbor next-hop-peer

neighbor {<ip-address> | <peer-group-name>} next-hop-peer
no neighbor {<ip-address> | <peer-group-name>} next-hop-peer

Configures the switch to list the peer address as the next hop in routes that it receives from the specified peer BGP-speaking neighbor or members of the specified peer group.
The no form of the command disables this function.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ip-address</th>
<th>IP address of the neighbor.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>no next-hop-peer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config Router BGP</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config router bgp 100)# neighbor 10.10.10.10 next-hop-peer
```

<table>
<thead>
<tr>
<th>Related Commands</th>
</tr>
</thead>
</table>

Note This command overrides the next hop for all routes received from this neighbor or peer group.
neighbor next-hop-self

```bash
neighbor {<ip-address> | <peer-group-name>} next-hop-self
no neighbor {<ip-address> | <peer-group-name>} next-hop-self
```

Configures the IP address of the router as the next hop address in routes advertises to the specific neighbor.
The no form of the command resets this parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP address of the neighbor.</td>
</tr>
<tr>
<td>peer-group-name</td>
<td>Peer group name.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>no next-hop-self</th>
</tr>
</thead>
</table>

Configuration Mode

Config Router BGP

History

3.3.5006

Role

admin

Example

```bash
switch (config router bgp 100)# neighbor 10.10.10.10 next-hop-self
```

Related Commands

neighbor <ip-address> remote-as <as-number>

Note

- This function is used in networks where BGP neighbors do not directly access all other neighbors on the same subnet.
- In the default state, the next hop is generated based on the IP address and the present next hop in the route information.
neighbor password

neighbor {<ip-address> | <peer-group-name>} password [<encryption>] <string>
no neighbor {<ip-address> | <peer-group-name>} password

Enables authentication on a TCP connection with a BGP peer. The no form of the command resets the value to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP address of the neighbor</td>
<td></td>
</tr>
<tr>
<td>peer-group-name</td>
<td>Peer group name</td>
<td></td>
</tr>
<tr>
<td>encryption</td>
<td>Possible values:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• no parameter – clear text</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 0 - clear text</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 7 – obfuscated</td>
<td></td>
</tr>
<tr>
<td>string</td>
<td>Up to 8 bytes in length</td>
<td></td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Config Router BGP

History: 3.4.0000 First version

Role: admin

Example:

```
switch (config router bgp 100)# neighbor 10.10.10.10 password 7 admin123
```

Related Commands

Note:
- Peers must use the same password to ensure communication.
- `neighbor <ip-address> password 7 <password>` can only accept data that was created using 'show config'.
- 'show config' will never show the clear-test password, it will always be obfuscated (and thus displayed using the 'password 7' syntax).
- Router BGP neighbor password cannot be set when enabling secure mode
- Router BGP peer-group password cannot be set when enabling with secure mode
neighbor peer-group

1. neighbor {<ip-address>} peer-group <peer-group-name>
2. neighbor {<peer-group-name>} peer-group
3. no neighbor {<ip-address>} peer-group <peer-group-name>
4. no neighbor {<peer-group-name>} peer-group <peer-group-name>

1. Assigns BGP neighbors to an existing peer group.
2. Creates a peer-group
3. Unassigns BGP neighbors to an existing peer group.
4. Removes a specified neighbor from the peer group

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP address of the neighbor</td>
</tr>
<tr>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config Router BGP

History

3.4.0000 First version

Role

admin

Example

switch (config router bgp 100)# neighbor groupA peer-group
switch (config router bgp 100)# neighbor 1.2.3.4 peer-group groupA

Related Commands

Note

- Once a peer group is created, the group name can be used as a parameter in neighbor configuration commands, and the configuration will be applied to all members of the group.
- Settings applied to an individual neighbor in the peer group override group settings.
- A neighbor can only belong to one peer group, so issuing this command for a neighbor that is already a member of another group removes it from that group.
- When a neighbor is removed from a peer group, the neighbor retains the configuration inherited from the peer group.
- Router BGP peer-group password cannot be set when enabling with secure mode
neighbor remote-as

neighbor {<ip-address>} remote-as <as-number>
no neighbor {<ip-address>} remote-as <as-number>

Configures a neighbor.
The no form of the command removes the neighbor, dropping the connection and all routes if already connected.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>A BGP peer IP address</td>
</tr>
<tr>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
<tr>
<td>as-number</td>
<td>The BGP peer as-number. Range: 1-65535.</td>
</tr>
</tbody>
</table>

Default
N/A

Configuration Mode
Config Router BGP

History
3.3.5006 First version
3.3.5200 Updated description and note

Role
admin

Example
switch (config router bgp 100)# neighbor 10.10.10.10 remote-as 200
switch (config router bgp 100)#

Related Commands
ip routing
outer bgp <as-number>

Note
Neighbors from the same AS as the router are considered as iBGP peers, and neighbors from other ASs are considered eBGP peers.
neighbor remove-private-as

neighbor {<ip-address> | <peer-group-name>} remove-private-as
no neighbor {<ip-address> | <peer-group-name>} remove-private-as

Removes private autonomous system numbers from outbound routing updates for external BGP (eBGP) neighbors.
The no form of the command preserves private AS numbers for the specified peer.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>A BGP peer IP address</td>
</tr>
<tr>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
</tbody>
</table>

Default	N/A
Configuration Mode	Config Router BGP
History	3.4.0000 First version
Role	admin
Example	switch (config router bgp 100)# neighbor 10.10.10.10 remove-private-as
	switch (config router bgp 100)#
Related Commands	ip routing
	router bgp <as-number>

<table>
<thead>
<tr>
<th>Note</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This can only be used with external BGP (eBGP) peers.</td>
</tr>
<tr>
<td></td>
<td>If the update has only private AS numbers in the AS path, BGP removes these numbers.</td>
</tr>
<tr>
<td></td>
<td>If the AS path includes both private and public AS numbers, BGP does not remove the private AS numbers. This situation is considered a configuration error.</td>
</tr>
<tr>
<td></td>
<td>If the AS path contains the AS number of the eBGP neighbor, BGP does not remove the private AS number.</td>
</tr>
<tr>
<td></td>
<td>If the AS path contains confederations, BGP removes the private AS numbers only if they come after the confederation portion of the AS path.</td>
</tr>
</tbody>
</table>
neighbor route-map

```
neighbor {<ip-address> | <peer-group-name>} route-map <route-map-name> [in | out]
no neighbor {<ip-address> | <peer-group-name>} route-map <route-map-name> [in | out]
```

Configures a route map to inbound BGP routes. The no form of the command undoes the configuration.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP address of the neighbor</td>
</tr>
<tr>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
<tr>
<td>route-map-name</td>
<td>String. The name of the route-map</td>
</tr>
<tr>
<td>in</td>
<td>Applies route map to inbound routes</td>
</tr>
<tr>
<td>out</td>
<td>Applies route map to out-bound routes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config Router BGP</th>
</tr>
</thead>
</table>

History

- **3.3.5006** First version
- **3.3.5200** Updated notes and default
- **3.4.1100** Added “out” parameter

Role

admin

Example

```
switch (config router bgp 100)# neighbor 10.10.10.10 route-map MyRoute-Map in
```

Related Commands

- neighbor <ip-address> remote-as <as-number>
- route-map <map-name> [deny | permit] [sequence-number]
- clear ip bgp {<ip-address> | all}

Note

- Only one inbound route-map can be applied to a given neighbor.
- If a new route-map is applied to a neighbor, it replaces the previous route map.
- Changing a route-map only takes effect on routes received or sent after the change.
neighbor route-reflector-client

neighbor {<ip-address> | <peer-group-name>} route-reflector-client
no neighbor {<ip-address> | <peer-group-name>} route-reflector-client

Sets the neighbor as a client but does not set up the reflection itself.
The no form of the command disables route reflection for the specific peer.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP address of the neighbor.</td>
</tr>
<tr>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
</tbody>
</table>

Default	N/A
Configuration Mode	Config Router BGP
History	3.3.5006
	First version
3.3.5200	Updated notes and default
Role	admin
Example	switch (config router bgp 100)# neighbor 10.10.10.10 route-reflector-client

Related Commands

Note
neighbor send-community

neighbor {<ip-address> | <peer-group-name>} send-community
no neighbor {<ip-address> | <peer-group-name>} send-community

Configures the switch to send community attributes to the specified BGP neighbor. The no form of the command disables sending community attributes for the specified peer.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ip-address</th>
<th>IP address of the neighbor.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config Router BGP</td>
</tr>
<tr>
<td>History</td>
<td>3.4.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example:
```
switch (config router bgp 100)# neighbor 10.10.10.10 send-community
```

Related Commands: N/A

Note
neighbor shutdown

neighbor {<ip-address> | <peer-group-name>} shutdown
no neighbor {<ip-address> | <peer-group-name>} shutdown

Disables BGP neighbor gracefully.
The no form of the command enables BGP neighbor.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ip-address</th>
<th>IP address of the neighbor.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>Enabled</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config Router BGP</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.3.5006</th>
<th>First version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.3.5200</td>
<td>Updated note</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

| Example | switch (config router bgp 100)# neighbor 10.10.10.10 shutdown |

| Related Commands | N/A |

| Note | Disabling a neighbor terminates all its active sessions and removes associated routing information. |
neighbor soft-reconfiguration inbound

neighbor {<ip-address> | <peer-group-name>} soft-reconfiguration inbound
no neighbor {<ip-address> | <peer-group-name>} soft-reconfiguration inbound

Disables BGP neighbor gracefully.
The no form of the command restores the system default behavior (retaining all routes from the specified neighbor or group).

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP address of the neighbor.</td>
</tr>
<tr>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
</tbody>
</table>

Default	N/A	
Configuration Mode	Config Router BGP	
History	3.4.0000	First version
Role	admin	
Example	switch (config router bgp 100)# neighbor 10.10.10.10 soft-reconfiguration inbound	

| Related Commands | N/A |

<table>
<thead>
<tr>
<th>Note</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• This command also allows the switch to display all advertised routes when the command show ip bgp neighbor advertised-routes is issued.</td>
<td></td>
</tr>
<tr>
<td>• The no form of the command configures the switch to discard information about routes received from the specified neighbor or group that fail the import policy.</td>
<td></td>
</tr>
</tbody>
</table>
neighbor timers

neighbor {<ip-address> | <peer-group-name>} timers <keep-alive> <hold-time>
no neighbor {<ip-address> | <peer-group-name>} timers

Configures the keepalive and hold times for a specified peer.
The no form of the command resets the parameters to their default values.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP address of the neighbor.</td>
</tr>
<tr>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
<tr>
<td>keep-alive</td>
<td>The period between the transmission of consecutive keep-alive messages. Range: 1-3600 seconds. “0” means that keepalive is not sent and the connection does not expire.</td>
</tr>
<tr>
<td>hold-time</td>
<td>The period the switch waits for a keepalive or update message before it disables peering. Range: 3-7200 seconds. “0” means that keepalive is not sent and the connection does not expire.</td>
</tr>
</tbody>
</table>

| Default | keep-alive: 60 seconds
hold-time: 180 seconds |
|---------|-------------------------|

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config Router BGP</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.3.5006</th>
<th>First version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.3.5200</td>
<td>Updated description</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>switch (config router bgp 100)# neighbor 10.10.10.10 timers 65 195</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>neighbor <ip-address> remote-as <as-number></th>
</tr>
</thead>
</table>

| Note | Hold time must be at least 3 seconds and should be three times longer than the keepalive setting. |
neighbor transport connection-mode passive

neighbor {<ip-address> | <peer-group-name>} transport connection-mode passive
no neighbor {<ip-address> | <peer-group-name>} transport connection-mode passive

Sets the TCP connection for the specified BGP neighbor or peer group to passive mode.
The no form of the command sets the specified BGP neighbor or peer group to active connection mode.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ip-address</th>
<th>IP address of the neighbor.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
</tbody>
</table>

Default

TCP sessions initiated

Configuration Mode

Config Router BGP

History

3.4.0000 First version

Role

admin

Example

switch (config router bgp 100)# neighbor 10.10.10.10 transport connection-mode passive

Related Commands

Note

- When the peer’s transport connection mode is set to passive, it accepts TCP connections for BGP, but does not initiate them.
- BGP peers in active mode can both accept and initiate TCP connections for BGP.
neighbor update-source

neighbor <ip-address> update-source {ethernet <slot/port> | loopback <number> | port-channel <number> | vlan <vlan-id>}
no neighbor <ip-address> update-source

Configures the source-address for routing updates and to establish TCP connections with peers.
The no form of the command disables configured source-address for routing updates and for TCP connection establishment with a peer.

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP address of the neighbor.</td>
</tr>
<tr>
<td>ethernet <slot/port></td>
<td>Ethernet interface.</td>
</tr>
<tr>
<td>loopback <number></td>
<td>Loopback interface number.</td>
</tr>
<tr>
<td>port-channel <number></td>
<td>LAG interface. Range is 1-4094.</td>
</tr>
</tbody>
</table>

Default

BGP uses best local address

Configuration Mode

Config Router BGP

History

3.3.5006 First version

3.3.5200 Updated example

Role

admin

Example

switch (config router bgp 100)# neighbor 10.10.10.2 update-source vlan 10

Related Commands

N/A

Note
neighbor weight

```
neighbor {<ip-address> | <peer-group-name>} weight <value>
no neighbor {<ip-address> | <peer-group-name>} weight
```

Assigns a weight attribute to paths from the specified neighbor. The no form of the command resets to default values.

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP address of the neighbor</td>
</tr>
<tr>
<td>peer-group-name</td>
<td>Peer group name</td>
</tr>
<tr>
<td>value</td>
<td>Weight value. Range: 1-65535.</td>
</tr>
</tbody>
</table>

Default

Value is 32768 for router-originated paths and 0 for routes received through BGP.

Configuration Mode

Config Router BGP

History

3.4.0000 First version

Role

admin

Example

```
switch (config router bgp 100)# neighbor 10.10.10.10 weight 100
```

Related Commands

N/A

Note

- Weight values set through route map commands have precedence over neighbor weight command values.
- Other attributes are used only when all paths to the prefix have the same weight.
- A path’s BGP weight is also configurable through route maps.
- When multiple paths to a destination prefix exist, the best-path selection algorithm prefers the path with the highest weight.
- Weight is the first parameter that the BGP best-path selection algorithm considers.
network

network <ip-prefix> <length> [<route-map-name>]
no network <ip-prefix> <length> [<route-map-name>]

Configures a route for advertisement to BGP peers. The no form of the command removes the route from the BGP routes table, preventing its advertisement. The route is only advertised if the router has a gateway to the destination.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-prefix</td>
<td>A string that specific route map is assigned to the network.</td>
</tr>
<tr>
<td>length</td>
<td>/24 or 255.255.255.0 format.</td>
</tr>
<tr>
<td>route-map-name</td>
<td>The name of a route-map which is used to set the route's attributes when it is advertised.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config Router BGP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.5006 First version</td>
</tr>
<tr>
<td>3.3.5200 Updated description, syntax description and notes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch (config router bgp 100)# network 10.10.10.0 /24 routemap</td>
</tr>
</tbody>
</table>

| Related Commands |

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The parameters “ip-prefix” and “length” specify the route destination.</td>
</tr>
<tr>
<td>The configuration zeros the host portion of the specified network address. For example, 192.0.2.4/24 is stored as 192.0.2.0/24.</td>
</tr>
</tbody>
</table>
redistribute

redistribute {connected | static | ospf | ospf-internal | ospf-external} [<route-map>]
no redistribute {connected | static | ospf}

Enables redistribution of specified routes to the BGP domain. The no form of the command disables route redistribution from the specified source.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connected</td>
<td>connected</td>
<td>Redistributes the direct routes</td>
</tr>
<tr>
<td>static</td>
<td>static</td>
<td>Redistributes the user-defined (static) route</td>
</tr>
<tr>
<td>ospf</td>
<td>ospf</td>
<td>Redistributes all routes learned by ospf protocol</td>
</tr>
<tr>
<td>ospf-internal</td>
<td>ospf-internal</td>
<td>Redistributes all ospf-learned routes which are marked as internal</td>
</tr>
<tr>
<td>ospf-external</td>
<td>ospf-external</td>
<td>Redistributes all ospf-learned routes which are marked as external</td>
</tr>
</tbody>
</table>

Default
No redistribution

Configuration Mode
Config Router BGP

History
3.2.1000

Role
admin

Example
switch (config router bgp 100)# redistribute ospf

Related Commands
N/A

Note
Multiple redistribution options can be applied.
router-id

```
router-id <ip-address>
no router-id
```

Configures a fixed router ID for BGP. The no form of the command removes the fixed router ID and restores the system default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP Address identified the router ID</td>
</tr>
</tbody>
</table>

Default
The Router ID is dynamically elected (no router-id).
- If a loopback interface is configured, the router ID is set to the IP address of the loopback interface.
- If multiple loopback interfaces are configured, the router ID is set to the IP address of the loopback interface with the highest IP address.
- If no loopback interface is configured, the router ID is set to the highest IP address on a physical interface.

Configuration Mode
Config Router BGP

History
3.3.5006

Role
admin

Example
```
switch (config router bgp 100)# router-id 10.10.10.10
```

Related Commands

Note
The IP address configured identifies the BGP speaker. The command triggers an automatic notification and session reset for the BGP neighbors.
timers bgp

timers bgp `<keep-alive> <hold>`

no timers bgp

Configures the BGP keepalive and hold times. The no form of the command resets the parameters to their default settings.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>keep-alive</td>
<td>Frequency (in seconds) with which keepalive messages are sent to its peer. Range: 1-3600 seconds; 0 – no keep-alive messages are sent.</td>
</tr>
<tr>
<td>hold</td>
<td>Interval (in seconds) after not receiving a keepalive message that a peer is declared dead. 3-7200 seconds; 0 – peer is held indefinitely regardless of keep-alive messages.</td>
</tr>
</tbody>
</table>

| Default | Keepalive time: 60 secs
|--------------------| Hold time: 180 secs |

| Configuration Mode | Config Router BGP |

<table>
<thead>
<tr>
<th>History</th>
<th>3.3.5006 First version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.3.5200 Updated syntax description, related commands and notes</td>
</tr>
</tbody>
</table>

| Role | admin |

| Example | `switch (config router bgp 100)# timers bgp 61 181` `switch (config router bgp 100)#` |

| Related Commands | ip routing neighbor timers router bgp `<as-number>` show ip bgp |

| Note | Timer settings apply to every peer connection.
The command “neighbor timers” configures the times on a specified peer connection.
Hold time should be three times longer than the keepalive setting. |
6.4.4.3 Show

show ip bgp

```
show ip bgp [<ip-address> <mask> [detail | longer-prefixes [detail]]]
```

Displays information about the BGP routes table (RIB).

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP address (e.g. 172.3.12.4).</td>
</tr>
<tr>
<td>mask</td>
<td>Netmask (e.g. /24 or 255.255.255.0).</td>
</tr>
<tr>
<td>detail</td>
<td>Displays detailed information about a subset of the bgp learned routes.</td>
</tr>
<tr>
<td>longer-prefixes</td>
<td>Displays the routes to the specified destination and any routes to a more specific destination.</td>
</tr>
<tr>
<td></td>
<td>Example: If “10.20.30.0 /24 longer-prefixes” is run, all routes starting with 10.20.30 regardless of the prefix length (10.20.30.X /24, 10.20.30.X /25, etc.) are displayed – providing there are any such routes received/sent from/to that neighbor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5200</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show ip bgp
BGP table version is 100, local router ID is 16.0.1.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
r RIB-failure, S Stale, m multipath, b backup-path, x best-external
Origin codes: i - IGP, e - EGP, ? - incomplete
100.100.100.0/24 2.2.2.2 0 2 50 100 e
100.100.100.0/24 4.4.4.4 0 4 40 i
100.100.100.0/24 2.2.2.2 0 2 100 i
100.100.100.0/24 4.4.4.4 0 4 50 i
```

Related Commands

```
N/A
```

Note
show ip bgp community

show ip bgp community <comm1> <comm2> ... <comm n> [exact] [detail]

Displays information about the BGP routes (RIB) filtered according to communities.

Syntax Description	N/A
Default | N/A
Configuration Mode | Any Command Mode
History | 3.4.0000
Role | admin

Example

switch (config) # show ip bgp community 100:1
BGP table version is 8, local router ID is 3.5.7.4
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal
 r RIB-failure, S Stale, m multipath, b backup-path, x best-
external
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.3.11/32</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0</td>
<td>32768</td>
</tr>
<tr>
<td>3.5.7.88/32</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0</td>
<td>32768</td>
</tr>
<tr>
<td>3.5.7.99/32</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0</td>
<td>32768</td>
</tr>
</tbody>
</table>

switch (config) # show ip bgp community 100:1 exact
BGP table version is 8, local router ID is 3.5.7.4
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal
 r RIB-failure, S Stale, m multipath, b backup-path, x best-
external
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.3.11/32</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0</td>
<td>32768</td>
</tr>
<tr>
<td>3.5.7.99/32</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0</td>
<td>32768</td>
</tr>
</tbody>
</table>

Related Commands | N/A

Note
show ip bgp neighbors

Displays summaries information about all BGP neighbors.

Syntax Description
N/A

Default
N/A

Configuration Mode
Any Command Mode

History
3.3.5200

Role
admin

Example

```
switch (config) # show ip bgp neighbors <ip> received
switch-e07c04 [standalone: master] (config) # show ip bgp neighbors
3.5.7.5 received
BGP table version is 66, local router ID is 3.5.7.4
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
           r RIB-failure, S Stale, m multipath, b backup-path, x best-external
Origin codes: i - IGP, e - EGP, ? - incomplete

Network            Next Hop            Metric     LocPrf     Weight
Path                
*>  100.0.20.0/24      3.5.7.5                 10        100          0 5 i
*>  3.5.7.128/32       3.5.7.5                  7        100          0 5 i
*>  100.0.30.0/24      3.5.7.5                  0        100          0 5 i
*>  10.20.30.0/24      3.5.7.5                  0        100          0
```

Related Commands
N/A

Note

```
**show ip bgp neighbors <ip>**

**show ip bgp neighbors <ip-address>**

Displays BGP summary information.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ip-address</th>
<th>Neighbor IP address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>advertised</td>
<td></td>
<td>Displays routes advertised to the specified neighbor.</td>
</tr>
<tr>
<td>received</td>
<td></td>
<td>Displays routes received and accepted from specified neighbor.</td>
</tr>
<tr>
<td>both</td>
<td></td>
<td>Displays routes received from specified neighbor.</td>
</tr>
<tr>
<td>longer-prefixes</td>
<td></td>
<td>Displays the routes to the specified destination and any routes to a more specific destination. Example: If “10.20.30.0 /24 longer-prefixes” is run, all routes starting with 10.20.30 regardless of the prefix length (10.20.30.X /24, 10.20.30.X /25, etc.) are displayed – providing there are any such routes received/sent from/to that neighbor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5200</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

**Example**

```bash
switch-e07c04 [standalone: master] (config) # show ip bgp neighbors
3.5.7.5 received
BGP table version is 66, local router ID is 3.5.7.4
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
 r RIB-failure, S Stale, m multipath, b backup-path, x best-external
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 100.0.20.0/24</td>
<td>3.5.7.5</td>
<td>10</td>
<td>100</td>
<td>0 5 1</td>
</tr>
<tr>
<td>* 3.5.7.128/32</td>
<td>3.5.7.5</td>
<td>7</td>
<td>100</td>
<td>0 5 1</td>
</tr>
<tr>
<td>* 100.0.30.0/24</td>
<td>3.5.7.5</td>
<td>0</td>
<td>100</td>
<td>0 5 1</td>
</tr>
<tr>
<td>* 10.20.30.0/24</td>
<td>3.5.7.5</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

5 12 i
```

**Related Commands**

N/A

**Note**
show ip bgp neighbors <ip> received

show ip bgp neighbors <ip-address> received [<ip-address> [<mask>]] [longer-prefixes]

Displays BGP summary information.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ip-address</th>
<th>Neighbor IP address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>received</td>
<td></td>
<td>Displays routes received and accepted from specified neighbor.</td>
</tr>
<tr>
<td>longer-prefixes</td>
<td></td>
<td>Displays the routes to the specified destination and any routes to a more specific destination. Example: If “10.20.30.0 /24 longer-prefixes” is run, all routes starting with 10.20.30 regardless of the prefix length (10.20.30.X /24, 10.20.30.X /25, etc.) are displayed – providing there are any such routes received/sent from/to that neighbor.</td>
</tr>
</tbody>
</table>

Default	N/A
Configuration Mode	Any Command Mode
History	3.3.5200
Role	admin
Example	
Related Commands	N/A
Note	
show ip bgp paths

Displays summary of all AS paths.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5200</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

**Example**

```plaintext
switch (config) # show ip bgp paths
Refcount Metric Path
1 0 4 50 100
1 0 2 50 100
1 0 4 40
1 0 12 50 100
1 0 2
1 0 2 20

switch (config) #
```

**Related Commands**

N/A

**Note**
**show ip bgp peer-group**

_**show ip bgp peer-group [peer-group-name]**_

Displays information about peer groups.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>peer-group-name</th>
<th>Displays information about a specific peer-group.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Default</strong></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td><strong>Configuration Mode</strong></td>
<td>Any Command Mode</td>
<td></td>
</tr>
<tr>
<td><strong>History</strong></td>
<td>3.4.0000</td>
<td></td>
</tr>
<tr>
<td><strong>Role</strong></td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

**Example**

```
switch (config) # show ip bgp peer-group
BGP Peer-group [grpA]:
 Hold time: 1, Keep-alive: 60
 Allow as-in: 0
 Weight: 32768
 Max prefix: 12000
 Export local preferences: 100, Import local preferences: 100
 Soft reconfiguration: set
 Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
 3.5.7.5 0 5 0 0 0 0 0 0:00:00:42
 100.100.100.100 0 100 0 0 0 0 0 Never
BGP Peer-group [grpB]:
 Hold time: 1, Keep-alive: 60
 Allow as-in: 0
 Weight: 32768
 Max prefix: 12000
 Export local preferences: 100, Import local preferences: 100
 Soft reconfiguration: set
 Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
 3.4.3.7 0 7 0 0 0 0 0 0:00:00:17
BGP Peer-group [tomer_group]:
 Hold time: 1, Keep-alive: 60
 Allow as-in: 0
 Weight: 32768
 Max prefix: 12000
 Export local preferences: 100, Import local preferences: 100
 Soft reconfiguration: set
 Peer-groups count: 3
switch-e07c04 [standalone: master] (config) #
```

**Related Commands**

N/A

**Note**
show ip bgp summary

Displays BGP summary information.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5200</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

switch (config) # show ip bgp summary
BGP router identifier 3.5.7.4, local AS number 4
BGP table version is 70, main routing table version 70
8 network entries using 2176 bytes of memory
4 path entries using 1088 bytes of memory
4 BGP path attribute entries using 256 bytes of memory
0 multipath network entries and 0 multipath paths
4 BGP community entries using 64 bytes of memory
0 received paths for inbound soft reconfiguration
BGP using 26308 total bytes of memory
Dampening disabled. 0 history paths, 0 dampened paths
BGP activity 37/8 prefixes, 37/4 paths

<table>
<thead>
<tr>
<th>Neighbor</th>
<th>V</th>
<th>AS</th>
<th>MsgRcvd</th>
<th>MsgSent</th>
<th>TblVer</th>
<th>InQ</th>
<th>OutQ</th>
<th>Up/Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.3.7</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>9</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td>0:00:00:48</td>
</tr>
<tr>
<td>ESTABLISHED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.7.5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:00:01:54</td>
</tr>
<tr>
<td>CONNECT 100.100.100.100</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Never</td>
</tr>
<tr>
<td>IDLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

switch-e07c04 [standalone: master] (config) #

Related Commands

N/A

Note
6.4.5 IP AS-Path Access-List

6.4.5.1 Commands

**ip as-path access-list**

```
ip as-path access-list <list-name> {permit | deny} <reg-exp> [any | egp | igp | incomplete]
no ip as-path access-list <list-name>
```

Creates an access list to filter BGP route updates. The no ip as-path access-list command deletes the named access list.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>list-name</th>
<th>The name for the access list</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>permit</td>
<td>Permits access for a matching condition</td>
</tr>
<tr>
<td></td>
<td>deny</td>
<td>Denies access for a matching condition</td>
</tr>
<tr>
<td></td>
<td>reg-exp</td>
<td>Regular expression that is used to specify a pattern to match against an input string.</td>
</tr>
<tr>
<td></td>
<td>any</td>
<td>Any route type</td>
</tr>
<tr>
<td></td>
<td>egp</td>
<td>External BGP routes</td>
</tr>
<tr>
<td></td>
<td>igp</td>
<td>Internal BGP routes</td>
</tr>
<tr>
<td></td>
<td>incomplete</td>
<td>Routes marked as “Incomplete”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.4.0000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example  | switch (config)# ip as-path access-list mylist permit
          |          |
|          | switch (config)# |
| Related Commands | N/A       |
| Note     | If access list_name does not exist, this command creates it. If it already exists, this command appends statements to the list. |
### show ip as-path access-list

**Syntax**

```show ip as-path access-list [list-name]```

Presents defined as-path access lists

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>list-name</th>
<th>Displays a specific prefix-list.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.4.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config)# show ip as-path access-list mylist</code></td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Note

- N/A
6.4.6 IP Community-List

6.4.6.1 Commands

ip community-list standard

```
ip community-list standard <list-name> {deny | permit} <list-of-communities>
no ip community-list standard <list-name>
```

Adds a standard entry to a community-list. The no form of the command deletes the specified community list.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-name</td>
<td>The name for the community list</td>
</tr>
<tr>
<td>permit</td>
<td>Permits access for a matching condition.</td>
</tr>
<tr>
<td>deny</td>
<td>Denies access for a matching condition.</td>
</tr>
<tr>
<td>list-of-communities</td>
<td>List of standard communities:</td>
</tr>
<tr>
<td></td>
<td>• aa:nn</td>
</tr>
<tr>
<td></td>
<td>• <number></td>
</tr>
<tr>
<td></td>
<td>• internet</td>
</tr>
<tr>
<td></td>
<td>• local-AS</td>
</tr>
<tr>
<td></td>
<td>• no-advertise</td>
</tr>
<tr>
<td></td>
<td>• no-export</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config

History

3.4.0000

Role

admin

Example

```
switch (config)# ip community-list standard mycommunity permit 1:2 3:4
```

Related Commands

N/A

Note

A BGP community access list filters route maps that are configured as BGP communities. The command uses regular expressions to name the communities specified by the list.
ip community-list expanded

Syntax

```
ip community-list expanded <list-name> {deny | permit} <reg-exp>
no ip community-list expanded <list-name>
```

- Adds a regular expression entry to a community-list
- The no form of the command deletes the specified community list.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-name</td>
<td>Configures a named standard community list.</td>
</tr>
<tr>
<td>permit</td>
<td>Permits access for a matching condition.</td>
</tr>
<tr>
<td>deny</td>
<td>Denies access for a matching condition.</td>
</tr>
<tr>
<td>reg-exp</td>
<td>Regular expression that is used to specify a pattern to match against an input string.</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config

History

3.4.0000

Role

admin

Example

```
switch (config)# ip community-list expanded mycommunity permit 1:[0-9]+ 
```

Related Commands

N/A

Note

A BGP community access list filters route maps that are configured as BGP communities. The command uses regular expressions to name the communities specified by the list.
show ip community-list

show ip community-list [community-list-name]

Displays the defined community lists

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>community-list-name</th>
<th>An optional parameter to display only the specified list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.4.0000</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config)# show ip community-list mycommunity</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>A BGP community access list filters route maps that are configured as BGP communities. The command uses regular expressions to name the communities specified by the list.</td>
<td></td>
</tr>
</tbody>
</table>
6.5 Policy Rules

6.5.1 Route Map

Route maps define conditions for redistributing routes between routing protocols. A route map clause is identified by a name, filter type (permit or deny) and a sequence number. Clauses with the same name are components of a single route map; the sequence number determines the order in which the clauses are compared to a route.
6.5.1.1 Commands

route-map

route-map <map-name> [deny | permit] [sequence-number]
no route-map <map-tag> {deny | permit} [<sequence-number>]

Creates a route map that can be used for importing, exporting routes and applying local policies.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>name</th>
<th>Name of the route-map.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>deny</td>
<td>Configures the rule to be used.</td>
</tr>
<tr>
<td></td>
<td>permit</td>
<td></td>
</tr>
<tr>
<td>sequence-number</td>
<td>Sequence number for a route-map specific record.</td>
<td></td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Config

History:

<table>
<thead>
<tr>
<th>History</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.5006</td>
<td>Updated notes</td>
</tr>
<tr>
<td>3.3.5200</td>
<td></td>
</tr>
</tbody>
</table>

Role: admin

Example:

switch (config) # route-map mymap permit 1200
switch (config route-map mymap permit 1200)#

Related Commands: N/A

Note:

- All changes in the route map configuration mode become pending until the end of the route-map session.
- If not configured, deny | permit is configured as permit.
- If not configured, sequence-number default value is 10.
continue <sequence-number>

```
continue <sequence-number>
no continue
```

Enables additional route map evaluation of routes whose parameters meet the clause’s matching criteria.
The no form of the command removes this configuration from the route map clause.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>prefix-list-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Route Map</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006 First version</td>
</tr>
<tr>
<td></td>
<td>3.3.5200 Updated example</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

```
Example

switch (config route-map mymap permit 10)# match as-number 40
switch (config route-map mymap permit 10)# set weight 7
switch (config route-map mymap permit 10)# continue 1200
switch (config route-map mymap permit 10)# exit
switch (config)# show route-map test
route-map test, permit, sequence 10
  Match clauses:
  as-number 40
  Set clauses:
    weight 7
    continue 1200
switch (config route-map mymap permit 10)# route-map test permit 10 no continue
switch (config route-map mymap permit 10)# show route-map test
route-map test, permit, sequence 10
  Match clauses:
  as-number 40
  Set clauses:
    weight 7
switch (config route-map mymap permit 10)#
```

| Related Commands | route-map <map-name> [deny | permit] [sequence-number] |
|------------------|---------------------------|

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A clause typically contains a match (route-map) and a set (route-map) statement. The evaluation of routes whose settings are the same as match statement parameters normally end and the clause’s set statement are applied to the route. Routes that match a clause containing a continue statement are evaluated against the clause specified by the continue statement.</td>
</tr>
<tr>
<td>• When a route matches multiple route-map clauses, the filter action (deny or permit) is determined by the last clause that the route matches. The set statements in all clauses matching the route are applied to the route after the route map evaluation is complete. Multiple set statements are applied in the same order by which the route was evaluated against the clauses containing them.</td>
</tr>
<tr>
<td>• Continue cannot be set to go back to a previous clause; <sequence-number> of the continue must always be higher than the current clause’s sequence number.</td>
</tr>
</tbody>
</table>
abort

abort

Discards pending changes and returns to global configuration mode.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Route Map</td>
</tr>
</tbody>
</table>
| History | 3.3.5006
First version
3.3.5200
Updated example |
| Role | admin |
| Example | switch (config)# route-map mymap permit 10 match as-number 40
switch (config)# route-map mymap permit 10 set weight 7
switch (config)# show route-map test
route-map test, permit, sequence 10
Match clauses:
as-number 40
Set clauses:
weight 7
switch (config)# route-map mymap permit 1200
switch (config route-map mymap permit 1200)# set weight 11
switch (config route-map mymap permit 1200)# abort
switch (config)# show route-map mymap
route-map mymap, permit, sequence 10
Match clauses:
as-number 40
Set clauses:
weight 7
switch (config)# |
| Related Commands | N/A |
| Note | |
exit

exit

Saves pending route map clause changes to running-config and returns to global configuration mode.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Route Map</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config)# route-map mymap permit 10 match as-number 40
switch (config)# route-map mymap permit 10 set weight 7
switch (config)# show route-map test
route-map test, permit, sequence 10
  Match clauses:
    as-number 40
  Set clauses:
    weight 7
switch (config)# route-map mymap permit 1200
switch (config route-map mymap permit 1200)# set weight 11
switch (config route-map mymap permit 1200)# exit
switch (config)# show route-map test
route-map mymap, permit, sequence 10
  Match clauses:
    as-number 40
  Set clauses:
    weight 7
route-map mymap, permit, sequence 1200
  Set clauses:
    weight 11
switch (config)#
```

Related Commands

N/A

Note
match as-number

```markdown
match as-number <number>
no match as-number
```

Filters according to one of the AS numbers in the AS path of the route. The no form of the command removes this configuration from the route map clause.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>Autonomous system number to check.</td>
</tr>
</tbody>
</table>

Default	N/A
Configuration Mode	Config Route Map
History	3.3.5006
Role	admin
Example	`switch (config route-map mymap permit 10)# match as-number 40`
	`switch (config route-map mymap permit 10)#`

| Related Commands | N/A |

Note	• When a clause contains multiple match commands, the permit or deny filter applies to a route only if its properties are equal to corresponding parameters in each match statement.
	• When a route’s properties do not equal the statement parameters, the route is evaluated against the next clause in the route map, as determined by sequence number.
	• If all clauses fail to permit or deny the route, the route is denied.
match as-path

`match as-path <as-path-list name>`

`no match as-path`

Creates a route map clause entry that matches the route’s AS path using an as-path access-list.

The no form of the command removes the match statement from the configuration mode route map clause.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>number</th>
<th>Autonomous system number to check.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Route Map</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config route-map mymap permit 10)# match as-path my-list</td>
<td></td>
</tr>
</tbody>
</table>

| Related Commands | N/A | |

Note

- When a clause contains multiple match commands, the permit or deny filter applies to a route only if its properties are equal to corresponding parameters in each match statement.
- When a route’s properties do not equal the statement parameters, the route is evaluated against the next clause in the route map, as determined by sequence number.
- If all clauses fail to permit or deny the route, the route is denied.
match community

```text
match community <list-of-communities> [exact-match]
no match community <list-of-communities>
```

Creates a route map clause entry that matches a route if it contains at least the specified communities.
The no form of the command removes the match clause.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>list of communities</th>
<th>List of standard communities:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• aa:nn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <number></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• internet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• local-AS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• no-advertise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• no-export</td>
</tr>
<tr>
<td>exact-match</td>
<td></td>
<td>Creates a route map clause entry that matches the route’s communities exactly.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config Route Map</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.3.5006</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>switch (config route-map mymap permit 10)# match community 1:100 3:52</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Note</th>
<th>• When a clause contains multiple match commands, the permit or deny filter applies to a route only if its properties are equal to corresponding parameters in each match statement.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• When a route’s properties do not equal the statement parameters, the route is evaluated against the next clause in the route map, as determined by sequence number.</td>
</tr>
<tr>
<td></td>
<td>• If all clauses fail to permit or deny the route, the route is denied.</td>
</tr>
</tbody>
</table>

match community-list

```
match community <communities-list-name> exact-match
no match community <communities-list-name> exact-match
```

Creates a route map clause entry that specifies one route filtering condition. The no form of the command removes the match clause.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>communities-list-name</td>
<td>A name of an IP community list</td>
</tr>
</tbody>
</table>

Default	N/A
Configuration Mode	Config Route Map
History	3.3.5006
Role	admin
Example	`switch (config route-map mymap permit 10)# match community-list COM_LIST exact-match`
Related Commands	N/A

Note
- When a clause contains multiple match commands, the permit or deny filter applies to a route only if its properties are equal to corresponding parameters in each match statement.
- When a route’s properties do not equal the statement parameters, the route is evaluated against the next clause in the route map, as determined by sequence number.
- If all clauses fail to permit or deny the route, the route is denied.
match interface

```
match interface <interface-type> <number>
no match interface
```

Matches the route’s interface
The no form of the command removes the match clause.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prefix-list-name</td>
<td>Prefix-list name.</td>
</tr>
</tbody>
</table>

Default	N/A
Configuration Mode	Config Route Map
History	3.3.5006
Role	admin

Example
```
switch (config route-map mymap permit 10)# match interface ethernet 1/1
```

Related Commands
N/A

Note
- When a clause contains multiple match commands, the permit or deny filter applies to a route only if its properties are equal to corresponding parameters in each match statement.
- When a route’s properties do not equal the statement parameters, the route is evaluated against the next clause in the route map, as determined by sequence number.
- If all clauses fail to permit or deny the route, the route is denied.
match ip address

`match ip address <prefix-list-name>`
`no match ip address`

Filters according to IPv4 prefix list.
The no form of the command removes this configuration from the route map clause.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>prefix-list-name</th>
<th>Prefix-list name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Route Map</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config route-map mymap permit 10)# match ip address listSmallRoutes</code></td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Note

- When a clause contains multiple match commands, the permit or deny filter applies to a route only if its properties are equal to corresponding parameters in each match statement.
- When a route’s properties do not equal the statement parameters, the route is evaluated against the next clause in the route map, as determined by sequence number.
- If all clauses fail to permit or deny the route, the route is denied.
- The prefix-list-name should point to an existing IP prefix-list. If it is not found, no route is considered as a match for this clause.
match ip next-hop

match ip next-hop <value>
no match ip next-hop

Configures a route’s entry next-hop match. The no form of the command removes a route-map’s entry next-hop match.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>value</th>
<th>Next hop IP address: A.B.C.D (e.g. 10.0.13.86).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Route Map</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5200</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config route-map mymap permit 10)# match ip next-hop 10.10.10.10</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>• When a clause contains multiple match commands, the permit or deny filter applies to a route only if its properties are equal to corresponding parameters in each match statement. • When a route’s properties do not equal the statement parameters, the route is evaluated against the next clause in the route map, as determined by sequence number. • If all clauses fail to permit or deny the route, the route is denied.</td>
<td></td>
</tr>
</tbody>
</table>
match local-preference

`match local-preference <value>`
`no match local-preference`

Configures a route’s entry local-preference match.
The no form of the command removes a route-map’s entry local-preference match.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>value</th>
<th>Range: 1-2147483647.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Route Map</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5200</td>
<td>First version</td>
</tr>
<tr>
<td></td>
<td>3.4.0000</td>
<td>Updated value range</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config route-map mymap permit 10)# match local-preference 10</code></td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
| Note | • When a clause contains multiple match commands, the permit or deny filter applies to a route only if its properties are equal to corresponding parameters in each match statement.
• When a route’s properties do not equal the statement parameters, the route is evaluated against the next clause in the route map, as determined by sequence number.
• If all clauses fail to permit or deny the route, the route is denied. |
match metric

`match metric <value>`

`no match metric`

Configures a route’s entry metric match.
The no form of the command removes a route-map’s entry metric match.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
<th>Value</th>
<th>Range: 1-2147483647.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Route Map</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5200</td>
<td>First version</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4.0000</td>
<td>Updated value range</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example

```
switch (config route-map mymap permit 10)# match metric 10
```

Related Commands

N/A

Note

- When a clause contains multiple match commands, the permit or deny filter applies to a route only if its properties are equal to corresponding parameters in each match statement.
- When a route’s properties do not equal the statement parameters, the route is evaluated against the next clause in the route map, as determined by sequence number.
- If all clauses fail to permit or deny the route, the route is denied.
set as-path prepend

Syntax

```plaintext
set as-path prepend <value1> <value2> ... <valuen>
no set as-path prepend
```

Description

Modifies as-path on affected routes
The no form of the command removes the set statement from the route map.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>BGP AS number that is prepended to as-path. Range: 1-4294967295.</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config Route Map

History

3.4.0000

Role

admin

Example

```plaintext
switch (config route-map mymap permit 10)# set as-path prepend 5 10
```

Related Commands

N/A

Note
set as-path tag

set as-path tag <value>
no set as-path tag

Configures a route’s entry AS-path tag parameter.
The no form of the command removes a route-map’s entry AS path tag setting.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>value</th>
<th>Range: 1-2147483648.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Route Map</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5200</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config route-map mymap permit 10)# set as-path tag 1</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
set community

```
set community {<list of communities> | none}
no set community {<list of communities> | none}
```

Sets the community attribute of a distributed route
The no form of the command removes the set statement from the clause.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>list of communities</th>
<th>List of standard communities:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• <code><aa:nn></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code><number></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• internet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• local-AS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• no-advertise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• no-export</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config Route Map

History

3.3.5200

Role

admin

Example

```
switch (config route-map mymap permit 10)# set community 1:2 3:4
```

Related Commands

N/A

Note
set community additive

set community <list-of-communities> additive
no set community <list-of-communities> additive

Adds the matching communities
The no form of the command removes the set statement from the clause.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>list-of-communities</th>
<th>List of standard communities:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• aa:nn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <number></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• internet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• local-AS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• no-advertise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• no-export</td>
</tr>
</tbody>
</table>

Default	N/A
Configuration Mode	Config Route Map
History	3.3.5200
Role	admin
Example	switch (config route-map mymap permit 10)# set community none
Related Commands	N/A
Note	
set community none

set community none
no set community none

Sets the community attribute of a distributed route to be empty.
The no form of the command removes the set statement from the clause.

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config Route Map</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5200</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config route-map mymap permit 10)# set community none</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
set community delete

```plaintext
set community <list of communities> delete
no set community <list of communities> delete
```

Deletes matching communities.
The no form of the command removes the set statement from the clause.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>list of communities</th>
<th>List of standard communities:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• <code><aa:nn></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code><number></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• internet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• local-AS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• no-advertise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• no-export</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
</table>

Configuration Mode

Config Route Map

History

3.3.5200

Role

admin

Example

```
switch-e07c04 [standalone: master] (config) # route-map test_route_map
switch-e07c04 [standalone: master] (config route-map test_route_map permit 10) # set community 400:1 delete
```

Related Commands

N/A

Note
set community-list

```
set community-list <community-list-name>
no set community <list of communities>
```

Configures a named standard community list. The no form of the command removes the set statement from the clause.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><community-list-name></code></td>
<td>Name of community list</td>
</tr>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Route Map</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5200</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config route-map mymap permit 10)# set community internet 1:3</code> <code>additive</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Note</td>
<td>N/A</td>
</tr>
</tbody>
</table>
set community-list additive

Syntax:

```
set community-list <community-list-name> additive
noset community <list of communities> additive
```

Adds to existing communities using the communities found in the community list. The no form of the command removes the set statement from the clause.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><community-list-name></td>
<td>Name of community list</td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Config Route Map

History: 3.3.5200

Role: admin

Example:

```
switch (config route-map mymap permit 10)# set community-list mycommunity additive
```

Related Commands: N/A

Note: N/A
set community-list delete

```
set community-list <community-list-name> delete
no set community-list
```

Deletes the matching community list permit entries from the route community list. The no form of the command removes the set statement from the clause.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>community-list-name</th>
<th>Name of community list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Route Map</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5200</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config route-map mymap permit 10)# set community-list mycommunity delete</td>
<td></td>
</tr>
</tbody>
</table>

Related Commands

N/A

Note
set ip next-hop

```
set ip next-hop <value>
no set ip next-hop
```

Configures a route’s entry next-hop parameter. The no form of the command removes a route-map’s entry next-hop setting.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>value</th>
<th>Route next-hop IP: A.B.C.D (e.g. 10.0.13.86).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Route Map</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5200</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config route-map mymap permit 10)# set ip next-hop 10.10.10</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
set local-preference

```
set local-preference <value>
no set local-preference
```

Configures a route’s entry local-preference parameter.
The no form of the command removes a route-map’s entry local-pref setting.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Route local-pref: 1-2147483648.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Description</th>
<th>3.3.5200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config Route Map</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
<th>switch (config route-map mymap permit 10)# set local-preference 10</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Description</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Note</th>
<th>Description</th>
<th></th>
</tr>
</thead>
</table>
set metric

set metric <value>
no set metric

Configures a route’s entry metric parameter.
The no form of the command removes a route-map’s entry metric setting.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
<th>Route metric: 1-2147483647.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>value</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Route Map</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5200</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config route-map mymap permit 10)# set metric 10</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
set origin

```plaintext
set origin {egp | igp | incomplete}
no set origin
```

Configures a route’s entry origin parameter.
The no form of the command removes a route-map’s entry origin setting.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>egp</td>
<td>Set a route’s entry origin parameter to external.</td>
</tr>
<tr>
<td>igp</td>
<td>Set a route’s entry origin parameter to internal.</td>
</tr>
<tr>
<td>incomplete</td>
<td>Set a route’s entry origin parameter to incomplete.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config Route Map</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>History</th>
<th>3.3.5200</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>switch (config route-map mymap permit 10)# set origin egp</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
</table>

set tag

set tag <value>

no set tag

Configures a route’s entry tag parameter.
The no form of the command removes a route-map’s entry tag setting.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>value</th>
<th>Range: 1-2147483647.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Route Map</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4.0000</td>
<td>Updated parameter range</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config route-map mymap permit 10)# set tag 10</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
set weight

set weight <number>
no set weight

Configures modifications to redistributed routes.
The no form of the command removes this configuration from the route map clause.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>number</th>
<th>Value of the weight to set. Range: 1-65535.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Route Map</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
<td>First version</td>
</tr>
<tr>
<td></td>
<td>3.4.0000</td>
<td>Updated parameter range</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config route-map mymap permit 10)# set weight 7</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>route-map <map-name> [deny</td>
<td>permit] [sequence-number]</td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show route-map

show route-map [<name>]

Displays route map configuration.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config)# show route-map mymap
route-map mymap, permit, sequence 1200
 Set clauses:
 continue 1800
switch (config)# |
| Related Commands | N/A |
| Note | |
6.5.2 IP Prefix-List

Prefix-list is a list of entries, each of which can match one or more IP prefixes. A prefix-list is usually used to match a specific IP prefix, mostly in relation to IP route destinations.

The prefix is considered to match the list if one of the entries match the prefix; the entry itself can be marked as a “permit” entry or a “deny” entry, which can be used by the matching code to decide if the route is to be accepted or not.

The prefix is matched to the prefix-list entries in the order of the sequence number of the entries in the list.
6.5.2.1 Commands

ip prefix-list

```
ip prefix-list <list-name> [seq <number>] {permit | deny} <ip> [eq <length> | <prefix> [eq <length> | ge <length> | le <length> | ge <length> | le <length>]]
no ip prefix-list <list-name> [seq <number>]
```

Creates or updates a prefix-list. The no form of the command deletes a prefix-list or a prefix-list entry.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>list-name</th>
<th>String</th>
</tr>
</thead>
<tbody>
<tr>
<td>seq <number></td>
<td></td>
<td>Sequence number assigned to entry. Range: 0-65535.</td>
</tr>
<tr>
<td>permit</td>
<td></td>
<td>Permits access for a matching condition.</td>
</tr>
<tr>
<td>deny</td>
<td></td>
<td>Denies access for a matching condition.</td>
</tr>
<tr>
<td>ip</td>
<td></td>
<td>IP address</td>
</tr>
</tbody>
</table>
| eq | ge | le <mask> | • eq: Equal to a specified prefix length
 • ge: Greater than or equal to a specified prefix length
 • le: Less than or equal to a specified prefix length |

Default

Sequence value = 10

Configuration Mode

Config

History

3.3.5200

Role

admin

Example

```
switch (config)# ip prefix-list a-list permit 10.20.0.0 /16 eq 24
switch (config)#
```

Related Commands

N/A

Note

N/A
show ip prefix-list

show ip prefix-list [<name>]

Displays prefix-lists.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>name</th>
<th>Displays a specific prefix-list.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5200</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
switch (config)# show ip prefix-list
prefix-list: a-list
  count: 1, range entries: 1, sequences: 10 - 10
  seq 10 permit 10.20.0.0 /16 ge 24 (hit count: 0, refcount: 0)
prefix-list: b-list
  count: 2, range entries: 2, sequences: 10 - 20
  seq 10 deny 10.10.0.0 /16 le 24 (hit count: 0, refcount: 0)
  seq 20 deny 10.20.0.0 /16 le 24 (hit count: 0, refcount: 0)
switch (config)#
```

Related Commands

N/A

Note
6.6 Multicast (IGMP and PIM)

Protocol independent multicast (PIM) is a collection of protocols that deal with efficient delivery of IP multicast (MC) data. Those protocols are published in the series of RFCs and define different ways and aspects of multicast data distribution. PIM protocol family includes PIM dense mode (PIM-DM), PIM sparse mode (PIM-SM), Bidirectional PIM (PIM-BIDIR) and Bootstrap router (BSR) protocol.

PIM builds and maintains multicast routing tables based on the unicast routing information provided by unicast routing tables that can be maintained statically or dynamically by IP routing protocols like OSPF and BGP.

6.6.1 Basic PIM-SM

PIM relies on the underlying topology gathering protocols that collect unicast routing information and build multicast routing information base (MRIB). The primary role of MRIB is to determine the next hop for PIM messages. MC data flows along with the reverse path of the PIM control.

MC tree construction contains three phases:

1. Construction of a shared distribution tree. This tree is built around a special designated router (DR) called the rendezvous point (RP).
2. Establishing a native forwarding path from MC sources to the RP
3. Building an optimized MC distribution tree from each MC source to all MC targets bypassing the RP

The first stage of the multicast tree establishment starts when the MC receiver expresses desire to start receiving MC data. It can happen as a result of using one of the L2 protocols like MLD or IGMP, or by static configuration. When such request is received by the last hop router (a designated router) this router starts to build a distribution path from the RP. It starts to send periodic “Join” messages to the nearest PIM neighbor router towards the RP. The next router continues to do the same. Eventually the process converges when Join messages reach RP or a router that has already created that distribution tree. Usually that tree is called a shared tree because it is created for any source for specific MC group G and is noted as (*,G).

At that stage, MC senders can start sending MC data. The DR next to the MC source extracts the packets from the data flow and tunnels them to the RP. The RP decapsulates the packets and distributes them to all MC receivers along with the share tree.

On the second stage the RP switches from tunneling of multicast packets from MC sources to forwarding native traffic. When the RP identifies that a new MC source started to send packets, it initiates an establishment of a native forwarding path from the DR of that source to itself. For this purpose it starts to send Join messages towards MC source to nearest neighbor to that source according the MRIB. This is a source specific Join and is noted as (S,G). When data path is established up to the DR, the DR switches from tunneling MC packets to their native forwarding, so the RP does not need to decapsulate MC packets anymore, but still continue to distribute the packets along with shared tree.

On the third phase multicast receivers will try to switch from shared tree to source specific tree by creating a direct distribution path from a multicast source. When last hop router of the multicast receiver identifies multicast traffic coming from any multicast source it will start to send Join messages towards the source with purpose to create a direct source specific path to that source. Once such path will be established and Designated router that is attached to the source L2
network will start to distribute the multicast traffic directly bypassing shared tree, the last hop router will detach its receivers from shared tree for that data and will switch to the shortest path tree distribution.

6.6.2 Bidirectional PIM

Bidirectional PIM (PIM-BIDIR) is a variant of PIM-SM that builds bidirectional distribution trees that connect multicast senders and receivers. It differs from PIM-SM by eliminating a need to tunnel multicast packets to RP and to keep a state for each (S,G) pair. It also eliminates a need in data driven protocol events. PIM-BIDIR achieves it by defining a new role, Designated Forwarder (DF), and by defining new forwarding rules and keeping all other PIM-SM mechanisms intact.

DF is a PIM enabled router that is the closest router to RP among all PIM routers residing on specific L2 network. It is dynamically elected by all PIM routers on that network. DF is required on each L2 multicast capable network for each RP. DF serves all multicast groups that share the same RP and has following duties:

- It is an only router that is responsible to receive and forward upstream multicast packets on that L2 segment
- It is a router that should collect all Join requests from the routers on that L2 segment
- It is an only router that will distribute downstream multicast packets on that segment.

Once Designated forwards are elected and forwarding rules are established, PIM routers can start to issue (*,G) Join messages and build shared distribution trees. When shared tree is created, multicast sources can start to exchange data with receivers and it doesn't require any additional maintenance of the multicast states.

Compared to PIM-SM, in bidirectional PIM:

- Each router will keep only (*,G) state and not (*,G) and (S,G) like in PIM-SM
- Multicast traffic from the beginning is forwarded naturally - no need to tunnel data to RP
- Resulting multicast tree is not shortest path optimal and converges around selected Rendezvous point, but is shared among all participants in that multicast group

In BIDIR-PIM, the packet forwarding rules have been improved over PIM-SM, allowing traffic to be passed up the shared tree toward the RP. To avoid multicast packet looping, bidir-PIM introduces a new mechanism called designated forwarder (DF) election, which establishes a loop-free SPT rooted at the RP.

6.6.3 PIM Load-Sharing

PIM load-sharing improves network efficiency in IP multicast applications especially in cases when we have multiple equal-cost paths to the same destination. There two methods which enhance IP multicast bandwidth capacity consumption: rendezvous point load sharing and next-hop load sharing.

Routers should be connected via router port and not VLAN interface. Connecting two routers via VLAN interface with PIM load-sharing causes loops in the network.
6.6.3.1 Rendezvous Point Load-Sharing

IP multicast routing is facilitated by use of rendezvous points (RPs) which are anchors in IP multicast distribution trees, and, in case of PIM-BIDIR, are central points that perform IP multicast packet forwarding. Therefore, they can get heavily loaded.

When multiple RPs serve the same multicast IP addresses and are located at an equal distance from a traffic source or receiver, data streams can be shared between those RPs. This enhances switching performance, improves network bandwidth consumption and increases reliability. Data packets based on the packet flow parameters are equally shared between all RPs located at an equal-distance.

6.6.3.2 Next Hop Load-Sharing

Another way to improve network capacity consumption and increase the amount of IP multicast data carried by the network, is to utilize multiple equal-cost paths from RPs to IP multicast receivers. A network usually selects a single path to carry specific multicast group data packets from a source to a specific multicast destination. But when enabling next hop load-sharing, multiple paths between RP and multicast group receivers may be utilized, and based on traffic flow parameters, the data stream may be split to multiple flows that go through several equal-cost paths to the same destination.

6.6.4 Bootstrap Router

For correct operation each PIM router requires a capability to map a multicast group that it needs to serve to a Rendezvous point for that group. This mapping can be done manually or the mapping can be distributed dynamically in the network. BSR protocol serves for this purpose.

This protocol introduces new role in the multicast network – Bootstrap router. That router is responsible to flood multicast group to RP mapping through the multicast routing domain. Bootstrap router is elected dynamically among bootstrap router candidates (C-BSR) and once elected will collect from Rendezvous point candidate (C-RP) mapping information and distribute it in the domain.

Bootstrap activity contains 4 steps. First each C-BSR configured in the network originates floods into the network bootstrap messages that express the router desire to become BSR and also its BSR priority. Any C-BSR that receives that information and has lower priority will suspend itself, so eventually only one router will send BSR messages and become BSR.

When BSR is elected all RP candidates start to advertise to BSR a list of groups that this RP can serve. On the next step, after BSR learns the group mapping proposals, it forms a final group to RP mapping in the domain and starts to distribute it among PIM routers in the multicast routing domain. When PIM router receives BSR message with the group to RP mapping, it installs that mapping in the router local cache and uses that information to create multicast distribution trees.

6.6.5 Configuring Multicast

Precondition steps:

Step 1. Enable IP routing functionality. Run:

```
switch (config)# ip routing
```

Step 2. Enable the desired VLAN. Run:

```
switch (config)# vlan 10
```
Step 3. Add this VLAN to the desired interface. Run:

```
switch (config)# interface ethernet 1/1
switch (config ethernet 1/1)# switchport access vlan 10
```

Step 4. Create a VLAN interface. Run:

```
switch (config)# interface vlan 10
```

Step 5. Apply IP address to the VLAN interface. Run:

```
switch (config interface vlan 10)# ip address 10.10.10.10 /24
```

Step 6. Enable the interface. Run:

```
switch (config interface vlan 10)# no shutdown
```

6.6.5.1 Configuring IGMP

IGMP is enabled when IP multicast is enabled and static multicast or PIM is enabled on the interface.

6.6.5.2 Verifying IGMP

Step 1. Display a brief IGMP interface status. Run:

```
switch (config)# show ip igmp interface brief
IGMP Interfaces for VRF "default", Count: 1
Interface   IP Address   IGMP Querier   Membership   Version
VLAN10      10.10.10.1   10.10.10.1     5            v2
```

Step 2. Display detailed IGMP interface status. Run:

```
switch (config)# show ip igmp interface vlan 10
IGMP Interfaces for VRF "default"

VLAN10
Interface status: protocol-up/admin-up/link-up
IP address: 10.10.10.1, IP Subnet: 10.10.10.0/24
Active Querier: 10.10.10.1
Membership count: 5
Route-queue depth: 0
IGMP Version: 2
IGMP query interval: 125 secs, configured value: 125 secs
IGMP max response time: 10 secs, configured value: 10 secs
IGMP startup query interval: 125 secs, configured value: 125 secs
IGMP startup query count: 2
IGMP group timeout: 260 secs, configured value: 260 secs
IGMP querier timeout: 260 secs configured value: 260 secs
IGMP last member mrt: 25 secs configured value: 25
IGMP robustness variable: 2
IGMP interface immediate leave: Disabled
IGMP interface statistics:
General (sent/received):
v1/v2-reports: 0/10
v2-queries: 271/0, v2-leaves: 0/0
```
Step 3. Display the list of IGMP groups and their status. Run:

```
switch (config)# show ip igmp groups
```

```
IGMP Connected Group Membership for VRF "default", - 2 total entries
Type: S - Static, D - Dynamic, L - Local, T - SSM Translated
Group Address Type     Interface Uptime            Expires          Last Reporter
226.0.1.0    D       vlan10    [0d 00:00:07.46]  [0d 00:04:05.08] 10.10.10.2
226.0.1.1    D       vlan10    [0d 00:00:07.47]  [0d 00:04:05.08] 10.10.10.2
```

6.6.5.3 Configuring PIM

Prerequisites:

Step 1. If not enabled, enable IP routing. Run:

```
switch (config)# ip routing
```

Step 2. Globally enable multicast routing. Run:

```
switch (config)# ip multicast-routing
```

To configure PIM:

Step 1. Enable PIM. Run:

```
switch (config)# protocol pim
```

Step 2. Globally enable Bidirectional PIM (BIDIR mode). Run:

```
switch (config)# no ip pim bidir shutdown
```
6.6.6 Commands

6.6.6.1 PIM

protocol pim

Syntax Description: N/A

<table>
<thead>
<tr>
<th>Default</th>
<th>Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config) # protocol pim</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Enables protocol independent multicast (PIM).
The no form of the command hides all PIM commands and deletes all PIM configurations.
ip pim bidir shutdown

ip pim bidir shutdown
no ip pim bidir shutdown

Disables PIM bidir.
The no form of the command enables PIM bidir.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # no ip pim bidir shutdown</td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
ip pim rp-address

```
ip pim rp-address <rp-address> [group-list <ip-address> <prefix>] [override] bidir
no ip pim rp-address <rp-address> [group-list <ip-address> <prefix>]
```

Configures a static IP address of a rendezvous point for a multicast group range or adds new multicast range to existing RP. The no form of the command removes the rendezvous point for a multicast group range or removes all configuration of the RP.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rp-address</td>
<td>The static IP address of rendezvous point.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the group-range (coupled with the prefix parameter).</td>
</tr>
<tr>
<td>prefix</td>
<td>Network prefix (in the format of /24, or 255.255.255.0 for example) of group range.</td>
</tr>
<tr>
<td>override</td>
<td>Specifies that this configuration overrides dynamic configuration learned by BSR.</td>
</tr>
<tr>
<td>bidir</td>
<td>Specifies that the group range uses a bidirectional PIM.</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Config

History

3.3.5006

Role

admin

Example

```
switch (config) # ip pim rp-address 10.10.10.10 bidir
```

Related Commands

N/A

Note
ip pim bsr-candidate

ip pim bsr-candidate {vlan <vlan-id> | loopback <number> | ethernet <port>} [hash-len <hash-length>] [priority <priority>] [interval <interval>]
no ip pim bsr-candidate {vlan <vlan-id> | loopback <number> | ethernet <port>} [hash-len <hash-length>] [priority <priority>] [interval <interval>]

Configures the switch as a candidate BSR router (C-BSR). The no form of the command removes BSR-candidate configuration or restores default parameters values.

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan <vlan-id></td>
<td>The VLAN ID. Range is 1-4094.</td>
</tr>
<tr>
<td>loopback <number></td>
<td>Loopback interface number.</td>
</tr>
<tr>
<td>ethernet <port></td>
<td>Ethernet interface.</td>
</tr>
<tr>
<td>hash-len</td>
<td>Specifies the hash mask length used in BSR messages. Range: 0-32.</td>
</tr>
<tr>
<td>priority</td>
<td>BSR priority rating. Larger numbers denote higher priority. Range: 0-255.</td>
</tr>
<tr>
<td>interval</td>
<td>Period between the transmission of BSMs (seconds). Range: 10-536870906.</td>
</tr>
</tbody>
</table>

Default
The interface is not BSR candidate by default.
- priority: 64
- interval: 60
- hash-len: 30

Configuration Mode
- Config Interface Ethernet configured as a router port
- Config Interface Loopback
- Config Interface Port Channel configured as a router port
- Config Interface VLAN

History
- 3.3.5006

Role
- admin

Example
```
switch (config) # ip pim bsr-candidate vlan 10 priority 100
```
Related Commands

- `ip pim sparse-mode`

Note

- IP PIM sparse-mode must be enabled on the interface.
- A Bootstrap Router (BSR) is a PIM router within the PIM domain through which dynamic RP selection is implemented. The BSR selects RPs from a list of candidate RPs and exchanges bootstrap messages (BSM) with all routers in the domain. The BSR is elected from one of the Candidate Bootstrap Routers (C-BSRs) through an exchange of BSMs. A subset of PIM routers within the domain are configured as candidate Bootstrap routers (C-BSRs). Through the exchange of Bootstrap messages (BSMs), the C-BSRs elect the BSR, which then uses BSMs to inform all domain routers of its status.
- Command parameters specify the switch’s BSR address, the interval between BSM transmissions, hash length used for RP calculations and the priority assigned to the switch when electing a BSR.
- Entering an `ip pim bsr-candidate` command replaces any previously configured bsr-candidate command. If the new command does not specify a priority or interval, the previously configured values persist in running-config.
ip pim bsr-holdtime

ip pim bsr-holdtime <period>

no ip pim bsr-holdtime

Configures the timeout period an elected BSR remains valid after receiving a BSM. The no form of the command resets the parameters to their default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>period</td>
<td>In seconds. Range: 12-1073741823 (1.073 billion).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>period = 2*(BSR candidate interval) + 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # ip pim bsr-holdtime 30</td>
</tr>
</tbody>
</table>

Related Commands

Note
ip pim rp-candidate

```bash
ip pim rp-candidate {vlan <vlan-id> | loopback <number> | ethernet <slot/port>} group-list <ip-address> <prefix> [bidir] [priority <priority>] [interval <interval>]
no ip pim rp-candidate {vlan <vlan-id> | loopback <number> | ethernet <slot/port>} group-list <ip-address> <prefix> [bidir] [priority <priority>] [interval <interval>]
```

Configures the switch as a candidate rendezvous point (C-RP). The no form of the command removes the ip pim rp-candidate from running-config command for the specified multicast group.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet <slot/port></td>
<td>Ethernet interface.</td>
</tr>
<tr>
<td>port-channel <number></td>
<td>LAG interface.</td>
</tr>
<tr>
<td>vlan <vlan-id></td>
<td>VLAN ID, Range: 1-4094.</td>
</tr>
<tr>
<td>loopback <number></td>
<td>Loopback interface number.</td>
</tr>
<tr>
<td>ip-address</td>
<td>The group IP address.</td>
</tr>
<tr>
<td>prefix</td>
<td>Network prefix (for example /24, or 255.255.255.0).</td>
</tr>
<tr>
<td>priority</td>
<td>RP priority rating. Range: 0-255, where smaller numbers mean higher priority.</td>
</tr>
</tbody>
</table>

Default

- The RP priority is 192.
- The BSR message interval is 60 seconds.

Configuration Mode

- Config
 - Config Interface Ethernet configured as a router port
 - Config Interface Loopback
 - Config Interface Port Channel configured as a router port
 - Config Interface VLAN

History

- 3.3.5006

Role

- admin

Example

```bash
switch (config) # ip pim rp-candidate vlan 19 group-list 225.6.5.0 /25 priority 20 interval 30 bidir
```
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td></td>
</tr>
<tr>
<td>• The BSR selects a multicast group’s dynamic RP set from the list of C-RPs in the PIM domain. The command specifies the interface (used to derive the RP address), C-RP advertisement interval, and priority rating. The BSR selects the RP set by comparing C-RP priority ratings. The C-RP advertisement interval specifies the period between successive C-RP advertisement message transmissions to the BSR.</td>
<td></td>
</tr>
<tr>
<td>• Running-config supports multiple multicast groups through multiple ip pim rp-candidate statements:</td>
<td></td>
</tr>
<tr>
<td>• All commands must specify the same interface. Issuing a command with an interface that differs from existing commands removes all existing commands from running-config.</td>
<td></td>
</tr>
<tr>
<td>• Running-config stores the interval and priority setting in a separate statement that applies to all rp-candidate statements. When a command specifies an interval that differs from the previously configured value, the new value replaces the old value and applies to all configured rp-candidate statements. The default interval value is 60 seconds.</td>
<td></td>
</tr>
<tr>
<td>• When the no commands do not specify a multicast group, all rp-candidate statements are removed from running-config. The no ip pim rp-candidate interval commands restore the interval setting to the default value of 60 seconds.</td>
<td></td>
</tr>
<tr>
<td>• When setting a priority, all previous rp-candidates within all interfaces and groups are configured to this priority.</td>
<td></td>
</tr>
</tbody>
</table>
ip pim sparse-mode

```
ip pim sparse-mode
no ip pim sparse-mode
```

Sets PIM sparse mode on this interface.
The no form of the command disables the sparse-mode on the interface and deletes all interfaces configuration.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
| **Configuration Mode** | Config Interface VLAN
 | Config Interface Ethernet configured as a router port
 | Config Interface Port Channel configured as a router port |
| **History** | 3.3.5006 |
| **Role** | admin |
| **Example** | `switch (config interface vlan 10) # ip pim sparse-mode` |
| **Related Commands** | N/A |
| **Note** | |
ip pim dr-priority

ip pim dr-priority <priority>
no ip pim dr-priority

Configures the designated router (DR) priority of PIM Hello messages. The no form of the command resets this parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>priority</td>
<td>The designated router priority of the PIM Hello messages. Range is 1-4294967295.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config Interface VLAN Config Interface Ethernet configured as a router port Config Interface Port Channel configured as a router port</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config interface vlan 10) # ip pim dr-priority 5</td>
</tr>
<tr>
<td>Related Commands</td>
<td>ip pim sparse-mode</td>
</tr>
<tr>
<td>Note</td>
<td>The command “ip pim sparse-mode” must be run prior to using this command.</td>
</tr>
</tbody>
</table>
ip pim hello-interval

Syntax

```plaintext
ip pim hello-interval <interval>
no ip pim hello-interval
```

Configures PIM Hello interval in milliseconds.
The no form of the command resets this parameter to its default.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>interval</th>
<th>PIM Hello interval in milliseconds. Range: 1000-65535000.</th>
</tr>
</thead>
</table>

Default

30,000 milliseconds

Configuration Mode

- Config Interface VLAN
- Config Interface Ethernet configured as a router port
- Config Interface Port Channel configured as a router port

History

3.3.5006

Role

admin

Example

```
switch (config interface vlan 10) # ip pim hello-interval 70000
```

Related Commands

- `ip pim sparse-mode`

Note

The command “ip pim sparse-mode” must be run prior to using this command.
ip pim join-prune-interval

ip pim join-prune-interval <period>
no ip pim join-prune-interval

Configures the period between Join/Prune messages that the configuration mode interface originates and sends to the upstream RPF neighbor. The no form of the command resets this parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>period</th>
<th>Range: 1-1000000 seconds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>60 seconds</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface VLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Config Interface Ethernet configured as a router port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Config Interface Port Channel configured as a router port</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5200</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config interface vlan 10) # ip pim join-prune-interval 60</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ip pim border

ip pim border

no ip pim border

Configures an interface on an IPv4 PIM border.
The no form of the command removes the interface from being a PIM border.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
| **Configuration Mode** | Config Interface VLAN
```markdown
Config Interface Ethernet configured as a router port  
Config Interface Port Channel configured as a router port
```
| History | 3.3.5006 |
| Role | admin |
| Example | switch (config interface vlan 10) # ip pim border |
| **Related Commands** | |

Note

PIM border blocks PIM control traffic, but sends and receives all multicast traffic.
ip pim bsr-border

- **ip pim bsr-border**
- **no ip pim bsr-border**

Prevents the switch from sending bootstrap router messages (BSMs) over the configuration mode interface. The no form of the command resets the parameter to its default value.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>no pim bsr-border</td>
</tr>
</tbody>
</table>
| **Configuration Mode** | Config Interface VLAN
Config Interface Ethernet configured as a router port
Config Interface Port Channel configured as a router port |
| History | 3.3.5200 |
| Role | admin |
| **Example** | switch (config interface vlan 10) # ip pim bsr-border |
| **Related Commands** | |
| **Note** | |
ip pim multipath rp

```
ip pim multipath rp
no ip pim multipath rp
```

Enables PIM load-sharing for Rendezvous Points (RPs).
The no form of the command disables PIM load-sharing for RPs.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.4.2008</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config) # ip pim multipath rp</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
debug ethernet ip pim

```
debug ethernet ip pim {all | control-plane | data-path | fail-all | init-shut | management | memory | packet-dump | resources}
no debug ethernet ip pim {all | control-plane | data-path | fail-all | init-shut | management | memory | packet-dump | resources}
```

Configures the trace level for PIM.
The no form of the command removes the trace level for PIM.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>all</th>
<th>Enable track traces.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>control-plane</td>
<td>Control plane traces.</td>
</tr>
<tr>
<td></td>
<td>data-path</td>
<td>IP packet dump trace.</td>
</tr>
<tr>
<td></td>
<td>fail-all</td>
<td>All failures including Packet Validation Trace.</td>
</tr>
<tr>
<td></td>
<td>init-shut</td>
<td>Init and shutdown messages.</td>
</tr>
<tr>
<td></td>
<td>management</td>
<td>Management messages.</td>
</tr>
<tr>
<td></td>
<td>memory</td>
<td>Memory related messages.</td>
</tr>
<tr>
<td></td>
<td>packet-dump</td>
<td>Packet dump messages.</td>
</tr>
<tr>
<td></td>
<td>resources</td>
<td>OS Resource trace.</td>
</tr>
</tbody>
</table>

Default
N/A

Configuration Mode
Config

History
3.3.5200

Role
admin

Example
```
switch (config)# debug ethernet ip pim all
```

Related Commands

Note
show ip pim protocol

show ip pim protocol

Displays PIM protocol information (counters).

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5200</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show ip pim protocol
PIM Control Counters
<table>
<thead>
<tr>
<th></th>
<th>Received</th>
<th>Sent</th>
<th>Invalid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assert</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bootstrap Router</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CRP Advertisement</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Graft</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grapt Ack</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hello</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>J/P</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Register</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Register Stop</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>State Refresh</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Related Commands

Note
show ip pim bsr

show ip pim bsr

Displays PIM BSR information.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```bash
arc-switch14 [standalone: master] (config) # show ip pim bsr
PIMv2 Bootstrap information
  BSR address: 4.4.4.14
  Uptime: 00:00:30, BSR Priority: 0, Hash mask length: 30
  Expires: 00:00:57
This system is a candidate BSR
  Candidate BSR address: 4.4.4.14, priority: 0, hash mask length: 30
  interval: 60, holdtime: 130
```

Related Commands

Note
show ip pim neighbor

show ip pim neighbor [vlan <vlan-id> | <other interfaces> | <ip-addr>]

Displays information about IPv4 PIM neighbors.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan <vlan-id></td>
<td>Filters the output per specific VLAN ID.</td>
</tr>
<tr>
<td>neighbor-addr</td>
<td>Filters the output per specific neighbor IP address.</td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Any Command Mode

History: 3.3.5006

Role: admin

Example:

```
switch (config) # show ip pim neighbor
PIM Neighbor Status for VRF "default"
Neighbor     Interface  Uptime   Expires Ver  DR Prio Mode
5.5.5.1       VLAN5       10:36:45 00:01:43    1
9.9.9.1       VLAN9       10:36:42 00:01:43    1
switch (config) #
```

Related Commands

Note
show ip pim rp

```
show ip pim rp <rp-address>
```

Displays information about the rendezvous points (RPs) for PIM.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>rp-address</th>
<th>A rendezvous points address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```
switch(config)# show ip pim rp
PIM RP Status Information for VRF "default"
BSR: 10.10.10.10, expires: 00:01:16,
    priority: 255, hash-length: 0
RP: 11.11.11.11, expires: 00:01:36
    priority: 0, RP-source: 10.10.10.10, group ranges:
        225.10.0.0/24
RP: 8.8.8.2, expires: 00:01:36
    priority: 0, RP-source: 10.10.10.10, group ranges:
        225.12.0.0/24
```

Related Commands

Note
show ip pim rp-hash

show ip pim rp-hash <group>

Displays the hashed value of the group (RP address according the group address).

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>group</th>
<th>Filters the output per a specific IP Multicast group address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config) # show ip pim rp-hash 225.7.6.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP 20.20.20.49, v2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Info Source: 20.20.20.49, via bootstrap, priority 60, holdtime 57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expires: 00:00:53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PIMv2 Hash Value (mask 255.255.255.252)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch (config)#</td>
<td></td>
</tr>
</tbody>
</table>

Related Commands

Note
show ip pim rp-candidate

show ip pim rp-candidate

Displays information about RP candidate status.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```bash
switch (config)# show ip pim rp-candidate

Next Candidate-RP-Advertisement in 00:11:22/00:60:00
RP: 10.10.10.10
group prefixes priority
  224.0.0.0/4    190
  225.0.0.0/4    191
switch (config)#
```

Related Commands

Note
show ip pim interface

show ip pim interface [{vlan <vlan id> | ethernet <port>] [df] | brief}

Displays information about the enabled interfaces for PIM.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan <vlan-id></td>
<td>Filters the output for specific interface.</td>
</tr>
<tr>
<td>ethernet <port></td>
<td>Ethernet interface.</td>
</tr>
<tr>
<td>df</td>
<td>Displays information about elected designated forwarders.</td>
</tr>
<tr>
<td>brief</td>
<td>Displays a summary of information for all interfaces.</td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Any Command Mode

History: 3.3.5006

Role: admin

Example:

```
# arc-switch55 [standalone: master] (config) # show ip pim interface
vlan 2919
Interface Vlan2919 address is 70.28.23.80
PIM: enabled
PIM version: 2, mode: sparse
PIM DR: 70.28.23.80 (this system)
PIM DR Priority: 1
PIM configured DR priority:
PIM neighbor count: 1
PIM neighbor holdtime: 105 secs
PIM Hello Interval: 30 seconds, next hello sent in: 00:00:28
PIM Hello Generation ID: 61345
PIM Join-Prune Interval: 60 seconds
PIM domain border: no
PIM Interface Statistics:
  General (sent/received):
    Hellos: 36/37, JPs: 0/0, Asserts: 0/0
    Grafts: 0/0, Graft-Acks: 0/0
    DF-Offers: 0/0, DF-Winners: 0/0, DF-Backoffs: 0/0, DF-
    Passes: 0/0
  Errors:
    Checksum errors: 0, Invalid packet types/DF subtypes: 0/0
    Authentication failed: 0
    Packets from non-neighbors: 1
    JPs received on RPF-interface: 0
    (*,G) Joins received with no/wrong RP: 0/0
    (*,G)/(S,G) JPs received for SSM/Bidir groups: 0/0
```

Related Commands

Note
show ip pim upstream joins

```
show ip pim upstream joins
```

Displays information about any PIM joins/prunes which are currently being sent to upstream PIM routers

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config) # show ip pim upstream joins
Neighbor address: 159.135.45.26
via interface: 159.135.45.34
next message in 43 seconds
    Group: 224.0.10.0
    Joins: 22.74.49.25
    Prunes: No prunes included
switch (config) #
```

Related Commands

Note

Should contain the following information: neighbor address, interface address, group range, Joins, Prunes.
6.6.6.2 Multicast

ip multicast-routing

```
ip multicast-routing
no ip multicast-routing
```

Allows the switch to forward multicast packets. The no form of the command disables multicast routing.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config)# ip multicast-routing</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note

Mellanox Technologies Confidential
ip mroute

```
ip mroute {<ip-addr> <ip-mask> <next-hop>} [pref]
no ip mroute {<ip-addr> <ip-mask>}
```

Configure multicast reverse path forwarding (RPF) static routes. The no form of the command deletes the static multicast route.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-addr</td>
<td>Unicast IP address.</td>
</tr>
<tr>
<td>ip-mask</td>
<td>Network mask in a dotted format (e.g. 255.255.255.0) or /24 format.</td>
</tr>
<tr>
<td>next-hop</td>
<td>Next hop IP address.</td>
</tr>
<tr>
<td>preference</td>
<td>Route preference. Range: 1-255.</td>
</tr>
</tbody>
</table>

Default

Preference is 1

Configuration Mode

Config

History

3.3.5006

Role

admin

Example

```
arc-switch14 [standalone: master] (config) # ip mroute 16.16.0.0 /16 3.3.3.1
```

Related Commands

N/A

Note

N/A
ip multicast ttl-threshold

- **ip multicast ttl-threshold <ttl-value>**
- **no ip multicast ttl-threshold**

Configures the time-to-live (TTL) threshold of packets being forwarded out of an interface. The no form of the command removes RPF static routes.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ttl-value</td>
<td>Range: 0-225.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>0 – all packets are forwarded</th>
</tr>
</thead>
</table>
| **Configuration Mode** | Config Interface VLAN
 | Config Interface Ethernet configured as a router port
 | Config Interface Port Channel configured as a router port |
| **History** | 3.3.5006 |
| **Role** | admin |
| **Example** | switch (config interface vlan 10)# ip multicast ttl-threshold 10 |
| **Related Commands**| N/A |

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
</table>

show ip mroute

show ip mroute [summary | <group> [<prefix> [<source>]]]

Displays information about IPv4 multicast routes.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>Source IP address.</td>
</tr>
<tr>
<td>group</td>
<td>IP address of multicast group.</td>
</tr>
<tr>
<td>prefix</td>
<td>Network prefix of multicast group (in the format of /24, or 255.255.255.0 for example).</td>
</tr>
<tr>
<td>summary</td>
<td>Displays a summary of the multicast routes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.2.1000</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
arc-switch14 [standalone: master] (config) # show ip mroute
IP Multicast Routing Table
Flags: B - Bidir Group, L - Local, P - Pruned, R - RP-bit set, T - SPT-bit set
       J - Join SPT
Timers: Uptime/Expires
Interface state: Interface, State/Mode

(*, 225.0.0.0/24), 00D 00:14:49, RP 18.18.18.14, flags: BR
   Bidir-Upstream: Lo7
Outgoing interface list:
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
6.6.6.3 IGMP

ip igmp immediate-leave

 ip igmp immediate-leave
 no ip igmp immediate-leave

Enables the device to remove the group entry from the multicast routing table immediately upon receiving a leave message for the group. The no form of the command disables immediate-leave.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
| Configuration Mode | Config Interface VLAN
 Config Interface Ethernet configured as a router port
 Config Interface Port Channel configured as a router port |
| History | 3.3.5006 |
| Role | admin |
| Example | switch (config interface vlan 10)# ip igmp immediate-leave |
| Related Commands | N/A |
| Note | |
ip igmp last-member-query-count

```
ip igmp last-member-query-count <count>
no ip igmp last-member-query-count
```

Configures the number of query messages the switch sends in response to a group-specific or group-source-specific leave message. The no form of the command resets this parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Count</th>
<th>Range: 1-7.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Mode
- Config Interface VLAN
- Config Interface Ethernet configured as a router port
- Config Interface Port Channel configured as a router port

History
3.3.5006

Role
admin

Example
```
switch (config interface vlan 10)# ip igmp last-member-query-count 7
```

Related Commands
N/A

Note
This parameter reflects expected packet loss on a congested network.
ip igmp last-member-query-response-time

ip igmp last-member-query-response-time <interval>
no ip igmp last-member-query-response-time

Configures the IGMP last member query response time in seconds.
The no form of the command resets this parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>interval</th>
<th>IGMP last member query response time. Range:1-25 seconds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
| Configuration Mode | Config Interface VLAN
Config Interface Ethernet configured as a router port
Config Interface Port Channel configured as a router port |
| History | 3.3.5006 | |
| Role | admin | |
| Example | switch (config interface vlan 10)# ip igmp last-member-query-response-time 10 |
| Related Commands | N/A | |
| Note | | |
ip igmp startup-query-count

Syntax

- `ip igmp startup-query-count <count>`
- `no ip startup-query-count`

Configures the number of query messages an interface sends during startup. The no form of the command resets this parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>count</th>
<th>Range: 1-65535.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface VLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Config Interface Ethernet configured as a router port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Config Interface Port Channel configured as a router port</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config interface vlan 10)# ip igmp startup-query-count 10</code></td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ip igmp startup-query-interval

ip igmp startup-query-interval <interval>
no ip startup-query-interval

Configures the IGMP startup query interval in seconds.
The no form of the command resets this parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>interval</th>
<th>Range: 1-1800 seconds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
| Configuration Mode | Config Interface VLAN
 | Config Interface Ethernet configured as a router port
 | Config Interface Port Channel configured as a router port |
| History | 3.3.5006 | |
| Role | admin | |
| Example | switch (config interface vlan 10)# ip igmp startup-query-interval 10 |
| Related Commands | N/A | |
| Note | | |
ip igmp query-interval

 ip igmp query-interval <interval>
 no ip igmp query-interval

Configures the IGMP query interval in seconds.
The no form of the command resets this parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>125</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config Interface VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>3.3.5006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>admin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>switch (config interface vlan 10)# ip igmp query-interval 60</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
</table>
ip igmp query-max-response-time

```
ip igmp query-max-response-time <time>
no ip igmp query-max-response-time
```

Configures the IGMP max response time in seconds.
The no form of the command resets this parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>time</th>
<th>The IGMP max response time. Range: 1-25 seconds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface VLAN</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config interface vlan 10)# ip igmp query-max-response-time 20</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Note
ip igmp robustness-variable

```
ip igmp robustness-variable <count>
no ip igmp robustness-variable
```

Configures the IGMP robustness variable. The no form of the command resets this parameter to its default.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface VLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Config Interface Ethernet configured as a router port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Config Interface Port Channel configured as a router port</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config interface vlan 10)# ip igmp robustness-variable 4</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Note

- The robustness variable can be increased to increase the number of times that packets are resent.
- This parameter reflects expected packet loss on a congested network.
ip igmp static-oif

```
ip igmp static-oif <group>
no ip igmp static-oif
```

Statically binds an IP interface to a multicast group. The no form of the command deletes the static multicast address from the interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>group</th>
<th>Multicast IP address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>no ip igmp static-oif</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface VLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Config Interface Ethernet configured as a router port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Config Interface Port Channel configured as a router port</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.5006</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config interface vlan 10)# ip igmp static-oif 10.10.10.5</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>PIM must be enabled in order to configure the route in the hardware.</td>
<td></td>
</tr>
</tbody>
</table>
clear ip igmp groups

```plaintext
clear ip igmp groups {all | <group-address> <mask>}
```

Cleans IGMP group information.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>all</th>
<th>Clears all IGMP groups.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>group-address</td>
<td>Clears a specific group.</td>
</tr>
</tbody>
</table>

- **Default**: no ip igmp static-oif
- **Configuration Mode**: Config
- **History**: 3.3.5200
- **Role**: admin

Example:
```
switch (config)# clear ip igmp groups all
switch (config)#
```

Related Commands: N/A

Note
debug ethernet ip igmp-l3

```
ddebug ethernet ip igmp-l3 {all | control-plane | data-path | fail-all | init-shut | management | memory | packet-dump | resources}
nm debug ethernet ip igmp-l3 {all | control-plane | data-path | fail-all | init-shut | management | memory | packet-dump | resources}
```

Configures the trace level for IGMP.
The no form of the command removes the trace level for IGMP.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>all</th>
<th>Enable track traces.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>control-plane</td>
<td>Control plane traces.</td>
</tr>
<tr>
<td></td>
<td>data-path</td>
<td>IP packet dump trace.</td>
</tr>
<tr>
<td></td>
<td>fail-all</td>
<td>All failures including Packet Validation Trace.</td>
</tr>
<tr>
<td></td>
<td>init-shut</td>
<td>Init and shutdown messages.</td>
</tr>
<tr>
<td></td>
<td>management</td>
<td>Management messages.</td>
</tr>
<tr>
<td></td>
<td>memory</td>
<td>Memory related messages.</td>
</tr>
<tr>
<td></td>
<td>packet-dump</td>
<td>Packet dump messages.</td>
</tr>
<tr>
<td></td>
<td>resources</td>
<td>OS Resource trace.</td>
</tr>
</tbody>
</table>

Default
N/A

Configuration Mode
Config

History
3.3.5200

Role
admin

Example
```
switch (config)# debug ethernet ip igmp-l3 all
```

Related Commands

Note
show ip igmp groups

show ip igmp groups [group] [vlan <vlan-id>]

Displays information about IGMP-attached group membership.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>Filters the output to a specific IP multicast group address.</td>
</tr>
<tr>
<td>vlan <vlan-id></td>
<td>Filters the output to a specific VLAN ID.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config)# show ip igmp groups
IGMP Connected Group Membership for VRF "default"
Type: S - Static, D - Dynamic, L - Local, T - SSM Translated

Group Address Type Interface Uptime Expires Last Reporter
225.7.6.0 S vlan19 [0d 00:12:12.14] [0d 00:00:00.00] 0.0.0.0
225.7.10.1 D vlan19 [0d 00:00:01.18] [0d 00:04:08.81] 19.19.19.1
225.7.7.7 S vlan19 [0d 00:12:12.15] [0d 00:00:00.00] 0.0.0.0
225.7.7.7 S vlan21 [0d 00:12:12.15] [0d 00:00:00.00] 0.0.0.0
```

Related Commands

N/A

Note
show ip igmp interface

show ip igmp interface [vlan <vlan-id> | brief]

Displays IGMP brief configuration and status.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>brief</th>
<th>Displays brief output information.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vlan <vlan-id></td>
<td>Filters the output to a specific VLAN ID.</td>
</tr>
</tbody>
</table>

Default
N/A

Configuration Mode
Any Command Mode

History

Role
admin
Example

switch(config)#show ip igmp interface
IGMP Interfaces for VRF "default"

VLANS
Interface status: protocol-down/admin-up/link-down
IP address: 5.5.5.49, IP Subnet: 5.5.5.0/24
Active Querier: 5.5.5.48
Membership count: 0
Route-queue depth: 0
IGMP Version: 2
IGMP query interval: 125 secs, configured value: 125 secs
IGMP max response time: 100 secs, configured value: 100 secs
IGMP startup query interval: 125 secs, configured value: 125 secs
IGMP startup query count: 2
IGMP group timeout: 350 secs, configured value: 350 secs
IGMP querier timeout: 350 secs configured value: 350 secs
IGMP last member mrt: 10 secs configured value: 10
IGMP robustness variable: 2
IGMP interface immediate leave: Disabled
IGMP interface statistics:
General (sent/received):
v1/v2-reports: 0/0
v2-queries: 3/1,v2-leaves: 0/0
v3-queries: 0/0,
v3-reports: 0/0

VLAN19
Interface status: protocol-up/admin-up/link-up
Active Querier: 19.19.19.49
Membership count: 3
Route-queue depth: 0
IGMP Version: 2
IGMP query interval: 125 secs, configured value: 125 secs
IGMP max response time: 10 secs, configured value: 10 secs
IGMP startup query interval: 125 secs, configured value: 125 secs
IGMP startup query count: 2
IGMP group timeout: 260 secs, configured value: 260 secs
IGMP querier timeout: 260 secs configured value: 260 secs
IGMP last member mrt: 10 secs configured value: 10
IGMP robustness variable: 2
IGMP interface immediate leave: Disabled
IGMP interface statistics:
General (sent/received):
v1/v2-reports: 0/5
v2-queries: 14/0,v2-leaves: 0/1
v3-queries: 0/0,
v3-reports: 0/0

Related Commands
N/A

Note
6.7 VRRP

The Virtual Router Redundancy Protocol (VRRP) is a computer networking protocol that provides for automatic assignment of available IP routers to participating hosts. This increases the availability and reliability of routing paths via automatic default gateway selections on an IP subnet.

The protocol achieves this by creating virtual routers, which are an abstract representation of multiple routers (that is, a master and backup routers, acting as a group). The default gateway of a participating host is assigned to the virtual router instead of a physical router. If the physical router that is routing packets on behalf of the virtual router fails, another physical router is selected to automatically replace it. The physical router that is forwarding packets at any given time is called the master router.

VRRP provides information on the state of a router, not the routes processed and exchanged by that router. Each VRRP instance is limited, in scope, to a single subnet. It does not advertise IP routes beyond that subnet or affect the routing table in any way.

Routers have a priority of between 1-255 and the router with the highest priority becomes the master. The configurable priority value ranges from 1-254, the router which owns the interface IP address as one of its associated IP addresses has the priority value 255. When a planned withdrawal of a master router is to take place, its priority can be lowered, which means a backup router will preempt the master router status rather than having to wait for the hold time to expire.

6.7.1 Load Balancing

To create load balancing between routers participating in the same VR, it is recommended to create 2 (or more) VRs. Each router will be a master in one of the VRs, and a backup to the other VR(s). A group of hosts should be configured with Router 1’s virtual address as the default gateway, while the second group should be configured with Router 2’s virtual address.

Figure 31: Common VRRP Configuration with Load Balancing

```plaintext
VR 100: 10.10.10.11
VR 200: 10.10.10.12
```

Master VR 100
Backup VR 200

Router 1
Backup VR 100
Master VR 200

L2 switch

Vlan 10

Group A
Default GW
10.10.10.11

Group B
Default GW
10.10.10.12
6.7.2 Configuring VRRP

To configure VRRP:

Precondition steps:

Step 1. Enable IP routing functionality. Run:

```bash
switch (config)# ip routing
```

Step 2. Enable the desired VLAN. Run:

```bash
switch (config)# vlan 20
```

The VLAN cannot be the same one configured for the MLAG IPL, if MLAG is used.

Step 3. Add this VLAN to the desired interface. Run:

```bash
switch (config)# interface ethernet 1/1
switch (config ethernet 1/1)# switchport access vlan 20
```

Step 4. Create a VLAN interface. Run:

```bash
switch (config)# interface vlan 20
```

Step 5. Apply IP address to the VLAN interface.

On one of the switches, run:

```bash
switch (config interface vlan 20)# ip address 20.20.20.20 /24
```

On the other switch, run:

```bash
switch (config interface vlan 20)# ip address 20.20.20.30 /24
```

Step 6. Enable the interface. Run:

```bash
switch (config interface vlan 20)# no shutdown
```

Configure VRRP:

This is the same configuration on both switches

Step 1. Enable VRRP protocol globally. Run:

```bash
switch (config)# protocol vrrp
```

Step 2. Create a virtual router group for an IP interface. Up to 255 VRRP IDs are supported. Run:

```bash
switch (config interface vlan 20)# vrrp 100
```

Step 3. Set the VIP address. Run:

```bash
switch (config interface vlan 20 vrrp 100)# address 20.20.20.40
```

Step 4. Influence the election of the master in the VR cluster make sure that the priority of the desired master is the highest. Note that the higher IP address is selected in case the priority of the routers in the VR are the same. Select the priority. Run:

```bash
switch (config interface vlan 20 vrrp 100)# priority 200
```
Step 5. The advertisement interval should be the same for all the routers within the VR. Modify the interval. Run:

```
switch (config interface vlan 20 vrrp 100)# advertisement-interval 2
```

Step 6. The authentication text should be the same for all the routers within the VR. Configure the authentication text. Run:

```
switch (config interface vlan 20 vrrp 100)# authentication text my-password
```

Step 7. Use the `preempt` command to enable a high-priority backup virtual router to preempt the low-priority master virtual router. Run:

```
switch (config interface vlan 20 vrrp 100)# preempt
```

Step 8. Disable VRRP. Run:

```
switch (config interface vlan 20 vrrp 100)# shutdown
```

The configuration will not be deleted, only the VRRP state machine will be stopped.

6.7.3 Verifying VRRP

Step 1. Display VRRP brief status. Run:

```
switch(config)# show vrrp
Interface   VR  Pri  Time   Pre   State VR   IP addr
-----------------------------------------------
Vlan20      1   200  2s     Y     Init       20.20.20.20
... switch(config)#
```

Step 2. Display VRRP detailed status. Run:

```
switch (config)# show vrrp detail

VRRP Admin State : Enabled

Vlan20 - Group 1 (IPV4)

Instance Admin State : Enabled
State : Backup
Virtual IP Address : 20.20.20.40
Priority : 200
Advertisement interval (sec) : 2
Preemption : Enabled
Virtual MAC address : AA:BB:CC:DD:EE:FF
switch (config)#
```
Step 3. Display VRRP statistic counters. Run:

```
switch (config)# show vrrp statistics
Ethernet1/5 - Group 1 (IPV4)
  Invalid packets: 0
  Too short: 0
  Transitions to Master 6
  Total received: 155
  Bad TTL: 0
  Failed authentication: 0
  Unknown authentication: 0
  Conflicting authentication: 0
  Conflicting Advertise time: 0
  Conflicting Addresses: 0
  Received with zero priority: 3
  Sent with zero priority: 3
switch (config)#
```
6.7.4 Commands

protocol vrrp

```plaintext
protocol vrrp
no protocol vrrp
```

Enables VRRP globally and unhides VRRP related commands. The no form of the command deletes all the VRRP configuration and hides VRRP related commands.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>no feature vrrp</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td><code>switch (config)# protocol vrrp</code></td>
</tr>
<tr>
<td>Related Commands</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
vrrp

vrrp <number>
no vrrp <number>

Creates a virtual router group on this interface and enters a new configuration mode. The no form of the command deletes the VRRP instance and the related configuration.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>number</th>
<th>A VRRP instance number. Range is 1-255.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface VLAN</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.4500</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>

Example

```sh
switch (config interface vlan 10)#
switch (config interface vlan 10 vrrp 10)#
```

Related Commands

Note

Maximum of 10 VRRP instances are supported.
address

address <ip-address> [secondary]
no address [<ip-address> [secondary]]

Sets virtual router IP address (primary and secondary).
The no form of the command deletes the IP address from the VRRP interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ip-address</th>
<th>The virtual IP address.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>secondary</td>
<td>A secondary IP address for the virtual router.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config VRRP Interface</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

switch (config vrrp 100)# address 10.10.10.10
switch (config vrrp 100)# address 10.10.10.11 secondary
switch (config vrrp 100)# address 10.10.10.12 secondary

Related Commands

Note

- This command is the enabler of the protocol. Therefore, set all the protocol parameters initially and only then set the ip-address.
- There are up to 10 IP addresses associated with the VRRP instance. One primary and up to 10 secondary ip-addresses.
- If the configured IP address is the same as the interface IP address, this switch automatically owns the IP address (priority 255).
shutdown

shutdown
no shutdown

Disables the virtual router.
The no form of the command enables the virtual router (stops the VRRP state machine).

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Enabled (no shutdown)</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config VRRP Interface</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config vrrp 100)# shutdown</td>
</tr>
<tr>
<td>Related Commands</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
priority

priority <level>
no priority

Sets the priority of the virtual router.
The no form of the command resets the priority to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>level</td>
<td>The virtual router priority level. Range is 1-254.</td>
</tr>
</tbody>
</table>

| Default | 100 |

<table>
<thead>
<tr>
<th>Configuration Mode</th>
<th>Config VRRP Interface</th>
</tr>
</thead>
</table>

| History | 3.3.4500 |

| Role | admin |

| Example | switch (config vrrp 100)# priority 200 |

| Related Commands |

<table>
<thead>
<tr>
<th>Note</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• The higher IP address will be selected as master, in case the priority of the routers in the VR are the same.</td>
<td></td>
</tr>
<tr>
<td>• To influence the election of the master in the VR cluster make sure that the priority of the desired master is the higher.</td>
<td></td>
</tr>
</tbody>
</table>
preempt

preempt
no preempt

Sets virtual router preemption mode. The no form of the command disables the virtual router preemption.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Enabled (preempt)</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config VRRP Interface</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config vrrp 100)# preempt</td>
</tr>
<tr>
<td>Related Commands</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>To set this router as backup for the current virtual router master, preempt must be enabled.</td>
</tr>
</tbody>
</table>
authentication text

authentication text <password>
no authentication text

Sets virtual router authentication password and enables authentication. The no form of the command disables the authentication mechanism.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>password</td>
<td>The virtual router authentication password. The password string must be up to 8 alphanumeric characters.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Config VRRP Interface</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config vrrp 100)# authentication text mypassword</td>
</tr>
</tbody>
</table>

Related Commands

Note
advertisement-interval

advertisement-interval <seconds>
no advertisement-interval

Sets the virtual router advertisement-interval.
The no form of the command resets the parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>seconds</th>
<th>The virtual router advertisement-interval in seconds. Range: 1-255.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config VRRP Interface</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.4500</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config vrrp 100)# advertisement-interval 10</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show vrrp

```
show vrrp [interface <type> <number>] [vr <id>]
```

Displays VRRP brief configuration and status.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface <type> <number></td>
<td>Filters the output to a specific interface type and number.</td>
</tr>
<tr>
<td>vr <id></td>
<td>Filters the output to a specific virtual router. Range: 1-10.</td>
</tr>
</tbody>
</table>

Default
N/A

Configuration Mode
Any Command Mode

History
3.3.4500

Role
admin

Example
```
switch(config)# show vrrp
Interface  VR Pri Time  Pre  State VR  IP addr
------------------------------------------------------
Eth1/5     1  200  2s   Y    Init      192.0.1.10
...
```

Related Commands

Note
show vrrp detail

show vrrp detail [interface <type> <number>] [vr <id>]

Displays detailed VRRP configuration and status.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface <type> <number></td>
<td>Filters the output to a specific interface type and number.</td>
</tr>
<tr>
<td>vr <id></td>
<td>Filters the output to a specific virtual router. Range: 1-255.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```plaintext
switch (config)# show vrrp detail

VRRP Admin State : Enabled

Vlan20 - Group 1 (IPV4)

Instance Admin State : Enabled
State : Backup
Virtual IP Address : 20.20.20.40
Priority : 200
Advertisement interval (sec) : 2
Preemption : Enabled
Virtual MAC address : AA:BB:CC:DD:EE:FF
switch (config)#
```

Related Commands

Note
show vrrp statistics

show vrrp statistics [interface <type <number>>] [vr <id>]

Displays VRRP counters.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface <type> <number></td>
<td>Filters the output to a specific interface type and number.</td>
</tr>
<tr>
<td>vr <id></td>
<td>Filters the output to a specific virtual router. Range: 1-255.</td>
</tr>
</tbody>
</table>

Default: N/A

Configuration Mode: Any Command Mode

History: 3.3.4500

Role: admin

Example:

```
switch (config)# show vrrp statistics
Ethernet1/5 - Group 1 (IPV4)
Invalid packets:              0
Too short:                    0
Transitions to Master         6
Total received:               155
Bad TTL:                      0
Failed authentication:        0
Unknown authentication:       0
Conflicting authentication:   0
Conflicting Advertise time:   0
Conflicting Addresses:        0
Received with zero priority:  3
Sent with zero priority:      3
```

Related Commands

Note
6.8 MAGP

Multi-active gateway protocol (MAGP) is aimed to solve the default gateway problem when a host is connected to a set of switch routers (SRs) via MLAG.

The network functionality in that case requires that each SR is an active default gateway router to the host, thus reducing hops between the SRs and directly forwarding IP traffic to the L3 cloud regardless which SR traffic comes through.

Designated traffic, such as ping to the MAGP interface is not supported. One of the two switches will be able to ping, so a ping from one switch can be done.

6.8.1 MAGP Configuration

Prerequisite steps:

- **Step 1.** Enable IP routing functionality. Run:
  ```
  switch (config)# ip routing
  ```

- **Step 2.** Enable the desired VLAN. Run:
  ```
  switch (config)# vlan 20
  switch (config vlan 20)#
  ```

 The VLAN cannot be the same one configured for the MLAG IPL, if MLAG is used.

- **Step 3.** Add this VLAN to the desired interface. Run:
  ```
  switch (config)# interface ethernet 1/1
  switch (config interface ethernet 1/1)# switchport access vlan 20
  ```

- **Step 4.** Create a VLAN interface. Run:
  ```
  switch (config)# interface vlan 20
  switch (config interface vlan 20)#
  ```

- **Step 5.** Set an IP address to the VLAN interface. Run:
  ```
  switch (config interface vlan 20)# ip address 11.11.11.11 /8
  ```

- **Step 6.** Enable the interface. Run:
  ```
  switch (config interface vlan 20)# no shutdown
  ```

➢ **To configure MAGP:**

- **Step 1.** Enable MAGP protocol globally. Run:
  ```
  switch (config)# protocol magp
  ```

- **Step 2.** Create a virtual router group for an IP interface. Run:
  ```
  switch (config interface vlan 20)# magp 100
  ```
Step 3. Set a virtual router primary IP address. Run:

```
switch (config interface vlan 20 magp 100)# ip virtual-router address 11.11.11.254
```

The IP address must be in the same subnet of the VLAN interface. This IP address is the default gateway for this MAGP instance. This should become the default gateway configured on the hosts connected to the relevant MLAG.

Step 4. Set a virtual router primary MAC address. Run:

```
switch (config interface vlan 20 magp 100)# ip virtual-router mac-address AA:BB:CC:DD:EE:FF
```

To verify the MAGP configuration, run:

```
switch (config)# show magp 1
MAGP 1
  Interface vlan:1
  MAGP state:Master
  MAGP virtual IP: 11.11.11.254
switch (config)#
```

This output is to be expected in both MAGP switches.
6.8.2 Commands

protocol magp

```
protocol magp
no protocol magp
```

Enables MAGP globally and unhides MAGP commands. The no form of the command deletes all the MAGP configuration and hides MAGP commands.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config)# protocol magp
| | switch (config)# |
| Related Commands | |
| Note | IP routing must be enabled to enable MAGP. |
magp

magp<instance>

no magp<instance>

Creates an MAGP instance on this interface and enters a new configuration mode. The no form of the command deletes the MAGP instance.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
<th>Default</th>
<th>Configuration Mode</th>
<th>History</th>
<th>Role</th>
<th>Example</th>
<th>Related Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>instance</td>
<td>MAGP instance number. Range: 1-255.</td>
<td>Disabled</td>
<td>Config Interface VLAN</td>
<td>3.3.4500</td>
<td>admin</td>
<td>switch (config interface vlan 10)# magp 1
switch (config interface vlan 10 magp 1)#</td>
<td>- Only one MAGP instance can be created on an interface
- Different interfaces cannot share an MAGP instance
- MAGP and VRRP are mutually exclusive</td>
</tr>
</tbody>
</table>
shutdown

shutdown

no shutdown

Enables MAGP instance.
The no form of the command disables the MAGP instance.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface VLAN MAGP</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4500</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config interface vlan 10 magp 1)# protocol magp
switch (config interface vlan 10 magp 1)# |

Related Commands

Note
ip virtual-router address

```
ip virtual-router address <ip-address>
no ip virtual-router address
```

Sets MAGP virtual IP address.
The no form of the command resets this parameter to its default.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ip-address</th>
<th>The virtual router IP address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config Interface VLAN MAGP</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.4500</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>switch (config interface vlan 10 magp 1)# ip virtual-router address 10.10.10.10
switch (config interface vlan 10 magp 1)#</td>
<td></td>
</tr>
<tr>
<td>Related Commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>The MAGP virtual IP address must be different from the interface IP address</td>
<td></td>
</tr>
</tbody>
</table>
ip virtual-router mac-address

```
ip virtual-router mac-address <mac-address>
no ip virtual-router mac-address
```

Sets MAGP virtual MAC address.
The no form of the command resets the MAC address to its default.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
</table>

Default

00:00:5E:00:01-<magp instance>

Configuration Mode

Config Interface VLAN MAGP

History

3.3.4500

Role

admin

Example

```
switch (config interface vlan 10 magp 1)# ip virtual-router mac-address AA:BB:CC:DD:EE:FF
switch (config interface vlan 10 magp 1)#
```

Related Commands

<table>
<thead>
<tr>
<th>Related Commands</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
</table>
show magp

show magp [<instance> | interface vlan <id>]

Displays the configuration of a specific MAGP instance.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>instance</td>
<td>MAGP instance number. Range: 1-255.</td>
</tr>
</tbody>
</table>

Default

N/A

Configuration Mode

Any Command Mode

History

3.3.4500

Role

admin

Example

```
switch (config)# show magp 3
    Magp instance id: 3
    Interface : vlan 10
    Magp state: Active
    Magp virtual ip : 192.168.1.1
    Magp virtual MAC : 00:11:22:22:44:55
switch (config)#
```

Related Commands

- []

Note

- []
6.9 DHCP Relay

DHCP Relay is not supported on SX10xx-xxxR and SX60xx-xxxR systems.

Since Dynamic Host Configuration Protocol must work correctly even before DHCP clients have been configured, the DHCP server and DHCP client need to be connected to the same network. In larger networks, this is not always practical because each network link contains one or more DHCP relay agents. These DHCP relay agents receive messages from DHCP clients and forward them to DHCP servers thus extending the reach of the DHCP beyond the local network.
6.9.1 Commands

ip dhcp relay address

```
ip dhcp relay address <ip-address>
no ip dhcp relay address <ip-address>
```

Configures IP address of the DHCP server to forward DHCP requests. The no form of the command deletes the DHCP server IP address.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ip-address</th>
<th>Valid IP unicast address of DHCP server.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3.3.4150</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
<td></td>
</tr>
</tbody>
</table>
| Example | switch (config)# ip dhcp relay address 10.10.10.10
switch (config)# | |
| Related Commands | N/A | |
| Note | • Up to 16 IP addresses may be configured
• To enable DHCP relay, at least one IP address should be configured, or always-on parameter should be turned on using the command “ip dhcp relay always-on” |
ip dhcp relay information option

ip dhcp relay information option
no ip dhcp relay information option

Enables the DHCP relay agent to insert option 82 info on the packets. The no form of the command removes option 82 from the packets.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4150</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config)# ip dhcp relay information option
 | switch (config)# |
| Related Commands | N/A |
| Note | |
ip dhcp relay always-on

```bash
ip dhcp relay always-on
no ip dhcp relay always-on
```

Broadcasts DHCP requests to all interfaces with the DHCP relay agent.
The no form of the command disables the “always-on” mode.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4150</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config)# ip dhcp relay always-on
| | switch (config)# |
| Related Commands | N/A |
| Note | • In order to enable DHCP relay, at least one IP address should be configured, or always-on parameter should be turned on using the command “ip dhcp relay always-on”
| | • When DHCP servers are configured, requests are forwarded only to configured servers |
clear ip dhcp relay counters

clear ip dhcp relay counters

Clears all DHCP relay counters (all interfaces).

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Config</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4150</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
<tr>
<td>Example</td>
<td>switch (config)# clear ip dhcp relay counters \nswitch (config)#</td>
</tr>
<tr>
<td>Related Commands</td>
<td>N/A</td>
</tr>
<tr>
<td>Note</td>
<td>• In order to enable DHCP relay, at least one IP address should be configured, or always-on parameter should be turned on using the command “ip dhcp relay always-on” \n• When DHCP servers are configured, requests are forwarded only to configured servers</td>
</tr>
</tbody>
</table>
6.9.1.1 Interface

ip dhcp relay information option circuit-id

```
ip dhcp relay information option circuit-id <label>
no ip dhcp relay information option circuit-id
```

Specifies the content of tags that the switch attaches to DHCP requests before they are forwarded.
The no form of the command removes the label assigned.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>label</td>
<td>Specifies the label attached to packets. The string may be up to 15 characters.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>The label is taken from the IP interface name (e.g. “vlan1”)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config Interface VLAN</td>
</tr>
<tr>
<td>Config Interface Ethernet configured as a router port</td>
</tr>
<tr>
<td>Config Interface Port Channel configured as a router port</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.4150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
</tr>
</tbody>
</table>

Example

```
switch (config interface vlan 10)# ip dhcp relay information options
circuit-id my-label
switch (config interface vlan 10)#
```

<table>
<thead>
<tr>
<th>Related Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
</tr>
</tbody>
</table>

Note

Mellanox Technologies Confidential
clear ip dhcp relay counters

```
clear ip dhcp relay counters
no ip dhcp relay counters
```

Clears all DHCP relay counters on the interface.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
</tbody>
</table>
| Configuration Mode | Config Interface VLAN
| | Config Interface Ethernet configured as a router port
| | Config Interface Port Channel configured as a router port |
| History | 3.3.4150 |
| Role | admin |
| Example | switch (config interface vlan 10)# clear ip dhcp relay counters
| | switch (config interface vlan 10)# |
| Related Commands | N/A |
| Note | |
6.9.1.2 Show

show ip dhcp relay

Displays DHCP relay configuration and status.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4150</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | switch (config)# show ip dhcp relay
DHCP servers: 172.22.22.11, 172.33.33.33, ... (or N/A)
DHCP clients requests are processed on all interfaces
DHCP server responses are processed on all interfaces
DHCP relay agent information option is {enabled, disabled}
DHCP relay agent always-on is {enabled, disabled}
Interface Label
--------- --------
Vlan10 my-label
switch (config)# |

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
</table>
show ip dhcp relay counters

show ip dhcp relay counters

Displays the DHCP relay counters.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td>Any Command Mode</td>
</tr>
<tr>
<td>History</td>
<td>3.3.4150</td>
</tr>
<tr>
<td>Role</td>
<td>admin</td>
</tr>
</tbody>
</table>
| Example | `switch (config)#show ip dhcp relay counters`

```
Interface Received Forwarded Dropped
--------- -------- -------- -----
All Req     376     376     0    
All Resp    277     277     0    
```

```
Interface Received Forwarded Dropped Last cleared
--------- -------- -------- ------------
vlan1000   1000   1000     0     <Date>
vlan1020   2000   2000     0     <Date>
```

// `<Date>` == `<DD-MM-YY, Hour-Minutes-Seconds>` - something like: "20-07-13, 22:34:36"

`switch (config)#`

Related Commands

N/A

Note
Appendix A: Enhancing System Security According to NIST SP 800-131A

A.1 Overview

This appendix describes how to enhance the security of a system in order to comply with the NIST SP 800-131A standard. This standard is a document which defines cryptographically “acceptable” technologies. This document explains how to protect against possible cryptographic vulnerabilities in the system by using secure methods. Because of compatibility issues, this security state is not the default of the system and it should be manually set.

Some protocols, however, cannot be operated in a manner that complies with the NIST SP 800-131A standard.

A.2 Web Certificate

Mellanox supports signature generation of sha256WithRSAEncryption, sha1WithRSAEncryption self-signed certificates, and importing certificates as text in PEM format.

➢ To configure a default certificate:

Step 1. Create a new sha256 certificate. Run:

```
switch (config) # crypto certificate name <cert name> generate self-signed hash-algorithm sha256
```

For more details and parameters refer to the command crypto certificate name in the MLNX-OS User Manual.

Step 2. Show crypto certificate detail. Run:

```
switch (config) # show crypto certificate detail
```

Search for “signature algorithm” in the output.

Step 3. Set this certificate as the default certificate. Run:

```
switch (config) # crypto certificate default-cert name <cert name>
```

➢ To configure default parameters and create a new certificate:

Step 1. Define the default hash algorithm. Run:

```
switch (config) # crypto certificate generation default hash-algorithm sha256
```

Step 2. Generate a new certificate with default values. Run:

```
switch (config) # crypto certificate name <cert name> generate self-signed
```
To test strict mode connect to the WebUI using HTTPS and get the certificate. Search for “signature algorithm”.

There are other ways to configure the certificate to sha256. For example, it is possible to use `certificate generation default hash-algorithm` and then regenerate the certificate using these default values. Please refer to the MLNX-OS User Manual for further details.

It is recommended to delete browsing data and previous certificates before retrying to connect to the WebUI.

Make sure not to confuse “signature algorithm” with “Thumbprint algorithm”.

A.3 Code Signing

Code signing is used to verify that the data in the image is not modified by any third-party. MLNX-OS supports signing the image files with SHA256, RSA2048 using GnuPG.

Strict mode is operational by default.

A.4 SNMP

SNMPv3 supports configuring username, authentication keys and privacy keys. For authentication keys it is possible to use MD5 or SHA. For privacy keys AES or DES are to be used.

- **To configure strict mode, create a new user with HMAC-SHA1-96 and AES-128. Run:**

  ```
  switch (config) # snmp-server user <username> v3 auth sha <password1> priv aes-128 <password2>
  ```

- **To verify the user in the CLI, run:**

  ```
  switch (config) # show snmp user
  ```

To test strict mode, configure users and check them using the CLI, then run an SNMP request with the new users.

For more information please refer to the MLNX-OS User Manual.
A.5 SSH

The SSH server on the switch by default uses secure and unsecure ciphers, message authentication code (MAC), key exchange methods, and public key algorithm. When configuring SSH server to strict mode, the aforementioned security methods only use approved algorithms as detailed in the NIST 800-181A specification and the user can connect to the switch via SSH in strict mode only.

➢ To enable strict security mode, run:

```
switch (config) # ssh server security strict
```

The no form of the command disables strict security mode.

Make sure to configure the SSH server to work with minimum version 2 since 1 is vulnerable to security breaches.

➢ To configure min-version to strict mode, run:

```
switch (config) # ssh server min-version 2
```

Once this is done, the user cannot revert back to minimum version 1.

A.6 HTTPS

By default, Mellanox switch supports HTTPS encryption using TLS1.0 up to TLS1.2. To work in strict mode you must configure the system to use TLS1.2. Working in TLS1.2 mode also bans MD5 ciphers which are not allowed per NIST 800-131a. In strict mode, the switch supports encryption with TLS1.2 only with the following supported ciphers:

- RSA_WITH_AES_128_CBC_SHA256
- RSA_WITH_AES_256_CBC_SHA256
- DHE_RSA_WITH_AES_128_CBC_SHA256
- DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

➢ To enable all encryption methods, run:

```
switch (config) # web https ssl ciphers all
```

➢ To enable only TLS ciphers (enabled by default), run:

```
switch (config) # web https ssl ciphers TLS
```

SNMPv1 and SNMPv2 are not considered to be secure. To run in strict mode, only use SNMPv3.
To enable HTTPS strict mode, run:

```
switch (config) # web https ssl ciphers TLS1.2
```

To verify which encryption methods are used, run:

```
switch (config)# show web
Web User Interface:
    Web interface enabled: yes
    HTTP enabled: yes
    HTTP port: 80
    HTTP redirect to HTTPS: no
    HTTPS enabled: yes
    HTTPS port: 443
HTTPS ssl-ciphers: TLS1.2
    HTTPS certificate name: default-cert
    Listen enabled: yes
    No Listen Interfaces.
    Inactivity timeout: disabled
    Session timeout: 2 hr 30 min
    Session renewal: 30 min
Web file transfer proxy:
    Proxy enabled: no
Web file transfer certificate authority:
    HTTPS server cert verify: yes
    HTTPS supplemental CA list: default-ca-list
```

On top of enabling HTTPS, to prevent security breaches HTTP must be disabled.

To disable HTTP, run:

```
switch (config)# no web http enable
```

A.7 LDAP

By default, Mellanox switch supports LDAP encryption SSL version 3 or TLS1.0 up to TLS1.2. The only banned algorithm is MD5 which is not allowed per NIST 800-131a. In strict mode, the switch supports encryption with TLS1.2 only with the following supported ciphers:

- DHE-DSS-AES128-SHA256
- DHE-RSA-AES128-SHA256
- DHE-DSS-AES128-GCM-SHA256
- DHE-RSA-AES128-GCM-SHA256
- DHE-DSS-AES256-SHA256
- DHE-RSA-AES256-SHA256
- DHE-DSS-AES256-GCM-SHA384
- DHE-RSA-AES256-GCM-SHA384
- ECDH-ECDSA-AES128-SHA256
• ECDH-RSA-AES128-SHA256
• ECDH-ECDSA-AES128-GCM-SHA256
• ECDH-RSA-AES128-GCM-SHA256
• ECDH-ECDSA-AES256-SHA384
• ECDH-RSA-AES256-SHA384
• ECDH-ECDSA-AES256-GCM-SHA384
• ECDH-RSA-AES256-GCM-SHA384
• ECDHE-ECDSA-AES128-SHA256
• ECDHE-RSA-AES128-SHA256
• ECDHE-ECDSA-AES128-GCM-SHA256
• ECDHE-RSA-AES128-GCM-SHA256
• ECDHE-ECDSA-AES256-SHA384
• ECDHE-RSA-AES256-SHA384
• ECDHE-ECDSA-AES256-GCM-SHA384
• ECDHE-RSA-AES256-GCM-SHA384
• AES128-SHA256
• AES128-GCM-SHA256
• AES256-SHA384
• AES256-GCM-SHA384

➢ To enable LDAP strict mode, run:

```
switch (config) # ldap ssl mode {start-tls | ssl}
```

Both modes operate using SSL. The different lies in the connection initialization and the port used.

➢ To enable all encryption methods (enabled by default), run:

```
switch (config) # ldap ssl ciphers TLS1.2
```

➢ To verify which encryption methods are used, run:

```
switch (config)# show ldap
User base DN : ou=People,dc=test,dc=com
User search scope : subtree
Login attribute : uid
Bind DN : cn=manager,dc=test,dc=com
Bind password : ********
Group base DN :
Group attribute : member
LDAP version : 3
Referrals : yes
Server port : 389 (not active)
Search Timeout : 5
```
A.8 Password Hashing

To compile with NIST 800-131a, Mellanox switches support password encryption with SHA512 algorithm.

➢ To see the password encryption used, run:

```
switch (config)# show usernames
USERNAME FULL NAME CAPABILITY ACCOUNT STATUS
admin System Administrator admin No password required for login
monitor System Monitor monitor Password set (SHA512)
xmladmin XML Admin User admin No password required for login
xmluser XML Monitor User monitor No password required for login
```

Using default usernames and passwords or using usernames without passwords is highly not recommended.

When moving to strict mode, the password of each user must be reconfigured to a non-default value using the CLI command `username`.

For example, if you have a user ID “myuser” whose password is hashed with MD5, this user must be recreated manually using the command “username myuser password mypassword”. The password then is automatically hashed using SHA512.

The following output demonstrates the example above:

```
switch (config)# show usernames
USERNAME FULL NAME CAPABILITY ACCOUNT STATUS
admin System Administrator admin No password required for login
myuser System Monitor monitor Password set (MD5)
switch (config)# username myuser password mypassword
switch (config)# show usernames
USERNAME FULL NAME CAPABILITY ACCOUNT STATUS
admin System Administrator admin No password required for login
myuser System Monitor monitor Password set (SHA512)
```
Appendix B: Security Vulnerabilities and Exposures

Table 26 presents the status of common vulnerabilities and security exposures that may affect MLNX-OS.

Table 26 - Common Vulnerabilities and Exposures

<table>
<thead>
<tr>
<th>CVE</th>
<th>Vulnerability</th>
<th>Description</th>
<th>Fixed in Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE-1999-0517</td>
<td>Not vulnerable</td>
<td>An SNMP community name is the default (e.g. public), null, or missing.</td>
<td>3.4.0000</td>
</tr>
<tr>
<td>CVE-2006-0175</td>
<td>Not vulnerable</td>
<td>Directory traversal vulnerability in scp for OpenSSH before 3.4p1 allows remote malicious servers to overwrite arbitrary files. NOTE: this may be a rediscovery of CVE-2000-0992.</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>CVE-2006-1653</td>
<td>N/A</td>
<td>The default configuration for OpenSSH enables AllowTcpForwarding, which could allow remote authenticated users to perform a port bounce, when configured with an anonymous access program such as AnonCVS.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2006-2760</td>
<td>N/A</td>
<td>sshd in OpenSSH 3.5p1, when PermitRootLogin is disabled, immediately closes the TCP connection after a root login attempt with the correct password, but leaves the connection open after an attempt with an incorrect password, which makes it easier for remote attackers to guess the password by observing the connection state, a different vulnerability than CVE-2003-0190. NOTE: it could be argued that in most environments, this does not cross privilege boundaries without requiring leverage of a separate vulnerability.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2005-2797</td>
<td>N/A</td>
<td>OpenSSH 4.0, and other versions before 4.2, does not properly handle dynamic port forwarding ("-D" option) when a listen address is not provided, which may cause OpenSSH to enable the GatewayPorts functionality.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2005-2798</td>
<td>Not vulnerable</td>
<td>sshd in OpenSSH before 4.2, when GSSAPIDelegateCredentials is enabled, allows GSSAPI credentials to be delegated to clients who log in using non-GSSAPI methods, which could cause those credentials to be exposed to untrusted users or hosts.</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>CVE-2006-0225</td>
<td>N/A</td>
<td>scp in OpenSSH 4.2p1 allows attackers to execute arbitrary commands via filenames that contain shell metacharacters or spaces, which are expanded twice.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2006-4924</td>
<td>Not vulnerable</td>
<td>sshd in OpenSSH before 4.4, when using the version 1 SSH protocol, allows remote attackers to cause a denial of service (CPU consumption) via an SSH packet that contains duplicate blocks, which is not properly handled by the CRC compensation attack detector.</td>
<td>3.4.0000</td>
</tr>
</tbody>
</table>
Table 26 - Common Vulnerabilities and Exposures

<table>
<thead>
<tr>
<th>CVE</th>
<th>Vulnerability¹</th>
<th>Description</th>
<th>Fixed in Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE-2006-4925</td>
<td>N/A</td>
<td>packet.c in ssh in OpenSSH allows remote attackers to cause a denial of service (crash) by sending an invalid protocol sequence with USERAUTH_SUCCESS before NEWKEYS, which causes newkeys[mode] to be NULL.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2006-5051</td>
<td>N/A</td>
<td>Signal handler race condition in OpenSSH before 4.4 allows remote attackers to cause a denial of service (crash), and possibly execute arbitrary code if GSSAPI authentication is enabled, via unspecified vectors that lead to a double-free.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2006-5052</td>
<td>N/A</td>
<td>Unspecified vulnerability in portable OpenSSH before 4.4, when running on some platforms, allows remote attackers to determine the validity of usernames via unknown vectors involving a GSSAPI "authentication abort."</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2006-5229</td>
<td>N/A</td>
<td>OpenSSH portable 4.1 on SUSE Linux, and possibly other platforms and versions, and possibly under limited configurations, allows remote attackers to determine valid usernames via timing discrepancies in which responses take longer for valid usernames than invalid ones, as demonstrated by sshtime. NOTE: as of 20061014, it appears that this issue is dependent on the use of manually-set passwords that causes delays when processing /etc/shadow due to an increased number of rounds.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2006-5794</td>
<td>Not vulnerable</td>
<td>Unspecified vulnerability in the sshd Privilege Separation Monitor in OpenSSH before 4.5 causes weaker verification that authentication has been successful, which might allow attackers to bypass authentication. NOTE: as of 20061108, it is believed that this issue is only exploitable by leveraging vulnerabilities in the unprivileged process, which are not known to exist.</td>
<td>3.4.0000</td>
</tr>
<tr>
<td>CVE-2007-0726</td>
<td>N/A</td>
<td>The SSH key generation process in OpenSSH in Apple Mac OS X 10.3.9 and 10.4 through 10.4.8 allows remote attackers to cause a denial of service by connecting to the server before SSH has finished creating keys, which causes the keys to be regenerated and can break trust relationships that were based on the original keys.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2007-2243</td>
<td>N/A</td>
<td>OpenSSH 4.6 and earlier, when ChallengeResponseAuthentication is enabled, allows remote attackers to determine the existence of user accounts by attempting to authenticate via S/KEY, which displays a different response if the user account exists, a similar issue to CVE-2001-1483.</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Table 26 - Common Vulnerabilities and Exposures

<table>
<thead>
<tr>
<th>CVE</th>
<th>Vulnerability</th>
<th>Description</th>
<th>Fixed in Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE-2007-2768</td>
<td>N/A</td>
<td>OpenSSH, when using OPIE (One-Time Passwords in Everything) for PAM, allows remote attackers to determine the existence of certain user accounts, which displays a different response if the user account exists and is configured to use one-time passwords (OTP), a similar issue to CVE-2007-2243.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2007-3102</td>
<td>N/A</td>
<td>Unspecified vulnerability in the linux_audit_record_event function in OpenSSH 4.3p2, as used on Fedora Core 6 and possibly other systems, allows remote attackers to write arbitrary characters to an audit log via a crafted username. NOTE: some of these details are obtained from third party information.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2007-4654</td>
<td>N/A</td>
<td>Unspecified vulnerability in SSHield 1.6.1 with OpenSSH 3.0.2p1 on Cisco WebNS 8.20.0.1 on Cisco Content Services Switch (CSS) series 11000 devices allows remote attackers to cause a denial of service (connection slot exhaustion and device crash) via a series of large packets designed to exploit the SSH CRC32 attack detection overflow (CVE-2001-0144), possibly a related issue to CVE-2002-1024.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2007-4752</td>
<td>Not vulnerable</td>
<td>ssh in OpenSSH before 4.7 does not properly handle when an untrusted cookie cannot be created and uses a trusted X11 cookie instead, which allows attackers to violate intended policy and gain privileges by causing an X client to be treated as trusted.</td>
<td>3.4.0000</td>
</tr>
<tr>
<td>CVE-2007-5715</td>
<td>N/A</td>
<td>DenyHosts 2.6 processes OpenSSH sshd "not listed in AllowUsers" log messages with an incorrect regular expression that does not match an IP address, which might allow remote attackers to avoid detection and blocking when making invalid login attempts with a username not present in AllowUsers, as demonstrated by the root username, a different vulnerability than CVE-2007-4323.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2007-6415</td>
<td>N/A</td>
<td>scponly 4.6 and earlier allows remote authenticated users to bypass intended restrictions and execute arbitrary code by invoking scp, as implemented by OpenSSH, with the -F and -o options.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2008-1483</td>
<td>Not vulnerable</td>
<td>OpenSSH 4.3p2, and probably other versions, allows local users to hijack forwarded X connections by causing ssh to set DISPLAY to :10, even when another process is listening on the associated port, as demonstrated by opening TCP port 6010 (IPv4) and sniffing a cookie sent by Emacs.</td>
<td>3.4.0000</td>
</tr>
<tr>
<td>CVE-2008-1657</td>
<td>N/A</td>
<td>OpenSSH 4.4 up to versions before 4.9 allows remote authenticated users to bypass the sshd_config ForceCommand directive by modifying the .ssh/rc session file.</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Table 26 - Common Vulnerabilities and Exposures

<table>
<thead>
<tr>
<th>CVE</th>
<th>Vulnerability</th>
<th>Description</th>
<th>Fixed in Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE-2008-3234</td>
<td>Only affects OpenSSH version 4.x. MLNX-OS uses 3.8.1p1.</td>
<td>sshd in OpenSSH 4 on Debian GNU/Linux, and the 20070303 OpenSSH snapshot, allows remote authenticated users to obtain access to arbitrary SELinux roles by appending a «/» (colon slash) sequence, followed by the role name, to the username.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2008-3259</td>
<td>N/A</td>
<td>OpenSSH before 5.1 sets the SO_REUSEADDR socket option when the X11UseLocalhost configuration setting is disabled, which allows local users on some platforms to hijack the X11 forwarding port via a bind to a single IP address, as demonstrated on the HP-UX platform.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2008-3844</td>
<td>N/A</td>
<td>Certain Red Hat Enterprise Linux (RHEL) 4 and 5 packages for OpenSSH, as signed in August 2008 using a legitimate Red Hat GPG key, contain an externally introduced modification (Trojan Horse) that allows the package authors to have an unknown impact. NOTE: since the malicious packages were not distributed from any official Red Hat sources, the scope of this issue is restricted to users who may have obtained these packages through unofficial distribution points. As of 20080827, no unofficial distributions of this software are known.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2008-4109</td>
<td>Not vulnerable</td>
<td>A certain Debian patch for OpenSSH before 4.3p2-9etch3 onetch; before 4.6p1-1 on sid and lenny; and on other distributions such as SUSE uses functions that are not async-signal-safe in the signal handler for login timeouts, which allows remote attackers to cause a denial of service (connection slot exhaustion) via multiple login attempts. NOTE: this issue exists because of an incorrect fix for CVE-2006-5051.</td>
<td>3.4.0000</td>
</tr>
<tr>
<td>CVE-2008-5161</td>
<td>Not vulnerable</td>
<td>Error handling in the SSH protocol in (1) SSH Tectia Client and Server and Connector 4.0 through 4.4.11, 5.0 through 5.2.4, and 5.3 through 5.3.8; Client and Server and ConnectSecure 6.0 through 6.0.4; Server for Linux on IBM System z 6.0.4; Server for IBM z/OS 5.5.1 and earlier, 6.0.0, and 6.0.1; and Client 4.0-J through 4.3.3-J and 4.0-K through 4.3.10-K; and (2) OpenSSH 4.7p1 and possibly other versions, when using a block cipher algorithm in Cipher Block Chaining (CBC) mode, makes it easier for remote attackers to recover certain plaintext data from an arbitrary block of ciphertext in an SSH session via unknown vectors.</td>
<td>3.4.0000</td>
</tr>
</tbody>
</table>
Table 26 - Common Vulnerabilities and Exposures

<table>
<thead>
<tr>
<th>CVE</th>
<th>Vulnerability</th>
<th>Description</th>
<th>Fixed in Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE-2009-2904</td>
<td>N/A</td>
<td>A certain Red Hat modification to the ChrootDirectory feature in OpenSSH 4.8, as used in sshd in OpenSSH 4.3 in Red Hat Enterprise Linux (RHEL) 5.4 and Fedora 11, allows local users to gain privileges via hard links to setuid programs that use configuration files within the chroot directory, related to requirements for directory ownership.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2010-4478</td>
<td>N/A</td>
<td>OpenSSH 5.6 and earlier, when J-PAKE is enabled, does not properly validate the public parameters in the J-PAKE protocol, which allows remote attackers to bypass the need for knowledge of the shared secret, and successfully authenticate, by sending crafted values in each round of the protocol, a related issue to CVE-2010-4252.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2010-4755</td>
<td>N/A</td>
<td>The (1) remote_glob function in sftp-glob.c and the (2) process_put function in sftp.c in OpenSSH 5.8 and earlier, as used in FreeBSD 7.3 and 8.1, NetBSD 5.0.2, OpenBSD 4.7, and other products, allow remote authenticated users to cause a denial of service (CPU and memory consumption) via crafted glob expressions that do not match any paths, as demonstrated by glob expressions in SSH_FXP_P_STAT requests to an sftp daemon, a different vulnerability than CVE-2010-2632.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2010-5298</td>
<td>Not vulnerable</td>
<td>Race condition in the ssl3_read_bytes function in s3_pkt.c in OpenSSL through 1.0.1g, when SSL_MODE_RELEASE_BUFFERS is enabled, allows remote attackers to inject data across sessions or cause a denial of service (use-after-free and parsing error) via an SSL connection in a multithreaded environment.</td>
<td>3.4.0008</td>
</tr>
<tr>
<td>CVE-2011-0539</td>
<td>N/A</td>
<td>The key_certify function in usr.bin/ssh/key.c in OpenSSH 5.6 and 5.7, when generating legacy certificates using the -t command-line option in ssh-keygen, does not initialize the nonce field, which might allow remote attackers to obtain sensitive stack memory contents or make it easier to conduct hash collision attacks.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2011-3389</td>
<td>Not vulnerable</td>
<td>The SSL protocol, as used in certain configurations in Microsoft Windows and Microsoft Internet Explorer, Mozilla Firefox, Google Chrome, Opera, and other products, encrypts data by using CBC mode with chained initialization vectors, which allows man-in-the-middle attackers to obtain plaintext HTTP headers via a blockwise chosen-boundary attack (BCBA) on an HTTPS session, in conjunction with JavaScript code that uses (1) the HTML5 WebSocket API, (2) the Java URLConnection API, or (3) the Silverlight WebClient API, aka a "BEAST" attack.</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>CVE</td>
<td>Vulnerability</td>
<td>Description</td>
<td>Fixed in Version</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>CVE-2011-3607</td>
<td>Not vulnerable</td>
<td>Integer overflow in the ap_pregsub function in server/util.c in the Apache HTTP Server 2.0.x through 2.0.64 and 2.2.x through 2.2.21, when the mod_setenvif module is enabled, allows local users to gain privileges via a .htaccess file with a crafted SetEnvIf directive, in conjunction with a crafted HTTP request header, leading to a heap-based buffer overflow.</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>CVE-2011-4317</td>
<td>Not vulnerable</td>
<td>The mod_proxy module in the Apache HTTP Server 1.3.x through 1.3.42, 2.0.x through 2.0.64, and 2.2.x through 2.2.21, when the Revision 1179239 patch is in place, does not properly interact with use of (1) RewriteRule and (2) ProxyPassMatch pattern matches for configuration of a reverse proxy, which allows remote attackers to send requests to intranet servers via a malformed URI containing an @ (at sign) character and a : (colon) character in invalid positions. NOTE: this vulnerability exists because of an incomplete fix for CVE-2011-3368.</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>CVE-2011-4327</td>
<td>N/A</td>
<td>ssh-keysign.c in ssh-keysign in OpenSSH before 5.8p2 on certain platforms executes ssh-rand-helper with unintended open file descriptors, which allows local users to obtain sensitive key information via the ptrace system call.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2011-5000</td>
<td>N/A</td>
<td>The ssh_gssapi_parse_ename function in gss-serv.c in OpenSSH 5.8 and earlier, when gssapi-with-mic authentication is enabled, allows remote authenticated users to cause a denial of service (memory consumption) via a large value in a certain length field. NOTE: there may be limited scenarios in which this issue is relevant.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2012-0031</td>
<td>Not vulnerable</td>
<td>scoreboard.c in the Apache HTTP Server 2.2.21 and earlier might allow local users to cause a denial of service (daemon crash during shutdown) or possibly have unspecified other impact by modifying a certain type field within a scoreboard shared memory segment, leading to an invalid call to the free function.</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>CVE-2012-0053</td>
<td>Not vulnerable</td>
<td>protocol.c in the Apache HTTP Server 2.2.x through 2.2.21 does not properly restrict header information during construction of Bad Request (aka 400) error documents, which allows remote attackers to obtain the values of HTTPOnly cookies via vectors involving a (1) long or (2) malformed header in conjunction with crafted web script.</td>
<td>3.3.3500</td>
</tr>
</tbody>
</table>
Table 26 - Common Vulnerabilities and Exposures

<table>
<thead>
<tr>
<th>CVE</th>
<th>Vulnerability¹</th>
<th>Description</th>
<th>Fixed in Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE-2012-0814</td>
<td>Not vulnerable</td>
<td>The auth_parse_options function in auth-options.c in sshd in OpenSSH before 5.7 provides debug messages containing authorized_keys command options, which allows remote authenticated users to obtain potentially sensitive information by reading these messages, as demonstrated by the shared user account required by Gitolite. NOTE: this can cross privilege boundaries because a user account may intentionally have no shell or filesystem access, and therefore may have no supported way to read an authorized_keys file in its own home directory.</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>CVE-2012-2687</td>
<td>N/A</td>
<td>Multiple cross-site scripting (XSS) vulnerabilities in the make_variant_list function in mod_negotiation.c in the mod_negotiation module in the Apache HTTP Server 2.4.x before 2.4.3, when the MultiViews option is enabled, allow remote attackers to inject arbitrary web script or HTML via a crafted filename that is not properly handled during construction of a variant list.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2012-4929</td>
<td>Not vulnerable</td>
<td>The TLS protocol 1.2 and earlier, as used in Mozilla Firefox, Google Chrome, Qt, and other products, can encrypt compressed data without properly obfuscating the length of the unencrypted data, which allows man-in-the-middle attackers to obtain plaintext HTTP headers by observing length differences during a series of guesses in which a string in an HTTP request potentially matches an unknown string in an HTTP header, aka a “CRIME” attack.</td>
<td>3.3.3500</td>
</tr>
<tr>
<td>CVE-2013-7423</td>
<td>Not vulnerable</td>
<td>The send_dg function in resolv/res_send.c in GNU C Library (aka glibc or libc6) before 2.20 does not properly reuse file descriptors, which allows remote attackers to send DNS queries to unintended locations via a large number of request that trigger a call to the getaddrinfo function.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2014-0195</td>
<td>Not vulnerable</td>
<td>The dtls1_reassemble_fragment function in d1_both.c in OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly validate fragment lengths in DTLS ClientHello messages, which allows remote attackers to execute arbitrary code or cause a denial of service (buffer overflow and application crash) via a long non-initial fragment.</td>
<td>3.4.0008</td>
</tr>
<tr>
<td>CVE-2014-0198</td>
<td>Not vulnerable</td>
<td>The do_ssl3_write function in s3_pkt.c in OpenSSL 1.x through 1.0.1g, when SSL_MODE_RELEASE_BUFFERS is enabled, does not properly manage a buffer pointer during certain recursive calls, which allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via vectors that trigger an alert condition.</td>
<td>3.4.0008</td>
</tr>
<tr>
<td>CVE</td>
<td>Vulnerability</td>
<td>Description</td>
<td>Fixed in Version</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>CVE-2014-0221</td>
<td>Not vulnerable</td>
<td>The dtls1_get_message_fragment function in d1_both.c in OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h allows remote attackers to cause a denial of service (recursion and client crash) via a DTLS hello message in an invalid DTLS handshake.</td>
<td>3.4.0008</td>
</tr>
<tr>
<td>CVE-2014-0224</td>
<td>Not vulnerable</td>
<td>OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly restrict processing of ChangeCipherSpec messages, which allows man-in-the-middle attackers to trigger use of a zero-length master key in certain OpenSSL-to-OpenSSL communications, and consequently hijack sessions or obtain sensitive information, via a crafted TLS handshake, aka the "CCS Injection" vulnerability.</td>
<td>3.4.1000</td>
</tr>
<tr>
<td>CVE-2014-0475</td>
<td>Not vulnerable</td>
<td>Multiple directory traversal vulnerabilities in GNU C Library (aka glibc or libc6) before 2.20 allow context-dependent attackers to bypass ForceCommand restrictions and possibly have other unspecified impact via a .. (dot dot) in a (1) LC_*, (2) LANG, or other locale environment variable.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2014-1692</td>
<td>N/A</td>
<td>The hash_buffer function in schnorr.c in OpenSSH through 6.4, when Makefile.inc is modified to enable the J-PAKE protocol, does not initialize certain data structures, which might allow remote attackers to cause a denial of service (memory corruption) or have unspecified other impact via vectors that trigger an error condition.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2014-2532</td>
<td>N/A</td>
<td>sshd in OpenSSH before 6.6 does not properly support wildcards on AcceptEnv lines in sshd_config, which allows remote attackers to bypass intended environment restrictions by using a substring located before a wildcard character.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2014-3470</td>
<td>Not vulnerable</td>
<td>The ssl3_send_client_key_exchange function in s3_clnt.c in OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h, when an anonymous ECDH cipher suite is used, allows remote attackers to cause a denial of service (NULL pointer dereference and client crash) by triggering a NULL certificate value.</td>
<td>3.4.0008</td>
</tr>
<tr>
<td>CVE-2014-3505</td>
<td>Not vulnerable</td>
<td>Double free vulnerability in d1_both.c in the DTLS implementation in OpenSSL 0.9.8 before 0.9.8zb, 1.0.0 before 1.0.0n, and 1.0.1 before 1.0.1i allows remote attackers to cause a denial of service (application crash) via crafted DTLS packets that trigger an error condition.</td>
<td>3.4.1000</td>
</tr>
<tr>
<td>CVE</td>
<td>Vulnerability</td>
<td>Description</td>
<td>Fixed in Version</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>CVE-2014-3506</td>
<td>Not vulnerable</td>
<td>d1_both.c in the DTLS implementation in OpenSSL 0.9.8 before 0.9.8zb, 1.0.0 before 1.0.0n, and 1.0.1 before 1.0.1i allows remote attackers to cause a denial of service (memory consumption) via crafted DTLS handshake messages that trigger memory allocations corresponding to large length values.</td>
<td>3.4.1000</td>
</tr>
<tr>
<td>CVE-2014-3507</td>
<td>Not vulnerable</td>
<td>Memory leak in d1_both.c in the DTLS implementation in OpenSSL 0.9.8 before 0.9.8zb, 1.0.0 before 1.0.0n, and 1.0.1 before 1.0.1i allows remote attackers to cause a denial of service (memory consumption) via zero-length DTLS fragments that trigger improper handling of the return value of a certain insert function.</td>
<td>3.4.1000</td>
</tr>
<tr>
<td>CVE-2014-3508</td>
<td>Not vulnerable</td>
<td>The OBJ_obj2txt function in crypto/objects/obj_dat.c in OpenSSL 0.9.8 before 0.9.8zb, 1.0.0 before 1.0.0n, and 1.0.1 before 1.0.1i, when pretty printing is used, does not ensure the presence of '^0' characters, which allows context-dependent attackers to obtain sensitive information from process stack memory by reading output from X509_name_oneline, X509_name_print_ex, and unspecified other functions.</td>
<td>3.4.1000</td>
</tr>
<tr>
<td>CVE-2014-3509</td>
<td>Not vulnerable</td>
<td>Race condition in the ssl_parse_serverhello_tlsext function in t1_lib.c in OpenSSL 1.0.0 before 1.0.0n and 1.0.1 before 1.0.1i, when multithreading and session resumption are used, allows remote SSL servers to cause a denial of service (memory overwrite and client application crash) or possibly have unspecified other impact by sending Elliptic Curve (EC) Supported Point Formats Extension data.</td>
<td>3.4.1000</td>
</tr>
<tr>
<td>CVE-2014-3510</td>
<td>Not vulnerable</td>
<td>The ssl3_send_client_key_exchange function in s3_clnt.c in OpenSSL 0.9.8 before 0.9.8zb, 1.0.0 before 1.0.0n, and 1.0.1 before 1.0.1i allows remote DTLS servers to cause a denial of service (NULL pointer dereference and client application crash) via a crafted handshake message in conjunction with a (1) anonymous DH or (2) anonymous ECDH ciphersuite.</td>
<td>3.4.1000</td>
</tr>
<tr>
<td>CVE-2014-3511</td>
<td>Not vulnerable</td>
<td>The ssl23_get_client_hello function in s23_srvr.c in OpenSSL 1.0.1 before 1.0.1i allows man-in-the-middle attackers to force the use of TLS 1.0 by triggering ClientHello message fragmentation in communication between a client and server that both support later TLS versions, related to a "protocol downgrade" issue.</td>
<td>3.4.1000</td>
</tr>
<tr>
<td>CVE-2014-3513</td>
<td>Not vulnerable</td>
<td>Memory leak in d1_srtp.c in the DTLS SRTP extension in OpenSSL 1.0.1 before 1.0.1j allows remote attackers to cause a denial of service (memory consumption) via a crafted handshake message.</td>
<td>3.4.1000</td>
</tr>
<tr>
<td>CVE</td>
<td>Vulnerability</td>
<td>Description</td>
<td>Fixed in Version</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>CVE-2014-3566</td>
<td>Not vulnerable</td>
<td>The SSL protocol 3.0, as used in OpenSSL through 1.0.1i and other products, uses nondeterministic CBC padding, which makes it easier for man-in-the-middle attackers to obtain cleartext data via a padding-oracle attack, aka the "POODLE" issue.</td>
<td>3.4.1000</td>
</tr>
<tr>
<td>CVE-2014-3567</td>
<td>Not vulnerable</td>
<td>Memory leak in the tls_decrypt_ticket function in t1_lib.c in OpenSSL before 0.9.8zc, 1.0.0 before 1.0.0o, and 1.0.1 before 1.0.1j allows remote attackers to cause a denial of service (memory consumption) via a crafted session ticket that triggers an integrity-check failure.</td>
<td>3.4.1000</td>
</tr>
<tr>
<td>CVE-2014-3569</td>
<td>N/A</td>
<td>The ssl23_get_client_hello function in s23_srvr.c in OpenSSL 0.9.8zc, 1.0.0o, and 1.0.1j does not properly handle attempts to use unsupported protocols, which allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via an unexpected handshake, as demonstrated by an SSLv3 handshake to a no-ssl3 application with certain error handling. NOTE: this issue became relevant after the CVE-2014-3568 fix.</td>
<td>N/A</td>
</tr>
<tr>
<td>CVE-2014-3570</td>
<td>Not vulnerable</td>
<td>The BN_sqr implementation in OpenSSL before 0.9.8zd, 1.0.0 before 1.0.0p, and 1.0.1 before 1.0.1k does not properly calculate the square of a BIGNUM value, which might make it easier for remote attackers to defeat cryptographic protection mechanisms via unspecified vectors, related to crypto/bn/asm/mips.pl, crypto/bn/asm/x86_64-gcc.c, and crypto/bn/bn_asm.c.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2014-3571</td>
<td>Not vulnerable</td>
<td>OpenSSL before 0.9.8zd, 1.0.0 before 1.0.0p, and 1.0.1 before 1.0.1k allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via a crafted DTLS message that is processed with a different read operation for the handshake header than for the handshake body, related to the dtls1_get_record function in d1_pkt.c and the ssl3_read_n function in s3_pkt.c.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2014-3572</td>
<td>Not vulnerable</td>
<td>The ssl3_get_key_exchange function in s3_clnt.c in OpenSSL before 0.9.8zd, 1.0.0 before 1.0.0p, and 1.0.1 before 1.0.1k allows remote SSL servers to conduct ECDHE-to-ECDH downgrade attacks and trigger a loss of forward secrecy by omitting the ServerKeyExchange message.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2014-6040</td>
<td>Not vulnerable</td>
<td>GNU C Library (aka glibc) before 2.20 allows context-dependent attackers to cause a denial of service (out-of-bounds read and crash) via a multibyte character value of "0xff" to the iconv function when converting (1) IBM933, (2) IBM935, (3) IBM937, (4) IBM939, or (5) IBM1364 encoded data to UTF-8.</td>
<td>3.4.2300</td>
</tr>
</tbody>
</table>
Table 26 - Common Vulnerabilities and Exposures

<table>
<thead>
<tr>
<th>CVE</th>
<th>Vulnerability</th>
<th>Description</th>
<th>Fixed in Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE-2014-6271</td>
<td>Not vulnerable</td>
<td>GNU Bash through 4.3 processes trailing strings after function definitions in the values of environment variables, which allows remote attackers to execute arbitrary code via a crafted environment, as demonstrated by vectors involving the ForceCommand feature in OpenSSH sshd, the mod_cgi and mod_cgid modules in the Apache HTTP Server, scripts executed by unspecified DHCP clients, and other situations in which setting the environment occurs across a privilege boundary from Bash execution, aka "ShellShock." NOTE: the original fix for this issue was incorrect; CVE-2014-7169 has been assigned to cover the vulnerability that is still present after the incorrect fix.</td>
<td>3.4.0008</td>
</tr>
<tr>
<td>CVE-2014-7817</td>
<td>Not vulnerable</td>
<td>The wordexp function in GNU C Library (aka glibc) 2.21 does not enforce the WRDE_NOCMD flag, which allows context-dependent attackers to execute arbitrary commands, as demonstrated by input containing "$((...))".</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2014-8176</td>
<td>Not vulnerable</td>
<td>The dtls1_clear_queues function in ssl/d1_lib.c in OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h frees data structures without considering that application data can arrive between a ChangeCipherSpec message and a Finished message, which allows remote DTLS peers to cause a denial of service (memory corruption and application crash) or possibly have unspecified other impact via unexpected application data.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2014-8275</td>
<td>Not vulnerable</td>
<td>OpenSSL before 0.9.8zd, 1.0.0 before 1.0.0p, and 1.0.1 before 1.0.1k does not enforce certain constraints on certificate data, which allows remote attackers to defeat a fingerprint-based certificate-blacklist protection mechanism by including crafted data within a certificate's unsigned portion, related to crypto/asn1/a_verify.c, crypto/dsa/dsa_asn1.c, crypto/ecdsa/ecs_vrf.c, and crypto/x509/x_all.c.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2014-9293</td>
<td>Not vulnerable</td>
<td>The config_auth function in ntpd in NTP before 4.2.7p11, when an auth key is not configured, improperly generates a key, which makes it easier for remote attackers to defeat cryptographic protection mechanisms via a brute-force attack.</td>
<td>3.4.1000</td>
</tr>
<tr>
<td>CVE-2014-9294</td>
<td>Not vulnerable</td>
<td>util/ntp-keygen.c in ntp-keygen in NTP before 4.2.7p230 uses a weak RNG seed, which makes it easier for remote attackers to defeat cryptographic protection mechanisms via a brute-force attack.</td>
<td>3.4.1000</td>
</tr>
</tbody>
</table>
Table 26 - Common Vulnerabilities and Exposures

<table>
<thead>
<tr>
<th>CVE</th>
<th>Vulnerability</th>
<th>Description</th>
<th>Fixed in Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE-2014-9295</td>
<td>Not vulnerable</td>
<td>Multiple stack-based buffer overflows in ntpd in NTP before 4.2.8 allow remote attackers to execute arbitrary code via a crafted packet, related to (1) the crypto_recv function when the Autokey Authentication feature is used, (2) the ctl_putdata function, and (3) the configure function.</td>
<td>3.4.1000</td>
</tr>
<tr>
<td>CVE-2014-9296</td>
<td>Not vulnerable</td>
<td>The receive function in ntp_proto.c in ntpd in NTP before 4.2.8 continues to execute after detecting a certain authentication error, which might allow remote attackers to trigger an unintended association change via crafted packets.</td>
<td>3.4.1000</td>
</tr>
<tr>
<td>CVE-2014-9297</td>
<td>N/A</td>
<td>This candidate has been reserved by an organization or individual that will use it when announcing a new security problem. When the candidate has been publicized, the details for this candidate will be provided</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2015-0204</td>
<td>Not vulnerable</td>
<td>The ssl3_get_key_exchange function in s3_clnt.c in OpenSSL before 0.9.8zd, 1.0.0 before 1.0.0p, and 1.0.1 before 1.0.1k allows remote SSL servers to conduct RSA-to-EXPORT_RSA downgrade attacks and facilitate brute-force decryption by offering a weak ephemeral RSA key in a noncompliant role, related to the "FREAK" issue. NOTE: the scope of this CVE is only client code based on OpenSSL, not EXPORT_RSA issues associated with servers or other TLS implementations.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2015-0205</td>
<td>Not vulnerable</td>
<td>The ssl3_get_cert_verify function in s3_srvr.c in OpenSSL 1.0.0 before 1.0.0p and 1.0.1 before 1.0.1k accepts client authentication with a Diffie-Hellman (DH) certificate without requiring a CertificateVerify message, which allows remote attackers to obtain access without knowledge of a private key via crafted TLS Handshake Protocol traffic to a server that recognizes a Certification Authority with DH support.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2015-0206</td>
<td>Not vulnerable</td>
<td>Memory leak in the dtls1_buffer_record function in d1_pkt.c in OpenSSL 1.0.0 before 1.0.0p and 1.0.1 before 1.0.1k allows remote attackers to cause a denial of service (memory consumption) by sending many duplicate records for the next epoch, leading to failure of replay detection.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2015-0207</td>
<td>Not vulnerable</td>
<td>The dtls1_listen function in d1_lib.c in OpenSSL 1.0.2 before 1.0.2a does not properly isolate the state information of independent data streams, which allows remote attackers to cause a denial of service (application crash) via crafted DTLS traffic, as demonstrated by DTLS 1.0 traffic to a DTLS 1.2 server.</td>
<td>3.4.2008</td>
</tr>
<tr>
<td>CVE</td>
<td>Vulnerability</td>
<td>Description</td>
<td>Fixed in Version</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>CVE-2015-0208</td>
<td>Not vulnerable</td>
<td>The ASN.1 signature-verification implementation in the rsa_item_verify function in crypto/rsa/rsa_ameth.c in OpenSSL 1.0.2 before 1.0.2a allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via crafted RSA PSS parameters to an endpoint that uses the certificate-verification feature.</td>
<td>3.4.2008</td>
</tr>
<tr>
<td>CVE-2015-0209</td>
<td>N/A</td>
<td>Use-after-free vulnerability in the d2i_ECPrivateKey function in crypto/ec/ec_asn1.c in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a might allow remote attackers to cause a denial of service (memory corruption and application crash) or possibly have unspecified other impact via a malformed Elliptic Curve (EC) private-key file that is improperly handled during import.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2015-0235</td>
<td>Not vulnerable</td>
<td>Heap-based buffer overflow in the _nss_hostname_dig_dots function in glibc 2.2, and other 2.x versions before 2.18, allows context-dependent attackers to execute arbitrary code via vectors related to the (1) gethostbyname or (2) gethostbyname2 function, aka "GHOST."</td>
<td>3.4.2002</td>
</tr>
<tr>
<td>CVE-2015-0285</td>
<td>N/A</td>
<td>The ssl3_client_hello function in s3_clnt.c in OpenSSL 1.0.2 before 1.0.2a does not ensure that the PRNG is seeded before proceeding with a handshake, which makes it easier for remote attackers to defeat cryptographic protection mechanisms by sniffing the network and then conducting a brute-force attack.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2015-0286</td>
<td>Not vulnerable</td>
<td>The ASN1_TYPE_cmp function in crypto/asn1/a_type.c in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a does not properly perform boolean-type comparisons, which allows remote attackers to cause a denial of service (invalid read operation and memory corruption) via a crafted X.509 certificate to an endpoint that uses the certificate-verification feature.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2015-0287</td>
<td>Not vulnerable</td>
<td>The ASN1_item_ex_d2i function in crypto/asn1/tasn_dec.c in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a does not reinitialize CHOICE and ADB data structures, which might allow attackers to cause a denial of service (invalid write operation and memory corruption) by leveraging an application that relies on ASN.1 structure reuse.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2015-0288</td>
<td>Not vulnerable</td>
<td>The X509_to_X509_REQ function in crypto/x509/x509_req.c in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a might allow attackers to cause a denial of service (NULL pointer dereference and application crash) via an invalid certificate key.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE</td>
<td>Vulnerability</td>
<td>Description</td>
<td>Fixed in Version</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>CVE-2015-0289</td>
<td>Not vulnerable</td>
<td>The PKCS#7 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a does not properly handle a lack of outer ContentInfo, which allows attackers to cause a denial of service (NULL pointer dereference and application crash) by leveraging an application that processes arbitrary PKCS#7 data and providing malformed data with ASN.1 encoding, related to crypto/pkcs7/pk7_doit.c and crypto/pkcs7/pk7_lib.c.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2015-0290</td>
<td>Not vulnerable</td>
<td>The multi-block feature in the ssl3_write_bytes function in s3_pkt.c in OpenSSL 1.0.2 before 1.0.2a on 64-bit x86 platforms with AES NI support does not properly handle certain non-blocking I/O cases, which allows remote attackers to cause a denial of service (pointer corruption and application crash) via unspecified vectors.</td>
<td>3.4.2008</td>
</tr>
<tr>
<td>CVE-2015-0291</td>
<td>Not vulnerable</td>
<td>The sigalgs implementation in t1_lib.c in OpenSSL 1.0.2 before 1.0.2a allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) by using an invalid signature_algorithms extension in the ClientHello message during a renegotiation.</td>
<td>3.4.2008</td>
</tr>
<tr>
<td>CVE-2015-0292</td>
<td>Not vulnerable</td>
<td>Integer underflow in the EVP_DecodeUpdate function in crypto/evp/encode.c in the base64-decoding implementation in OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via crafted base64 data that triggers a buffer overflow.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2015-0293</td>
<td>Not vulnerable</td>
<td>The SSLv2 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a allows remote attackers to cause a denial of service (s2_lib.c assertion failure and daemon exit) via a crafted CLIENT-MASTER-KEY message.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2015-1787</td>
<td>Not vulnerable</td>
<td>The ssl3_get_client_key_exchange function in s3_srvr.c in OpenSSL 1.0.2 before 1.0.2a, when client authentication and an ephemeral Diffie-Hellman ciphersuite are enabled, allows remote attackers to cause a denial of service (daemon crash) via a ClientKeyExchange message with a length of zero.</td>
<td>3.4.2008</td>
</tr>
<tr>
<td>CVE-2015-1789</td>
<td>Not vulnerable</td>
<td>The X509_cmp_time function in crypto/x509/x509_vfy.c in OpenSSL before 0.9.8zg, 1.0.0 before 1.0.0s, 1.0.1 before 1.0.1n, and 1.0.2 before 1.0.2b allows remote attackers to cause a denial of service (out-of-bounds read and application crash) via a crafted length field in ASN1_TIME data, as demonstrated by an attack against a server that supports client authentication with a custom verification callback.</td>
<td>3.4.3000</td>
</tr>
</tbody>
</table>
Table 26 - Common Vulnerabilities and Exposures

<table>
<thead>
<tr>
<th>CVE</th>
<th>Vulnerability</th>
<th>Description</th>
<th>Fixed in Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE-2015-1790</td>
<td>Not vulnerable</td>
<td>The PKCS7_dataDecode function in crypto/pkcs7/pk7_doit.c in OpenSSL before 0.9.8zg, 1.0.0 before 1.0.0s, 1.0.1 before 1.0.1n, and 1.0.2 before 1.0.2b allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via a PKCS#7 blob that uses ASN.1 encoding and lacks inner EncryptedContent data.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2015-1791</td>
<td>Not vulnerable</td>
<td>Race condition in the ssl3_get_new_session_ticket function in ssl/s3_clnt.c in OpenSSL before 0.9.8zg, 1.0.0 before 1.0.0s, 1.0.1 before 1.0.1n, and 1.0.2 before 1.0.2b, when used for a multi-threaded client, allows remote attackers to cause a denial of service (double free and application crash) or possibly have unspecified other impact by providing a NewSessionTicket during an attempt to reuse a ticket that had been obtained earlier.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2015-1792</td>
<td>Not vulnerable</td>
<td>The do_free_upto function in crypto/cms/cms_smime.c in OpenSSL before 0.9.8zg, 1.0.0 before 1.0.0s, 1.0.1 before 1.0.1n, and 1.0.2 before 1.0.2b allows remote attackers to cause a denial of service (infinite loop) via vectors that trigger a NULL value of a BIO data structure, as demonstrated by an unrecognized X.660 OID for a hash function.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2015-1798</td>
<td>N/A</td>
<td>The symmetric-key feature in the receive function in ntp_proto.c in ntpd in NTP 4.x before 4.2.8p2 requires a correct MAC only if the MAC field has a nonzero length, which makes it easier for man-in-the-middle attackers to spoof packets by omitting the MAC.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2015-1799</td>
<td>N/A</td>
<td>The symmetric-key feature in the receive function in ntp_proto.c in ntpd in NTP 3.x and 4.x before 4.2.8p2 performs state-variable updates upon receiving certain invalid packets, which makes it easier for man-in-the-middle attackers to cause a denial of service (synchronization loss) by spoofing the source IP address of a peer.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2015-2808</td>
<td>Not vulnerable: Requires strict mode</td>
<td>The RC4 algorithm, as used in the TLS protocol and SSL protocol, does not properly combine state data with key data during the initialization phase, which makes it easier for remote attackers to conduct plaintext-recovery attacks against the initial bytes of a stream by sniffing network traffic that occasionally relies on keys affected by the Invariance Weakness, and then using a brute-force approach involving LSB values, aka the "Bar Mitzvah" issue.</td>
<td>3.4.1120</td>
</tr>
</tbody>
</table>
Table 26 - Common Vulnerabilities and Exposures

<table>
<thead>
<tr>
<th>CVE</th>
<th>Vulnerability¹</th>
<th>Description</th>
<th>Fixed in Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE-2015-3456</td>
<td>Not vulnerable</td>
<td>The Floppy Disk Controller (FDC) in QEMU, as used in Xen 4.5.x and earlier and KVM, allows local guest users to cause a denial of service (out-of-bounds write and guest crash) or possibly execute arbitrary code via the (1) FD_CMD_READ_ID, (2) FD_CMD_DRIVE_SPECIFICATION_COMMAND, or other unspecified commands, aka VENOM. Though the VENOM vulnerability is also agnostic of the guest operating system, an attacker (or an attacker’s malware) would need to have administrative or root privileges in the guest operating system in order to exploit VENOM.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2015-4000</td>
<td>Not vulnerable</td>
<td>The TLS protocol 1.2 and earlier, when a DHE_EXPORT ciphersuite is enabled on a server but not on a client, does not properly convey a DHE_EXPORT choice, which allows man-in-the-middle attackers to conduct cipher-downgrade attacks by rewriting a ClientHello with DHE replaced by DHE_EXPORT and then rewriting a ServerHello with DHE_EXPORT replaced by DHE, aka the "Logjam" issue.</td>
<td>3.4.3000</td>
</tr>
<tr>
<td>CVE-2015-5119</td>
<td>Not vulnerable</td>
<td>This candidate has been reserved by an organization or individual that will use it when announcing a new security problem. When the candidate has been publicized, the details for this candidate will be provided.</td>
<td>3.4.3000</td>
</tr>
</tbody>
</table>

¹. Vulnerability may take the following three values:
 N/A – not relevant to MLNX-OS
 Not vulnerable – Mellanox products are protected against this vulnerability
 Not vulnerable: Requires strict mode – working in strict mode protects against this vulnerability
Appendix C: UI Changes in Version 3.4.2008

Relevant changes in the CLI in this section are marked in boldface.

In order to improve user interface and unify look and feel across all Mellanox switch platforms, MLNX-OS® versions 3.4.2008 and above introduce some changes in user interface.

C.1 Interface Addressing Change

Interface addressing in interface specific commands has changed in order to align the InfiniBand interface schema with that of Ethernet’s, and to support the EDR director switch system which has 2 ASICs per leaf.

C.1.1 CLI Change

Interface referencing for director switches has become `<slot/module/port>` and their show command output text displays `IB<slot/module/port>`.

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch (config) # show interfaces ib L01/1</td>
<td>switch (config) # show interfaces ib 1/1</td>
</tr>
<tr>
<td>Slot L01 port 1 state</td>
<td>IB1/1/1 state:</td>
</tr>
<tr>
<td>Logical port state : Initialize</td>
<td>Logical port state : Initialize</td>
</tr>
<tr>
<td>Physical port state : LinkUp</td>
<td>Physical port state : LinkUp</td>
</tr>
<tr>
<td>Current line rate : 40.0 Gbps</td>
<td>Current line rate : 40.0 Gbps</td>
</tr>
<tr>
<td>Supported speeds : 2.5, 5.0, 10.0 (QDR), 10.0 (FDR10) or 14.0 Gbps rate</td>
<td>Supported speeds : sdr, ddr, qdr, fdr10</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Internal interface referencing for director switch systems has become as follows:

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch (config) # show interfaces ib internal S01/1</td>
<td>switch (config) # show interfaces ib internal spine 1/1</td>
</tr>
<tr>
<td>Slot S01 port 1 state</td>
<td>IB1/1/1 state:</td>
</tr>
<tr>
<td>Connected to slot/chip : 1/1</td>
<td>Connected to slot/chip : 1/1</td>
</tr>
<tr>
<td>Connected to port : 19</td>
<td>Connected to port : 19</td>
</tr>
<tr>
<td>Connected device active: -</td>
<td>Connected device active: -</td>
</tr>
<tr>
<td>Error state : 0</td>
<td>Error state : 0</td>
</tr>
<tr>
<td>Logical port state : Initialize</td>
<td>Logical port state : Initialize</td>
</tr>
<tr>
<td>Physical port state : LinkUp</td>
<td>Physical port state : LinkUp</td>
</tr>
<tr>
<td>Current line rate : 40.0 Gbps</td>
<td>Current line rate : 40.0 Gbps</td>
</tr>
<tr>
<td>Supported speeds : .5, 5.0, 10.0 (QDR), 10.0 (FDR10) or 14.0 Gbps rate</td>
<td>Supported speeds : sdr, ddr, qdr, fdr10</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Interface show command output text on 1U switches has become IB<slot/port>.

Before:

```plaintext
switch (config) # show interfaces ib 1/1
Slot 1 port 1 state
  Logical port state : Down
  Physical port state : Polling
  Current line rate   : -
  Supported speeds    : 2.5, 5.0, 10.0(QDR), 10.0(FDR10) or 14.0 Gbos rate
...
```

After:

```plaintext
switch (config) # show interfaces ib 1/1
IB1/1 state:
  Logical port state : Down
  Physical port state : Polling
  Current line rate   : -
  Supported speeds    : sdr, ddr, qdr, fdr10, fdr
...
```

C.1.2 MIB ifTable Change

The ifDescr column now displays interfaces in the syntax IB<slot/port>.

Figure 32: 1U MIB ifTable Before Screenshot

```
<table>
<thead>
<tr>
<th>iIndex</th>
<th>ifDescr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lo</td>
</tr>
<tr>
<td>2</td>
<td>mgmt0</td>
</tr>
<tr>
<td>3</td>
<td>mgmt1</td>
</tr>
<tr>
<td>4</td>
<td>ib0</td>
</tr>
<tr>
<td>5</td>
<td>/SX/9</td>
</tr>
<tr>
<td>6</td>
<td>/SX/12</td>
</tr>
<tr>
<td>7</td>
<td>/SX/11</td>
</tr>
<tr>
<td>8</td>
<td>/SX/14</td>
</tr>
<tr>
<td>9</td>
<td>/SX/13</td>
</tr>
<tr>
<td>10</td>
<td>/SX/16</td>
</tr>
<tr>
<td>11</td>
<td>/SX/15</td>
</tr>
<tr>
<td>12</td>
<td>/SX/18</td>
</tr>
<tr>
<td>13</td>
<td>/SX/17</td>
</tr>
<tr>
<td>14</td>
<td>/SX/28</td>
</tr>
</tbody>
</table>
```

Figure 33: 1U MIB ifTable After Screenshot

```
<table>
<thead>
<tr>
<th>iIndex</th>
<th>ifDescr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lo</td>
</tr>
<tr>
<td>2</td>
<td>mgmt0</td>
</tr>
<tr>
<td>3</td>
<td>mgmt1</td>
</tr>
<tr>
<td>4</td>
<td>ib0</td>
</tr>
<tr>
<td>5</td>
<td>IB1/5</td>
</tr>
<tr>
<td>6</td>
<td>IB1/6</td>
</tr>
<tr>
<td>7</td>
<td>IB1/7</td>
</tr>
<tr>
<td>8</td>
<td>IB1/8</td>
</tr>
<tr>
<td>9</td>
<td>IB1/9</td>
</tr>
<tr>
<td>10</td>
<td>IB1/13</td>
</tr>
<tr>
<td>11</td>
<td>IB1/12</td>
</tr>
<tr>
<td>12</td>
<td>IB1/11</td>
</tr>
<tr>
<td>13</td>
<td>IB1/10</td>
</tr>
<tr>
<td>14</td>
<td>IB1/4</td>
</tr>
</tbody>
</table>
```

For director switches the ifDescr column displays interfaces in the syntax IB<slot/module/port>.
C.1.3 WebUI Ports Page Change

In the “Ports” page of the MLNX-OS® WebUI, the “Port number” field has been modified to reflect the change in the CLI. “Port number” now displays interfaces in the following syntax for director switches: <slot>/<module>/<port>.

C.2 Interface Speed Configuration Change

Interface speed configuration has changed in order to improve user experience when configuring InfiniBand speeds and to support additional permutations for setting allowed speeds.

C.2.1 CLI Change

Interface speed configuration commands accept any of the following speed name combinations: SDR; DDR; QDR; FDR10; FDR; EDR.

Commands with the old syntax, however, are still supported.
Show interface commands display speed names instead of the speed figures.

C.2.2 WebUI Change

In the Ports page of the MLNX-OS WebUI, the “Supported speeds” and “Speed” fields have been modified to reflect the change in the CLI. “Supported speeds” and “Speed” now display speed names instead of the speed figures.
C.3 IB SM Link Speed Change

IB SM link speed has changed to improve user experience when configuring InfiniBand interface speeds, to support additional permutations for setting allowed speeds, and to display clear default values and negotiation outputs.

IB SM link speed commands accept any of the following speed name combinations: SDR; DDR; QDR; FDR10; FDR; EDR.

Commands with the old syntax, however, are still supported.

Before:
```
switch (config) # ib sm force-link-speed ?
0   Do not modify switch assigned default value
1   Negotiate only 2.5 Gbps rate
3   Negotiate 2.5 or 5.0 Gbps rate
5   Negotiate 2.5 or 10.0 Gbps rate
7   Negotiate 2.5, 5.0, or 10.0 Gbps rate
13  Negotiate 2.5, 10.0(QDR) or 10.0(FDR10) Gbps
15  Negotiate 2.5, 5.0, 10.0(QDR) or 10.0(FDR10) Gbps
21  Negotiate 2.5, 10.0(QDR) or 14.0 Gbps
23  Negotiate 2.5, 5.0, 10.0(QDR) or 14.0 Gbps
29  Negotiate 2.5, 10.0(QDR), 10.0(FDR10) or 14.0 Gbps
31  Negotiate 2.5, 5.0, 10.0(QDR), 10.0(FDR10) or 14.0 Gbps
```

After:
```
switch (config) # ib sm force-link-speed ?
sdr           10.0 Gbps rate on 4 lane width
ddr           20.0 Gbps rate on 4 lane width
gdr           40.0 Gbps rate on 4 lane width
fdr10         40.0 Gbps rate on 4 lane width
fdr           56.0 Gbps rate on 4 lane width
edr           100.0 Gbps rate on 4 lane width
```
The command “no ib sm force-link-speed” configures default speed.

Before:
switch (config) # no ib sm force-link-speed
switch (config) # show ib sm force-link-speed
15 (Negotiate 2.5, 5.0, 10.0(QDR) or 10.0(FDR10) Gbps)
Default: set to PortInfo:LinkSpeedSupported

After:
switch (config) # no ib sm force-link-speed
switch (config) # show ib sm force-link-speed
Default: set to PortInfo:LinkSpeedSupported

Show IB SM speed command displays negotiation as well as speed names.

Before:
switch (config) # show ib sm force-link-speed
5 (Negotiate 2.5 or 10.0 Gbps rate)

After:
switch (config) # show ib sm force-link-speed
Negotiate: sdr, qdr

The output of the command “show ib sm force-link-speed-ext”:

Before:
switch (config) # show ib sm force-link-speed-ext
1 (Allow extended negotiation speeds with 14.0 Gbps rate)

After:
switch (config) # show ib sm force-link-speed-ext
Negotiate: fdr

C.4 Multi-ASIC Support

Multi-ASIC support has been added to MLNX-OS in order to support the new EDR director switch systems whose leafs feature two ASICs per leaf, to improve MIB module indexing and better represent module hierarchy, to add an additional hierarchy level with an ASIC device to support more than one ASIC per module, and to add support to all sensors.

C.4.1 CLI Change

Added a new “Device” column to the output of the command “show guids”.

Before:
switch (config) # show guids
==
SX module GUID
==
SYSTEM 00:05:C9:03:00:42:D8:00
S01 00:02:C9:03:00:84:3B:60
L17 00:02:C9:03:00:84:3B:40
L18 00:02:C9:03:00:84:3A:F0
S05 00:02:C9:03:00:84:3B:70
L01 00:02:C9:03:00:84:3B:80
L03 00:02:C9:03:00:84:3B:90
L04 00:02:C9:03:00:61:ED:00
L06 00:02:C9:03:00:84:3B:A0
L09 00:02:C9:03:00:84:3B:50
L11 00:02:C9:03:00:84:3B:10
L13 00:02:C9:03:00:61:EC:B0
L15 00:02:C9:03:00:66:C9:60
L16 00:02:C9:03:00:66:C9:60
...

After:
switch (config) # show guids
==
Module Device GUID
==
SYSTEM - 00:05:C9:03:00:42:D8:00
S01 SX 00:02:C9:03:00:84:3B:60
S02 SX 00:02:C9:03:00:84:3B:40
S03 SX 00:02:C9:03:00:84:3A:F0
S04 SX 00:02:C9:03:00:84:3B:70
S05 SX 00:02:C9:03:00:84:3B:80
S06 SX 00:02:C9:03:00:84:3B:90
S07 SX 00:02:C9:03:00:61:ED:00
S08 SX 00:02:C9:03:00:84:3B:A0
S09 SX 00:02:C9:03:00:84:3B:50
S10 SX 00:02:C9:03:00:84:3B:10
S11 SX 00:02:C9:03:00:61:EC:B0
S12 SX 00:02:C9:03:00:66:C9:60
S13 SX 00:02:C9:03:00:66:C9:60
...
The output of the command “show guid” on EDR director switch:

```
switch (config) # show guids
==============================================
Module  Device GUID
==============================================
SYSTEM   -          00:05:C9:03:00:42:D8:00
S01      SIB         00:02:C9:03:00:84:3B:60
S02      SIB         00:02:C9:03:00:84:3B:40
S03      SIB         00:02:C9:03:00:84:3A:F0
S04      SIB         00:02:C9:03:00:84:3B:70
S05      SIB         00:02:C9:03:00:84:3B:80
S06      SIB         00:02:C9:03:00:84:3B:90
S07      SIB         00:02:C9:03:00:61:ED:00
S08      SIB         00:02:C9:03:00:84:3B:A0
S09      SIB         00:02:C9:03:00:84:3B:10
S10      SIB         00:02:C9:03:00:84:3B:90
S11      SIB         00:02:C9:03:00:61:EC:B0
S12      SIB         00:02:C9:03:00:66:C9:B0
S13      SIB         00:02:C9:03:00:66:C9:60
S14      SIB         00:02:C9:03:00:66:C9:50
S15      SIB         00:02:C9:03:00:66:C9:50
S16      SIB         00:02:C9:03:00:66:C9:50
101      SIB1        00:02:C9:03:00:31:81:B1
101      SIB2        00:02:C9:03:00:31:81:81
... 
```

On 1U switches, the command “show guids” displays “MGMT” under the “Module” column instead of “1”.

```
Before:
switch (config) # show guids
============================================
SX module                       GUID
============================================
SYSTEM              00:02:C9:03:00:A8:EA:10
1                   00:02:C9:03:00:A8:EA:12

After:
switch (config) # show guids
============================================
Module  Device GUID
============================================
SYSTEM   -          F4:52:14:03:00:11:E4:F0
MGMT     SX          F4:52:14:03:00:11:E4:F2
```

Added a “Device” column to the command “show asic-version”.

```
Before:
switch (config) # show asic-version
=======================================
Module        Version
=======================================
MGMT          9.3.3150

After:
switch (config) # show asic-version
=======================================
Module  Device   Version
=======================================
MGMT    SX        9.3.3150
```
The output of the command “show asic-version” on an EDR director switch system:

```
switch (config) # show guids
=================================================================
<table>
<thead>
<tr>
<th>Module</th>
<th>Device</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>SIB1</td>
<td>11.0.1296</td>
</tr>
<tr>
<td>101</td>
<td>SIB2</td>
<td>11.0.1296</td>
</tr>
<tr>
<td>102</td>
<td>SIB1</td>
<td>11.0.1296</td>
</tr>
<tr>
<td>102</td>
<td>SIB2</td>
<td>11.0.1296</td>
</tr>
<tr>
<td>103</td>
<td>SIB1</td>
<td>11.0.1296</td>
</tr>
<tr>
<td>103</td>
<td>SIB2</td>
<td>11.0.1296</td>
</tr>
<tr>
<td>104</td>
<td>SIB1</td>
<td>11.0.1296</td>
</tr>
<tr>
<td>104</td>
<td>SIB2</td>
<td>11.0.1296</td>
</tr>
<tr>
<td>105</td>
<td>SIB1</td>
<td>11.0.1296</td>
</tr>
<tr>
<td>105</td>
<td>SIB2</td>
<td>11.0.1296</td>
</tr>
<tr>
<td>106</td>
<td>SIB1</td>
<td>11.0.1296</td>
</tr>
<tr>
<td>106</td>
<td>SIB2</td>
<td>11.0.1296</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

C.4.2 MIB entPhysicalTable Change

The entPhysicalIndex and entPhysicalDescr columns now display and convey module hierarchy.

- entPhysicalDescr in entPhysicalTable revamped now represents ASIC module hierarchy
- entPhysicalIndex in entPhysicalTable now represents a legend and not just a running number. For example (line 9 in Figure 38), “S01/BOARD_MONITOR/T1” has the index 301030011 which indicates the following: 3=Spine, 1=index, 3=BOARD_MONITOR, 1=T, 1=T1.

Figure 37: MIB entPhysicalTable Before Screenshot

<table>
<thead>
<tr>
<th>entPhysicalIndex</th>
<th>entPhysicalDescr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mellanox SX6512, 216-Port FDR/FDR-10 Switch System</td>
</tr>
<tr>
<td>2</td>
<td>MGMT1</td>
</tr>
<tr>
<td>3</td>
<td>MGMT2</td>
</tr>
<tr>
<td>4</td>
<td>S01</td>
</tr>
<tr>
<td>5</td>
<td>S02</td>
</tr>
<tr>
<td>6</td>
<td>S03</td>
</tr>
<tr>
<td>7</td>
<td>S04</td>
</tr>
<tr>
<td>8</td>
<td>S05</td>
</tr>
<tr>
<td>9</td>
<td>S06</td>
</tr>
<tr>
<td>10</td>
<td>L01</td>
</tr>
<tr>
<td>11</td>
<td>L02</td>
</tr>
<tr>
<td>12</td>
<td>L03</td>
</tr>
<tr>
<td>13</td>
<td>L04</td>
</tr>
<tr>
<td>14</td>
<td>L05</td>
</tr>
</tbody>
</table>
C.5 MGMT Module Display Change

The MGMT module display is improved to better represent the actual structure of modules within the system. The commands “show power consumers” and “show temperature” now display information from the MGMT module.

The output of the command “show power consumers” on a 1U PPC switch system:

Before:
```
switch (config) # show power consumers
```
```
<table>
<thead>
<tr>
<th>Module</th>
<th>Device</th>
<th>Power</th>
<th>Voltage</th>
<th>Current</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURR_MONITOR</td>
<td>MONITOR</td>
<td>33.31</td>
<td>11.72</td>
<td>2.84</td>
<td>OK</td>
</tr>
</tbody>
</table>
```

Total power used: 33.31 W
Max power: 235.00 W

After:
```
switch (config) # show power consumers
```
```
<table>
<thead>
<tr>
<th>Module</th>
<th>Device</th>
<th>Power</th>
<th>Voltage</th>
<th>Current</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT</td>
<td>CURR</td>
<td>33.31</td>
<td>11.72</td>
<td>2.84</td>
<td>OK</td>
</tr>
</tbody>
</table>
```

Total power used: 33.31 W
Max power: 235.00 W

The output of the command “show temperature” on a 1U PPC switch system:

Before:
```
switch (config) # show temperature
```
```
<table>
<thead>
<tr>
<th>Module</th>
<th>Component</th>
<th>Reg</th>
<th>CurTemp</th>
<th>Status</th>
<th>(Celsius)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT</td>
<td>BOARD_MONITOR</td>
<td>T1</td>
<td>26.50</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>MGMT</td>
<td>CPU_MEZZ_TEMP</td>
<td>T1</td>
<td>27.00</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>CPU_X86</td>
<td>CPU Core Sensor</td>
<td>T1</td>
<td>28.00</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>CPU_X86</td>
<td>CPU Core Sensor</td>
<td>T2</td>
<td>30.00</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>CPU_X86</td>
<td>CPU Core Sensor</td>
<td>T3</td>
<td>56.00</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>CPU_X86</td>
<td>CPU Core Sensor</td>
<td>T4</td>
<td>26.00</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>CPU_X86</td>
<td>CPU package Sensor</td>
<td>T4</td>
<td>38.00</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>MGMT</td>
<td>QSFP_TEMP1</td>
<td>T1</td>
<td>27.00</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

After:
```
switch (config) # show temperature
```
```
<table>
<thead>
<tr>
<th>Module</th>
<th>Component</th>
<th>Reg</th>
<th>CurTemp</th>
<th>Status</th>
<th>(Celsius)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT</td>
<td>CPU Core Sensor</td>
<td>T1</td>
<td>28.00</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>MGMT</td>
<td>CPU Core Sensor</td>
<td>T2</td>
<td>30.00</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>MGMT</td>
<td>CPU Core Sensor</td>
<td>T3</td>
<td>56.00</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>MGMT</td>
<td>CPU Core Sensor</td>
<td>T4</td>
<td>26.00</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>MGMT</td>
<td>CPU package Sensor</td>
<td>T4</td>
<td>40.00</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>MGMT</td>
<td>BOARD_MONITOR</td>
<td>T1</td>
<td>26.50</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>MGMT</td>
<td>CPU_MEZZ_TEMP</td>
<td>T1</td>
<td>27.00</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>MGMT</td>
<td>QSFP_TEMP1</td>
<td>T1</td>
<td>27.00</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
C.6 MLNX-OS Image Name Change

The “SX_” prefix has been removed from the name of the MLNX-OS image.

C.6.1 CLI Change

The output of the command “show version”:

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch (config) # show version</td>
<td>switch (config) # show version</td>
</tr>
<tr>
<td>Product name: SX_X86_64</td>
<td>Product name: MLNX-OS</td>
</tr>
<tr>
<td>Product release: SX_3.4.0008</td>
<td>Product release: 3.4.2000</td>
</tr>
<tr>
<td>Build ID: #1-dev</td>
<td>Build ID: #1-dev</td>
</tr>
<tr>
<td>Target arch: x86_64</td>
<td>Target arch: x86_64</td>
</tr>
<tr>
<td>Target hw: x86_64</td>
<td>Target hw: m460ex</td>
</tr>
<tr>
<td>Built by: jenkins@fit74</td>
<td>Built by: jenkins@fit74</td>
</tr>
</tbody>
</table>

...

The output of the command “show version”:

switch (config) # show images
Installed images:

Partition 1:
PPC_M460EX 3.4.2000 2015-05-06 02:16:39 ppc

Partition 2:
SX_PPC_M460EX SX_3.4.0000 2014-10-14 20:26:41 ppc //older version with “SX_” suffix

Last boot partition: 1
Next boot partition: 1

C.6.2 WebUI Status Page Change

In the “Status” page of the MLNX-OS WebUI, the “Software Version” field has been modified to reflect the change in the image file name so now it appears without the prefix “SX_” (Figure 39).
C.7

CPU Module Display Change

The CPU module has been removed from the outputs of the CLI commands “show inventory” and “show modules”.

C.7.1

CLI Change

The command “show inventory” does not list CPU under the “Module” column.

<table>
<thead>
<tr>
<th>Before</th>
<th>switch (config) # show inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module</td>
<td>Type</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>CHASSIS</td>
<td>SX6036</td>
</tr>
<tr>
<td>MGMT</td>
<td>SX6036</td>
</tr>
<tr>
<td>FAN</td>
<td>SXX0XX_FAN</td>
</tr>
<tr>
<td>PS1</td>
<td>SXX0XX_PS</td>
</tr>
<tr>
<td>CPU</td>
<td>CPU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>After</th>
<th>switch (config) # show inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module</td>
<td>Type</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>CHASSIS</td>
<td>SX6036</td>
</tr>
<tr>
<td>MGMT</td>
<td>SX6036</td>
</tr>
<tr>
<td>FAN</td>
<td>SXX0XX_FAN</td>
</tr>
<tr>
<td>PS1</td>
<td>SXX0XX_PS</td>
</tr>
</tbody>
</table>
The command “show module” does not list CPU under the “Module” column.

<table>
<thead>
<tr>
<th>Before:</th>
<th>After:</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch (config) # show module</td>
<td>switch (config) # show module</td>
</tr>
<tr>
<td>Module</td>
<td>Type</td>
</tr>
<tr>
<td>Module</td>
<td>Type</td>
</tr>
<tr>
<td>MGMT</td>
<td>SX6036</td>
</tr>
<tr>
<td>FAN</td>
<td>SXX0XX_FAN</td>
</tr>
<tr>
<td>PS1</td>
<td>SXX0XX_PS</td>
</tr>
<tr>
<td>PS2</td>
<td>SXX0XX_PS</td>
</tr>
<tr>
<td>CPU</td>
<td>CPU</td>
</tr>
<tr>
<td>MGMT</td>
<td>SX6036</td>
</tr>
<tr>
<td>FAN</td>
<td>SXX0XX_FAN</td>
</tr>
<tr>
<td>PS1</td>
<td>SXX0XX_PS</td>
</tr>
<tr>
<td>PS2</td>
<td>SXX0XX_PS</td>
</tr>
</tbody>
</table>

C.7.2 WebUI System Inventory Page Change

In the “System > Inventory” page of the MLNX-OS WebUI, the “Module” column does not display the CPU module anymore (Figure 40).

Figure 40: System Inventory WebUI Page

<table>
<thead>
<tr>
<th>Modules Information</th>
<th>Modules Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module</td>
<td>Type</td>
</tr>
<tr>
<td>CHASSIS</td>
<td>MSX1700</td>
</tr>
<tr>
<td>MGMT</td>
<td>MSX1700</td>
</tr>
<tr>
<td>FAN1</td>
<td>SX1024_FAN</td>
</tr>
<tr>
<td>FAN2</td>
<td>SX1024_FAN</td>
</tr>
<tr>
<td>PS2</td>
<td>400W_PS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPLDs Information</th>
<th>CPLDs Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Type</td>
</tr>
<tr>
<td>Cpld1</td>
<td>CPLD_TOR</td>
</tr>
<tr>
<td>Cpld2</td>
<td>CPLD_PORT1</td>
</tr>
<tr>
<td>Cpld3</td>
<td>CPLD_MEZZ</td>
</tr>
</tbody>
</table>